Volatiles and Water- and Fat-Soluble Precursors of Saanen Goat and Cross Suffolk Lamb Flavour
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fatty Acids
mg/100 g | ||||
---|---|---|---|---|
Lamb | Goat | P 1 | Standard error | |
C10:0 | 3.2 | 0.2 | * | 0.5 |
C12:0 | 4.0 | 1.1 | * | 0.5 |
C14:0 | 71.4 | 16.2 | * | 9.5 |
C15:0 | 14.9 | 4.2 | * | 2.1 |
C16:0 | 714.4 | 135.9 | * | 92.1 |
C17:0 | 53.1 | 9.4 | * | 8.1 |
C18:0 | 796.5 | 160.8 | * | 117.5 |
C19:0 | 3.1 | 2.3 | NS | 0.1 |
C20:0 | 3.0 | 1.5 | * | 0.3 |
C22:0 | 1.0 | 1.0 | NS | 0.1 |
C24:0 | 4.0 | 9.7 | * | 0.8 |
C14:1 n9c | 2.7 | 0.0 | NS | 0.4 |
C16:1 n9t | 14.7 | 4.7 | * | 1.9 |
C16:1 n9c | 83.8 | 11.3 | * | 11.3 |
C17:1 n10c | 28.2 | 4.6 | * | 3.7 |
C18:1 n6,8t | 6.7 | 1.3 | * | 1.0 |
C18:1 n9t | 7.5 | 1.1 | * | 1.0 |
C18:1 n10t | 16.2 | 2.0 | * | 2.5 |
C18:1 n11t | 23.3 | 17.2 | NS | 2.6 |
C18:1 n6,12c-t | 8.5 | 0.9 | * | 1.3 |
C18:1 n13,14t | 0.0 | 2.9 | NS | 0.4 |
C18:1 n9c | 1380.0 | 209.4 | * | 172.2 |
C18:1 n11c | 6.7 | 0.7 | * | 1.0 |
C20:1 n8,9c | 0.5 | 0.0 | NS | 0.1 |
C20:1 n11c | 3.0 | 0.5 | * | 0.4 |
C22:1 n13c | 0.4 | 0.0 | NS | 0.1 |
C18:2 n9, 12 t-t | 5.1 | 1.3 | * | 0.6 |
C18:2 9, 12 c-c | 140.2 | 46.0 | * | 14.4 |
C20:2 n11,14 c-c | 1.0 | 0.1 | * | 0.1 |
C20:3 n8,11,14c | 3.9 | 2.4 | * | 0.2 |
C22:2 n13,16c | 0.5 | 0.9 | NS | 0.1 |
CLA | ||||
C18:3 n6 | 1.9 | 0.4 | * | 0.2 |
C18:3 n3 | 8.6 | 10.0 | * | 0.4 |
C20:4 n6 | 61.1 | 26.5 | * | 5.0 |
C22:4 n6 | 7.0 | 1.1 | * | 0.9 |
C22:5 n3 | 8.2 | 14.7 | * | 0.9 |
C22:6 n3 | 1.8 | 3.9 | * | 0.3 |
Total Fames | 3601.4 | 736.6 | 452.3 | |
UFA 2 | 1821.3 | 364.1 | ||
MUFA 3 | 1582.0 | 256.7 | ||
PUFA 4 | 239.3 | 107.4 | ||
SFA 5 | 1668.6 | 342.3 | ||
P:S | 0.2 | 0.3 | ||
n-6: n-3 | 3.8 | 1.0 |
2.2. Free Amino Acids and Sugars
Water-soluble Precursors | Raw | P1 | Cooked | P1 | Standard Error | Remaining % | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Goat | Lamb | Goat | Lamb | Raw | Cooked | Goat | Lamb | |||||
Amino acids | ||||||||||||
Cysteine | 0.06 | 0.12 | * | 0 | 0 | 0.008 | 0.001 | 0 | 3 | |||
Methionine | 0.6 | 0.7 | NS | 0.1 | 0.4 | NS | 0.067 | 0.042 | 19 | 51 | ||
Leucine | 12.8 | 11.7 | NS | 5.1 | 4.8 | NS | 0.28 | 0.22 | 40 | 41 | ||
Isoleucine | 5.6 | 5.4 | NS | 2.3 | 2.3 | NS | 0.12 | 0.11 | 42 | 42 | ||
Serine | 4.5 | 4.3 | NS | 1.9 | 1.8 | NS | 0.09 | 0.09 | 42 | 42 | ||
Threonine | 9.7 | 9.8 | NS | 2.9 | 3.8 | NS | 0.69 | 0.25 | 30 | 39 | ||
Valine | 9.0 | 8.6 | * | 4.1 | 3.4 | NS | 0.40 | 0.18 | 46 | 40 | ||
Phenylalanine | 5.9 | 5.5 | NS | 2.4 | 2.2 | NS | 0.07 | 0.11 | 41 | 40 | ||
Aspartic acid | 5.0 | 6.2 | * | 4.9 | 5.8 | * | 0.54 | 0.50 | 98 | 92 | ||
Glutamic acid | 14.2 | 10.4 | * | 5.3 | 5.5 | NS | 1.35 | 0.25 | 37 | 53 | ||
Glycine | 31.5 | 20.3 | * | 19.7 | 10.5 | * | 3.26 | 1.14 | 63 | 52 | ||
Alanine | 47.8 | 41.9 | * | 30.3 | 25.1 | * | 1.19 | 0.68 | 63 | 60 | ||
Proline | 8.0 | 8.8 | NS | 3.2 | 3.7 | NS | 0.55 | 0.21 | 40 | 42 | ||
Asparagine | 5.7 | 4.9 | NS | 1.6 | 1.9 | NS | 0.51 | 0.13 | 28 | 39 | ||
Glutamine | 57.5 | 31 | * | 22.7 | 18.3 | * | 8.53 | 1.57 | 39 | 59 | ||
Lysine | 12.1 | 10.9 | NS | 3.4 | 3.2 | NS | 1.16 | 0.25 | 28 | 29 | ||
Histidine | 9.7 | 8 | NS | 7.4 | 3.6 | * | 0.53 | 0.48 | 76 | 45 | ||
Tyrosine | 4.4 | 4.7 | NS | 1.6 | 1.5 | NS | 0.22 | 0.11 | 37 | 33 | ||
Tryptophan | 0.7 | 0.6 | NS | 0.3 | 0.2 | NS | 0.02 | 0.01 | 41 | 36 | ||
β-Alanine | 2.3 | 2.0 | NS | 1.9 | 1.2 | NS | 0.13 | 0.09 | 83 | 58 | ||
Total | 247.0 | 196.0 | * | 121.0 | 99.2 | * | 18.61 | 4.89 | 49 | 51 | ||
Sugars | ||||||||||||
Glucose | 180 | 200 | * | 65 | 77 | * | 0.70 | 0.65 | 36 | 38 | ||
Mannose | 32 | 30 | NS | 11.7 | 9.5 | NS | 0.04 | 0.01 | 37 | 32 | ||
Fructose | 69 | 77 | * | 27.3 | 26 | NS | 0.03 | 0.02 | 39 | 34 | ||
Ribose | 10 | 10 | NS | 3.2 | 3 | NS | 0.08 | 0.07 | 32 | 30 | ||
Maltose | 13.5 | 11.3 | * | 4.8 | 4.2 | * | 0.06 | 0.06 | 35 | 37 |
2.3. Volatile Compounds
Compound | Mean concentration (ng/100 g) a | P b | Standard error | LRI c | ID d | |
---|---|---|---|---|---|---|
Goat | Lamb | |||||
LIPID-DERIVED COMPOUNDS | ||||||
Hydrocarbons | ||||||
Pentane f,g | 10 | 2 | * | 1.34 | 500 | A |
3-Methylpentane e,g | 22 | 17 | * | 1.21 | <600 | B |
Benzene f,g | 3 | 2 | NS | 0.17 | 657 | A |
Heptane f,g | 7 | 2 | * | 0.75 | 700 | A |
Toluene f,g | 17 | 14 | NS | 0.94 | 769 | A |
Octane f,g | 105 | 55 | * | 11.57 | 800 | A |
(E)-2-Octene f,h | 1 | 1 | NS | 0.19 | 814 | B |
(Z)-2-octene f,h | 2 | 3 | NS | 0.47 | 806 | B |
Ethylbenzene f,g | 2 | 1 | NS | 0.06 | 865 | A |
1,3-Dimethylbenzene f,g | 6 | 4 | * | 0.27 | 874 | A |
1,4-Dimethylbenzene f,g | 0.04 | 0.04 | NS | 0.00 | 876 | A |
Styrene f,g | 1 | 2 | NS | 0.09 | 897 | A |
1,2-Dimethylbenzene f,g | 2 | 2 | NS | 0.09 | 898 | A |
Nonane f,g | 4 | 2 | NS | 0.37 | 900 | A |
2,2,4,6,6-Pentamethylheptane e,g | 6 | 47 | * | 5.89 | 993 | A |
Decane f,g | 4 | 2 | NS | 0.55 | 1000 | A |
Limonene f,g | 2 | 1 | NS | 0.10 | 1037 | A |
Camphor e,h | 1 | 0.0 | NS | 0.10 | 1165 | B |
Dodecane f,g | 1 | 1 | NS | 0.05 | 1200 | A |
Tridecane f,g | 5 | 5 | NS | 0.74 | 1300 | A |
Tetradecane f,g | 1 | 1 | NS | 0.08 | 1400 | A |
Pentadecane f,g | 1 | 3 | NS | 0.30 | 1500 | A |
Aldehydes | ||||||
Pentanal f,g | 364 | 75 | * | 41.98 | 699 | A |
(E)-2-Methyl-2-butenal f,g | 1 | 1 | NS | 0.03 | 741 | A |
Hexanal f,g | 1943 | 252 | * | 244.29 | 802 | A |
Heptanal f,g | 319 | 127 | * | 33.89 | 903 | A |
(E)-2-Heptenal f,g | 4 | 0.2 | NS | 0.59 | 960 | A |
Benzaldehyde f,g | 30 | 34 | NS | 2.34 | 971 | A |
Octanal f,g | 229 | 94 | * | 24.24 | 1005 | A |
5-Ethyl-1-formylcyclopentene f,g | 2 | 0.1 | NS | 0.32 | 1041 | C (1) |
(E)-2-Octenal f,g | 7 | 0.2 | NS | 0.96 | 1061 | A |
(Z)-6-Nonenal e,h | 0 | 0.2 | NS | 0.04 | 1100 | D (4) |
Nonanal f,g | 378 | 210 | * | 40.11 | 1108 | A |
(E)-2-Nonenal f,g | 7 | 1 | * | 0.85 | 1164 | A |
2-Ethylbenzaldehyde f,g | 0.1 | 0.4 | NS | 0.08 | 1175 | C [29] |
Decanal f,g | 13 | 9 | * | 1.20 | 1208 | A |
5-Butyl-1-formylcyclopentene f,g | 0.06 | 0.01 | * | 0.01 | 1233 | C [18] |
(E)-2-Decenal f,g | 6 | 1 | * | 0.78 | 1266 | A |
Undecanal f,g | 3 | 1 | * | 0.44 | 1312 | A |
(E,E)-2,4-Decadienal f,g | 2 | 0.2 | * | 0.32 | 1327 | A |
(E)-2-Undecenal f,g | 6 | 1 | * | 0.67 | 1371 | A |
Dodecanal f,g | 1 | 0.5 | * | 0.11 | 1414 | A |
4-Pentylbenzaldehyde f,g | 0.2 | 0.1 | NS | 0.03 | 1480 | B |
Ketones | ||||||
2-Propanone f,g | 78 | 80 | * | 8.06 | <600 | B |
2-Butanone f,g | 448 | 406 | * | 10.70 | <600 | B |
2-Pentanone f,g | 19 | 14 | * | 0.79 | 683 | A |
3-Pentanone e,g | 7 | 6 | NS | 0.15 | 693 | A |
3-Hexanone f,g | 3 | 0.3 | * | 0.33 | 784 | A |
2-Hexanone f,g | 2 | 1 | NS | 0.32 | 788 | A |
Cyclopentanone f,g | 1 | 2 | NS | 0.11 | 794 | A |
4-Hydroxy-2-pentanone e,h | 1 | 0.0 | NS | 0.18 | 818 | D [3] |
2-Methylcyclopentanone f,g | 1 | 0.4 | * | 0.07 | 845 | A |
5-Methyl-2-hexanone e,h | 0.4 | 0.5 | NS | 0.02 | 856 | A |
2-Heptanone f,g | 33 | 11 | * | 3.46 | 890 | A |
3-Ethylcyclopentanone f,g | 2 | 1 | NS | 0.12 | 966 | A |
1-Octen-3-one f,g | 1 | 1 | NS | 0.18 | 978 | B |
2,3-Octanedione f,g | 28 | 6 | * | 3.73 | 983 | A |
3-Octanone f,g | 5 | 2 | NS | 0.41 | 986 | B |
2-Octanone f,g | 1 | 1 | NS | 0.06 | 990 | A |
2-Nonanone f,g | 3 | 3 | NS | 0.12 | 1091 | A |
2-Decanone f,g | 3 | 2 | NS | 0.14 | 1193 | A |
2-Undecanone f,g | 0.5 | 0.4 | NS | 0.02 | 1295 | A |
2-Tridecanone f,g | 0.1 | 0.1 | NS | 0.01 | 1497 | A |
Alcohols | ||||||
2-Butanol f,g | 41 | 31 | * | 1.71 | <600 | B |
2-Methyl-1-propanol f,g | 2 | 8 | NS | 0.97 | 616 | A |
1-Butanol f,g | 84 | 5 | * | 12.27 | 654 | A |
1-Penten-3-ol f,g | 28 | 51 | * | 5.30 | 679 | A |
3-Methyl-3-buten-1-ol f,g | 2 | 1 | NS | 0.28 | 729 | A |
3-Methylbutan-1-ol f,g | 20 | 22 | NS | 0.90 | 736 | A |
1-Pentanol f,g | 142 | 51 | * | 13.69 | 765 | A |
1-Hexanol f,g | 37 | 20 | * | 2.58 | 867 | A |
1-Heptanol f,g | 3 | 2 | NS | 0.23 | 969 | A |
1-Octen-3-ol f,g | 124 | 77 | * | 7.10 | 980 | A |
3-Octanol f,g | 1 | 2 | NS | 0.26 | 997 | A |
2-Ethyl-1-hexanol f,g | 80 | 6 | * | 11.02 | 1028 | A |
2-Octen-1-ol (E and /or Z) f,g | 9 | 3 | NS | 0.96 | 1067 | A |
1-Octanol f,g | 49 | 26 | * | 4.87 | 1069 | A |
1-Nonanol f,g | 3 | 1 | NS | 0.37 | 1163 | A |
1-Dodecanol f,g | 2 | 4 | NS | 0.44 | 1462 | B |
Acids | ||||||
Hexanoic acid f,g | 4 | 1 | * | 0.37 | 964 | A |
Octanoic acid f,g | 0.3 | 0.2 | NS | 0.02 | 1157 | A |
Nonanoic acid f,g | 0.3 | 0.2 | NS | 0.02 | 1254 | A |
Furans | ||||||
2-Ethylfuran f,g | 2 | 1 | NS | 0.20 | 698 | A |
2-Butylfuran f,g | 0.4 | 0.1 | NS | 0.05 | 893 | A |
2-Pentylfuran f,g | 14 | 3 | * | 1.70 | 992 | A |
2-Hexylfuran f,g | 0.1 | 0.1 | NS | 0.01 | 1092 | A |
2-Octylfuran f,g | 0.5 | 0.1 | NS | 0.06 | 1297 | A |
MAILLARD-DERIVED COMPOUNDS | ||||||
Nonheterocyclic | ||||||
2-Methylpropanal f,g | 92 | 69 | * | 4.71 | <600 | B |
3-Methylbutanal f,g | 141 | 107 | * | 4.93 | 649 | A |
2-Methylbutanal f,g | 129 | 92 | * | 5.77 | 660 | A |
Benzeneacetaldehyde f,g | 2 | 1 | NS | 0.16 | 1052 | A |
2.3-Butanedione f,g | 34 | 20 | * | 2.08 | <600 | B |
2,3-Pentanedione f,g | 1 | 1 | NS | 0.09 | 695 | A |
2,4-Pentanedione e,h | 0.2 | 0.2 | NS | 0.03 | 778 | A |
3-Hydroxy-2-butanone f,g | 21 | 3 | * | 2.96 | 708 | A |
3-Metylbutanoic acid f,g | 5 | 5 | NS | 0.55 | 827 | B |
Sugar-derived | ||||||
2-Furfural f,g | 0.4 | 0.4 | NS | 0.02 | 834 | A |
2-Furanmethanol f,g | 0.2 | 0.2 | NS | 0.02 | 853 | A |
2-Acetylfuran f,g | 1 | 0.8 | NS | 0.06 | 913 | A |
Nitrogen heterocyclic | ||||||
N-Methylpyrrole f,g | 3 | 2 | NS | 0.23 | 738 | A |
Pyrrole f,g | 12 | 10 | NS | 0.97 | 747 | A |
Pyridine f,g | 1 | 1 | NS | 0.16 | 748 | A |
1-Ethyl-1H-pyrrole e,h | 1 | 1 | NS | 0.08 | 814 | C [18] |
3-Methyl-1-H-pyrrole e,h | 0.3 | 0.3 | NS | 0.03 | 836 | C [18] |
2-Methyl-1-H-pyrrole f,g | 0.4 | 0.3 | NS | 0.03 | 844 | C [18] |
Indole f,g | 2 | 0.4 | * | 0.58 | 1309 | D [2] |
Pyrazines | ||||||
2-Methylpyrazine f,g | 4 | 2 | * | 0.34 | 828 | A |
2,5(6)-Dimethylpyrazine f,g | 14 | 8 | * | 0.97 | 916 | A |
Ethylpyrazine f,g | 1 | 0.4 | NS | 0.06 | 922 | A |
2-Ethyl-6-methylpyrazine f,g | 5 | 3 | * | 0.36 | 1001 | A |
Trimethylpyrazine f,g | 12 | 6 | * | 1.00 | 1005 | A |
2-Ethyl-5-methylpyrazine f,g | 8 | 5 | NS | 0.52 | 1007 | A |
3,6-Dimethyl-2-ethylpyrazine f,g | 12 | 8 | * | 0.67 | 1080 | A |
3,5-Dimethyl-2-ethylpyrazine f,g | 2 | 1 | NS | 0.19 | 1086 | A |
2,3-Dimethyl-5-ethylpyrazine f,g | 1 | 1 | NS | 0.14 | 1090 | A |
2,5-Diethyl-5-methylpyrazine f,g | 0.06 | 0.04 | NS | 0.00 | 1156 | B |
2,3,5-Trimethyl-6-ethylpyrazine e,h | 1 | 0.5 | NS | 0.09 | 1160 | C [2] |
Dimethyl sulfide | ||||||
Hydrogen sulphide f,g | 19 | 19 | NS | 0.61 | <600 | B |
Sulfur dioxide f,g | 1 | 1 | NS | 0.08 | <600 | B |
Methanethiol f,g | 4 | 4 | NS | 0.11 | <600 | B |
Carbon disulfide f,g | 3 | 3 | NS | 0.09 | <600 | B |
Ethylmethylsulfide e,h | 0.3 | 0.4 | NS | 0.02 | 604 | B |
Dimethyl disulfide f,g | 4 | 3 | NS | 0.25 | 745 | A |
Ethylmethyldisulfide e,g | 0.02 | 0.02 | NS | 0.00 | 840 | B |
Methional f,g | 0.06 | 0.06 | NS | 0.00 | 910 | A |
Dimetyl trisulfide f,g | 1 | 1 | NS | 0.06 | 981 | A |
Dimethyl tetrasulfide f,g | 0.07 | 0.07 | NS | 0.02 | 1241 | C [29] |
Thiophenes | ||||||
Thiophene f,g | 3 | 3 | NS | 0.16 | 666 | A |
2-Methylthiophene f,g | 1 | 1 | NS | 0.08 | 773 | A |
3-Methylthiophene f,g | 0.4 | 0.4 | NS | 0.02 | 783 | A |
2-Ethylthiophene f,g | 0.1 | 0.1 | NS | 0.00 | 866 | A |
Thiazoles | ||||||
5-Mehtylthiazole f,g | 0.09 | 0.04 | * | 0.01 | 820 | A |
Miscellaneous | ||||||
Acetophenone f,g | 1 | 2 | NS | 0.09 | 1075 | A |
3. Experimental
3.1. Species
3.2. Grilling
3.3. Analysis of Volatile Compounds
3.4. Fatty Acid Analysis
3.5. Preparation of Sample Extracts for Analysis of Water-Soluble Compounds (Free Amino Acids and Sugars)
3.6. Determination of Free Amino Acids by GC-MS
3.7. Determination of Monosaccharides and Disaccharides by Anion Exchange Chromatography HPIC-PAD
3.8. Statistical Analysis
4. Conclusions
Acknowledgments
Conflicts of Interest
- Samples Availability: Not available.
References
- FAOSTAT. Production Handbook; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003. Available online: http://faostat.fao.org accessed on 20 December 2012.
- Madruga, M.S.; Elmore, J.S.; Oruna-Concha, M.J.; Balagiannis, D.; Mottram, D.S. Determination of some water-soluble aroma precursors in goat meat and their enrolment on flavour profile of goat meat. Food Chem. 2010, 212, 513–520. [Google Scholar]
- Madruga, M.S.; Elmore, J.S.; Dodson, A.T.; Mottram, D.S. Volatile flavour profile of goat meat extracted by three widely used techniques. Food Chem. 2009, 115, 1081–1087. [Google Scholar] [CrossRef]
- Madruga, M.S.; Bressan, M.C. Goat meats: Description, rational use, certification, processing and technological developments. Small Rumin. Res. 2011, 98, 39–45. [Google Scholar] [CrossRef]
- Webb, E.C.; Casey, N.H.; Simela, L. Goat meat quality. Small Rumin. Res. 2005, 60, 153–166. [Google Scholar] [CrossRef]
- Madruga, M.S.; Narain, N.; Duarte, T.F.; Sousa, W.H.; Galvão, M.S.; Cunha, M.G.; Ramos, J.L.F. Características químicas e sensoriais de cortes comerciais de caprinos e mestiços de Bôer. Ciênc. Tecnol. Aliment. Campinas 2005, 25, 713–719. [Google Scholar]
- Elmore, J.S.; Mottram, D.S. Flavour Development in Meat. In Improving the Sensory and Nutritional Quality of Fresh Meat: New Technologies; Kerry, P., Ledward, D.A., Eds.; Woodhead Publishing Limited: Cambridge, UK, 2009; pp. 111–146. [Google Scholar]
- Mushi, D.E.; Eik, L.O.; Thomassen, M.S.; Sørheim, O.; Ådnøy, T. Suitability of Norwegian short-tail lambs, Norwegian dairy goats and Cashmere goats for meat production - Carcass, meat, chemical and sensory characteristics. Meat Sci. 2008, 80, 842–850. [Google Scholar]
- Sen, A.R.; Santra, A.; Karim, S.A. Carcass yield, composition and meat quality attributes of sheep and goat under semiarid conditions. Meat Sci. 2004, 66, 757–763. [Google Scholar] [CrossRef]
- Tshabalala, P.A.; Strydom, P.E.; Webb, E.C.; Kock, H.L. Meat quality of designated South African indigenous goat and sheep breeds. Meat Sci. 2003, 65, 563–570. [Google Scholar] [CrossRef]
- Sheridan, R.; Hoffman, L.C.; Ferreira, V. Meat quality of Boer goat kids and Mutton merino lambs. 1. Commercial yields and chemical composition. Animal Sci. 2003, 76, 63–71. [Google Scholar]
- Smith, G.C.; Pike, M.I.; Carpenter, Z.L. Comparison of the palatability of goat meat and meat from other animal species. J. Food Sci. 1974, 39, 1145–1146. [Google Scholar] [CrossRef]
- Gaili, E.S.E.; Ghanem, Y.S.; Mukhtar, A.M. A comparative study of some carcass characteristics of sudan desert sheep and goats. Animal Prod. 1972, 14, 351–357. [Google Scholar] [CrossRef]
- Schönfeldt, H.C.; Naudé, R.T.; Bok, W.; van Heerden, S.M.; Smit, R. Flavour- and tenderness-related quality characteristics of goat and sheep meat. Meat Sci. 1993, 34, 363–379. [Google Scholar] [CrossRef]
- Barbiker, S.A.; El Khider, I.A.; Shafie, S.A. Chemical composition and quality attributes of goat meat and lamb. Meat Sci. 1990, 28, 273–277. [Google Scholar] [CrossRef]
- Lee, J.H.; Kannan, G.; Eega, K.R.; Kouakou, B.; Getz, W.R. Nutritional and quality characteristics of meat from goats and lambs finished under identical dietary regime. Small Rumin. Res. 2008, 74, 255–259. [Google Scholar] [CrossRef]
- Gaili, E.S.; Ali, A.E. Meat from Sudan desert sheep and goats: Part 2 - Composition of the muscular and fatty tissues. Meat Sci. 1985, 13, 229–236. [Google Scholar] [CrossRef]
- Elmore, J.S.; Cooper, S.L.; Enser, M.; Mottram, D.S.; Sinclair, L.A.; Wilkinson, R.G.; Wood, J.D. Dietary manipulation of fatty acid composition in lamb meat and its effect on the volatile aroma compounds of grilled lamb. Meat Sci. 2005, 69, 233–242. [Google Scholar] [CrossRef]
- Elmore, J.S.; Mottram, D.S.; Enser, M.; Wood, J.D. The effects of diet and breed on the volatile compounds of cooked lamb. Meat Sci. 2000, 55, 149–159. [Google Scholar] [CrossRef]
- Young, O.A.; Lane, G.A.; Priolo, A.; Fraser, K. Pastoral and species flavour in lambs raised on pasture, lucerne or maize. J. Sci. Food Agric. 2003, 83, 93–104. [Google Scholar]
- Young, O.A.; Berdagué, J.L.; Viallon, C.; Rousset-Akrim, S.; Theriez, M. Fat-borne volatiles and sheepmeat odour. Meat Sci. 1997, 45, 183–200. [Google Scholar] [CrossRef]
- Lee, J.H.; Vanguru, M.; Moore, D.A.; Kannan, G.; Terrill, T.H.; Kouakou, B. Flavor compounds and quality parameters of chevon as influenced by sericea lespedeza hay. J. Agric. Food Chem. 2012, 60, 3934–3939. [Google Scholar]
- Paleare, M.A.; Moretti, V.M.; Beretta, G.; Caprino, F. Chemical parameters, fatty acids and volatile compounds of salted and ripened goat thigh. Small Rumin. Res. 2008, 74, 140–148. [Google Scholar] [CrossRef]
- Enser, M.; Hallett, K.; Hewitt, B.; Fursey, A.J.; Wood, J.D. Fatty acid content and composition of English beef, lamb and pork at retail. Meat Sci. 1996, 42, 443–456. [Google Scholar] [CrossRef]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2003, 66, 21–32. [Google Scholar]
- COMA Report, Report on Health and Social Subjects N°28. In Diet and Cardiovascular Disease; The Stationary Office / HMSO: London, UK, 1984.
- Banskalieva, V.; Sahlu, T.; Goetsch, A.L. Fatty acid composition of goat muscle fat depots: A review. Small Rumin. Res. 2000, 37, 255–268. [Google Scholar] [CrossRef]
- Srinivasan, K.S.; Moorjani, M.N. Essential amino acid content of goat meat in comparison with other meats. J. Food Sci. Technol. 1974, 11, 123–124. [Google Scholar]
- Methven, L.; Tsoukka, M.; Oruna-Concha, M.J.; Parker, J.K.; Mottram, D.S. Influence of sulfur amino acids on the volatile and nonvolatile components of cooked salmon (Salmo salar). J. Agric. Food Chem. 2007, 55, 1427–1436. [Google Scholar] [CrossRef]
- Elmore, J.S.; Campo, M.M.; Enser, M.; Mottram, D.S. Effect of lipid composition on meat-like model systems containing cysteine, ribose, and polyunsaturated fatty acids. J. Agric. Food Chem. 2002, 50, 1126–1132. [Google Scholar] [CrossRef]
- Kondjovan, N.; Berdague, J. A Compilation of Relative Retention Indices for the Analysis of Aromatic Compounds; Edition du Laboratoire Flaveur: Theix, France, 1996. [Google Scholar]
- Low, M.Y.; Koutsidis, G.; Parker, J.K.; Elmore, J.S.; Dodson, A.T.; Mottram, D.S. Effect of citric acid and glycine addition on acrylamide and flavour in potato model system. J. Agric. Food Chem. 2006, 54, 5976–5983. [Google Scholar] [CrossRef]
- Mottram, D.S. Flavour formation in meat and meat products: A review. Food Chem. 1998, 62, 415–424. [Google Scholar] [CrossRef]
- Shingfield, K.J.; Ahvenjärvi, S.; Toivonen, V.; Ärölä, A.; Nurmela, K.V.V.; Huhtanen, P.; Griinari, J.M. Effect of dietary fish oil on biohydrogenation of fatty acids and milk fatty acid content in cows. Animal Sci. 2003, 77, 165–179. [Google Scholar]
- Christie, W.W. A simple procedure for rapid transmethylation of glycerolipids and cholesteryl esters. J. Lipid Res. 1982, 23, 1072–1075. [Google Scholar]
- Koutsidis, G.; Elmore, S.J.; Oruna-Concha, M.J.; Campo, M.M.; Wood, J.D.; Mottram, D.S. Water-soluble precursors of beef flavour: I. Effect of diet and breed. Meat Sci. 2008, 79, 124–130. [Google Scholar]
- Elmore, J.S.; Koutsidis, G.; Dodson, A.T.; Mottram, D.S.; Wedzicha, B.L. Measurement of acrylamide and its precursors in potato, wheat, and rye model systems. J. Sci. Food Agric. 2005, 53, 1286–1293. [Google Scholar] [CrossRef]
- Version 9.1.3 [CD-ROM]. SAS User’s Guide Basics 2002.
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Madruga, M.; Dantas, I.; Queiroz, A.; Brasil, L.; Ishihara, Y. Volatiles and Water- and Fat-Soluble Precursors of Saanen Goat and Cross Suffolk Lamb Flavour. Molecules 2013, 18, 2150-2165. https://doi.org/10.3390/molecules18022150
Madruga M, Dantas I, Queiroz A, Brasil L, Ishihara Y. Volatiles and Water- and Fat-Soluble Precursors of Saanen Goat and Cross Suffolk Lamb Flavour. Molecules. 2013; 18(2):2150-2165. https://doi.org/10.3390/molecules18022150
Chicago/Turabian StyleMadruga, Marta, Ingrid Dantas, Angela Queiroz, Luciana Brasil, and Yuri Ishihara. 2013. "Volatiles and Water- and Fat-Soluble Precursors of Saanen Goat and Cross Suffolk Lamb Flavour" Molecules 18, no. 2: 2150-2165. https://doi.org/10.3390/molecules18022150
APA StyleMadruga, M., Dantas, I., Queiroz, A., Brasil, L., & Ishihara, Y. (2013). Volatiles and Water- and Fat-Soluble Precursors of Saanen Goat and Cross Suffolk Lamb Flavour. Molecules, 18(2), 2150-2165. https://doi.org/10.3390/molecules18022150