Kinetics of Nitric Oxide and Oxygen Gases on Porous Y-Stabilized ZrO2-Based Sensors
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Procedures
2.1.1. Sensor Fabrication
2.1.2. Sensor Testing
2.2. Computational Procedures
2.2.1. Sensor Model
2.2.2. Ground State Conformations
2.2.3. Reaction Kinetics Modeling
3. Results and Discussion
3.1. Impedance Response
3.2. Activation Energy
NO (ppm) | Ea (kJ/mol) | ||
---|---|---|---|
Sensor A | Sensor B | Sensor C | |
5 | 109.1 ± 1.4 | 103.6 ± 3.9 | 101.8 ± 0.1 |
25 | 107.5 ± 1.5 | 102.4 ± 1.2 | 100.6 ± 0.1 |
50 | 106.8 ± 1.4 | 101.8 ± 1.3 | 99.7 ± 0.6 |
100 | 104.9 ± 2.1 | 99.8 ± 1.6 | 97.4 ± 0.6 |
3.3. Oxygen Partial Pressure Dependence
3.4. YSZ Model Cluster Porosity
3.5. Reaction Path of Equation (3)
Equation (3) | Theory Level | |||
---|---|---|---|---|
PWC | PW91 * | PBE * | RPBE * | |
∆U (kJ/mol) | 156.2 | 137.7 | 133.5 | 123.6 |
∆G(650 °C) (kJ/mol) | 181.7 | 163.2 | 159.0 | 149.1 |
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Mukundan, R.; Teranishi, K.; Brosha, E.L.; Garzona, F.H. Nitrogen oxide sensors based on yttria-stabilized zirconia electrolyte and oxide electrodes. Electrochem. Solid-State Lett. 2007, 10, J26–J29. [Google Scholar] [CrossRef]
- Park, J.; Yoon, B.Y.; Park, C.O.; Lee, W.-J.; Lee, C.B. Sensing behavior and mechanism of mixed potential NOx sensors using NiO, NiO(+YSZ) and CuO oxide electrodes. Sens. Actuators B 2009, 135, 516–523. [Google Scholar]
- Stranzenbach, M.; Saruhan, B. Equivalent circuit analysis on NOx impedance-metric gas sensors. Sens. Actuators B 2009, 137, 154–163. [Google Scholar] [CrossRef]
- Woo, L.Y.; Glass, R.S.; Novak, R.F.; Visser, J.H. Diesel engine dynamometer testing of impedancemetric NOx sensors. Sens. Actuators B 2011, 157, 115–121. [Google Scholar] [CrossRef]
- 2008 Progress Report: Vehicle and Engine Compliance Activities, EPA-420-R-10–022. United States Environmental Protection Agency: Washington, DC, USA, August 2010.
- EPA’s Program for Cleaner Vehicles and Cleaner Gasoline, EPA420-F-99–051. United States Environmental Protection Agency: Ann Arbor, MI, USA, December 1999.
- Martin, L.P.; Woo, L.Y.; Glass, R.S. Impedancemetric NOx sensing using YSZ electrolyte and YSZ/Cr2O3 composite electrodes. J. Electrochem. Soc. 2007, 154, J97–J104. [Google Scholar] [CrossRef]
- Menil, F.; Coillard, V.; Lucat, C. Critical review of nitrogen monoxide sensors for exhaust gases of lean burn engines. Sens. Actuators B 2000, 67, 1–23. [Google Scholar] [CrossRef]
- Striker, T.; Ramaswamy, V.; Armstrong, E.N.; Willson, P.D.; Wachsman, E.D.; Ruud, J.A. Effect of nanocomposite Au–YSZ electrodes on potentiometric sensor response to NOx and CO. Sens. Actuators B 2013, 181, 313. [Google Scholar]
- Woo, L.Y.; Martin, L.P.; Glass, R.S.; Wang, W.; Sukwon, J.; Gorte, R.J.; Murray, E.P.; Novak, R.F.; Visser, J.H. Effect of electrode composition and microstructure on impedancemetric nitric oxide sensors based on YSZ electrolyte. J. Am. Chem. Soc. 2008, 155, J32–J40. [Google Scholar]
- Yang, J.C.; Dutta, P.K. Promoting selectivity and sensitivity for a high temperature YSZ-based electrochemical total NOx sensor by using a Pt-loaded zeolite Y filter. Sens. Actuators B 2007, 125, 30–39. [Google Scholar] [CrossRef]
- Mukundan, R.; Brosha, E.L.; Garzon, F.H. Mixed potential hydrocarbon sensors based on a YSZ electrolyte and oxide electrodes. J. Electrochem. Soc. 2003, 150, H279–H284. [Google Scholar] [CrossRef]
- Woo, L.Y.; Glass, R.S.; Novak, R.F.; Visser, J.H. Effect of electrode material and design on sensitivity and selectivity for high temperature impedancemetric NOx sensors. J. Am. Chem. Soc. 2010, 157, 181–187. [Google Scholar]
- Peredith, A.; Ceder, G.; Wolverton, C.; Persson, K.; Mueller, T. Ab initio prediction of ordered ground-state structures in ZrO2-Y2O3. Phys. Rev. B 2008, 77, 144104:1–144104:7. [Google Scholar]
- Dreialer, R.M.; Gross, E.K.U. Density Functional Theory: An. Approach to Quantum Many Body Problem; Springer: Berlin, Germany, 1990. [Google Scholar]
- Koch, W.; Holthausen, M.C. A Chemist’s Guide to Density Functional Theory, 2nd ed.; Wiley-CVH Verlag GmbH: Weinheim, Germany, 2001. [Google Scholar]
- Materials Studio; Accelrys, Inc.: San Diego, CA, USA, 2006.
- DMOL3 User Guide; Accelrys, Inc.: San Diego, CA, USA, 2003.
- Amelines-Sarria, O.; Kolokoltsev, Y.; Basiuk, V.A. Noncovalent 1:2 complex of Meso-tetraphenylporphine with C60 fullerene: A Density Functional Theory study. J. Comput. Theor. Nanosci. 2010, 7, 1996–2003. [Google Scholar] [CrossRef]
- Basiuk, V.A. Electron smearing in DFT calculations: A case study of doxorubicin interaction with single-walled carbon nanotubes. Int. J. Quantum Chem. 2011, 15, 4197–4205. [Google Scholar] [CrossRef]
- Kolokoltsev, Y.; Amelines-Sarria, O.; Gromovoy, T.Y.; Basiuk, V.A. Interaction of Meso-tetraphenylporphines with C60 fullerene: Comparison of several Density Functional Theory functionals implemented in DMol3 Module. J. Comput. Theor. Nanosci. 2010, 7, 1095–1103. [Google Scholar] [CrossRef]
- Famulari, A.; Raos, G.; Baggioli, A.; Casalegno, M.; Po, R.; Meille, S.V. A solid state Density Functional study of crystalline thiophene-based oligomers and polymers. J. Phys. Chem. B 2012, 116, 14504–14509. [Google Scholar] [CrossRef]
- Melis, C.; Colombo, L.; Mattoni, A. Self-assembling of poly(3-hexylthiophene). J. Phys. Chem. C 2011, 115, 576–581. [Google Scholar] [CrossRef]
- Yu, G.; Yin, S.; Liu, Y.; Shuai, Z.; Zhu, D. Structures, electronic states, and electroluminescent properties of a Zinc(II) 2-(2-Hydroxyphenyl)benzothiazolate complex. J. Am. Chem. Soc. 2003, 125, 14816–14824. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Govind, N.; Petersen, M.; Fitzgerald, G.; King-Smith, D.; Andzelm, J. A generalized synchronous transit method for transition state location. Comput. Mater. Sci. 2003, 28, 250–258. [Google Scholar] [CrossRef]
- Grillo, M.E.; Govind, N.; Fitzgerald, G.; Stark, K.B. Computational material science with materials studio: Applications in catalysis. Lect. Notes Phys. 2004, 642, 202–227. [Google Scholar]
- Dathara, G.K.P.; Mainardi, D.S. Kinetics of hydrogen desorption in NaAlH4 and Ti-Containing NaAlH4. J. Phys. Chem. C 2010, 114, 8026–8031. [Google Scholar] [CrossRef]
- Idupulapati, N.B.; Mainardi, D.S. A DMOL3 study of the methanol addition-elimination oxidation mechanism by methanol dehydrogenase enzyme. Mol. Simul. 2008, 34, 1057–1064. [Google Scholar] [CrossRef]
- Idupulapati, N.B.; Mainardi, D.S. Coordination and binding of ions in Ca2+- and Ba2+-containing methanol dehydrogenase and interactions with methanol. J. Mol. Struct. THEOCHEM 2009, 901, 72–80. [Google Scholar] [CrossRef]
- Idupulapati, N.B.; Mainardi, D.S. Quantum chemical modeling of methanol oxidation mechanisms by methanol dehydrogenase enzyme: Effect of substitution of calcium by barium in the active site. J. Phys. Chem. A 2010, 114, 1887–1896. [Google Scholar] [CrossRef]
- Hill, C.G. An Introduction to Chemical Engineering Kinetics & Reactor Design; John Wiley & Sons: New York, NY, USA, 1977. [Google Scholar]
- Ramachandran, B.; Peterson, K.A. Potential energy surfaces for the 3A and 3A electronic states of the O(3P) + HCl system. J. Chem. Phys. 2003, 119, 9590–9600. [Google Scholar] [CrossRef]
- Xie, T.; Bowman, J.M.; Ramachandran, B.; Peterson, K.A. Quantum calculations of the rate constant for the O(3P) + HCl reaction on new Ab Initio 3A and 3A surfaces. J. Chem. Phys. 2003, 119, 9601–9608. [Google Scholar] [CrossRef]
- Jones, R.O.; Gunnarsson, O. The Density Functional formalism, its applications and prospects. Rev. Mod. Phys. 1989, 61, 689–746. [Google Scholar] [CrossRef]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687. [Google Scholar]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Hammer, B.; Hansen, L.B.; Norskov, J.K. Improved adsorption energetics within Density-Functional Theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 1999, 59, 7413–7421. [Google Scholar] [CrossRef]
- Macdonald, J.R. Impedance Spectroscopy: Emphasizing Solid Materials and Systems; John Wiley and Sons, Inc.: New York, NY, USA, 1987. [Google Scholar]
- Steil, M.C.; Thevenot, F. Desensification of yttria-stabilized zirconia. J. Electrochem. Soc. 1997, 144, 390–398. [Google Scholar] [CrossRef]
- Takeda, Y.; Kanno, R.; Noda, M.; Tomida, Y.; Yamamoto, O. Cathodic polarization phenomena of perovskite oxide electrodes with stabilized zirconia. J. Electrochem. Soc. 1987, 134, 2656–2661. [Google Scholar]
- Vayenas, C.G.; Bebelis, S.I.; Yentekakis, I.V.; Neophytides, S.N. CRC Handbook; CRC Press: New York, NY, USA, 1997. [Google Scholar]
- Wang, D.Y.; Nowick, A.S. Cathodic and anodic polarization phenomena at platinum electrodes with doped CeO2 as electrolyte: I. steady-state overpotential. J. Electrochem. Soc. 1979, 126, 1155–1165. [Google Scholar] [CrossRef]
- Murray, E.P.; Tsai, T.; Barnett, S.A. Oxygen transfer processes in (La,Sr)MnO3/Y2O3- stabilized ZrO2 cathodes: An impedance spectroscopy study. Solid State Ionics 1998, 110, 235–243. [Google Scholar] [CrossRef]
- Koyama, M.; Wen, C.; Masuyama, T.; Otomo, J.; Fukunaga, H.; Yamada, K.; Euguchi, K.; Takahashi, H. The mechanism of porous Sm0.5Sr0.5CoO3 cathodes used in solid oxide fuel cells. J. Electrochem. Soc. 2001, 148, A795–A801. [Google Scholar] [CrossRef]
- Van Herle, J.; McEvoy, A.J.; Thampi, K.R. A study on the La1−xSrxMnO3 oxygen cathode. Electrochim. Acta 1996, 41, 1447–1454. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Killa, S.; Cui, L.; Murray, E.P.; Mainardi, D.S. Kinetics of Nitric Oxide and Oxygen Gases on Porous Y-Stabilized ZrO2-Based Sensors. Molecules 2013, 18, 9901-9918. https://doi.org/10.3390/molecules18089901
Killa S, Cui L, Murray EP, Mainardi DS. Kinetics of Nitric Oxide and Oxygen Gases on Porous Y-Stabilized ZrO2-Based Sensors. Molecules. 2013; 18(8):9901-9918. https://doi.org/10.3390/molecules18089901
Chicago/Turabian StyleKilla, Sajin, Ling Cui, Erica P. Murray, and Daniela S. Mainardi. 2013. "Kinetics of Nitric Oxide and Oxygen Gases on Porous Y-Stabilized ZrO2-Based Sensors" Molecules 18, no. 8: 9901-9918. https://doi.org/10.3390/molecules18089901
APA StyleKilla, S., Cui, L., Murray, E. P., & Mainardi, D. S. (2013). Kinetics of Nitric Oxide and Oxygen Gases on Porous Y-Stabilized ZrO2-Based Sensors. Molecules, 18(8), 9901-9918. https://doi.org/10.3390/molecules18089901