Expanding Current Knowledge on the Chemical Composition and Antioxidant Activity of the Genus Lactarius
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition of the Fruiting Bodies
Parameter | Lactarius citriolens | Lactarius turpis | t-Student Test p-value |
---|---|---|---|
Fat (g/100 g) | 5.37 ± 0.30 | 2.06 ± 0.27 | <0.001 |
Proteins (g/100 g) | 10.89 ± 0.33 | 13.06 ± 0.29 | <0.001 |
Ash (g/100 g) | 6.99 ± 0.23 | 7.21 ± 0.12 | 0.109 |
Carbohydrates (g/100 g) | 76.76 ± 0.35 | 77.68 ± 0.35 | 0.033 |
Energy (kcal/100 g) | 398.89 ± 1.74 | 381.47 ± 1.29 | <0.001 |
Mannitol (g/100 g) | 8.31 ± 0.30 | 19.21 ± 0.45 | <0.001 |
Trehalose (g/100 g) | 0.45 ± 0.01 | 0.33 ± 0.03 | <0.001 |
Total sugars (g/100 g) | 8.76 ± 0.29 | 19.54 ± 0.47 | <0.001 |
C16:0 | 5.35 ± 0.01 | 8.02 ± 0.09 | <0.001 |
C18:0 | 40.58 ± 0.41 | 12.60 ± 0.83 | <0.001 |
C18:1n9 | 25.00 ± 0.78 | 26.29 ± 0.98 | 0.065 |
C18:2n6 | 22.46 ± 0.03 | 48.55 ± 0.14 | <0.001 |
SFA (relative percentage) | 51.85 ± 0.70 | 23.73 ± 1.00 | <0.001 |
MUFA (relative percentage) | 25.42 ± 0.78 | 27.18 ± 0.98 | 0.026 |
PUFA (relative percentage) | 22.74 ± 0.08 | 49.09 ± 0.01 | <0.001 |
α-tocopherol (µg/100 g) | 20.43 ± 1.27 | 45.84 ± 5.61 | <0.001 |
β-tocopherol (µg/100 g) | 70.65 ± 7.45 | 14.79 ± 1.54 | <0.001 |
γ-tocopherol (µg/100 g) | 4.69 ± 0.70 | 72.32 ± 7.44 | <0.001 |
δ-tocopherol (µg/100 g) | 5.28 ± 0.42 | nd | - |
Total tocopherols (µg/100 g) | 101.05 ± 7.30 | 132.94 ± 11.50 | <0.001 |
Compound | Lactarius citriolens | Lactarius turpis | t-Student test p-value |
---|---|---|---|
Oxalic acid (g/100 g) | 0.06 ± 0.01 | 0.10 ± 0.01 | <0.001 |
Quinic acid (g/100 g) | 0.18 ± 0.06 | nd | - |
Malic acid (g/100 g) | 3.36 ± 0.03 | 2.96 ± 0.19 | 0.008 |
Fumaric acid (g/100 g) | 0.50 ± 0.02 | 0.24 ± 0.00 | <0.001 |
Total organic acids (g/100 g) | 4.10 ± 0.06 | 3.30 ± 0.19 | <0.001 |
Gallic acid (mg/100 g) | nd | 0.08 ± 0.00 | - |
p-Hydroxybenzoic acid (mg/100 g) | 0.15 ± 0.01 | 0.12 ± 0.00 | 0.002 |
Total phenolic acids (mg/100 g) | 0.15 ± 0.01 | 0.20 ± 0.01 | <0.001 |
Cinnamic acid (mg/100 g) | 0.15 ± 0.00 | 0.12 ± 0.00 | <0.001 |
2.2. Antioxidant Activity of the Methanolic Extracts and Confirmation of Non-Toxicity
Antioxidant Activity | Assay | Lactarius citriolens | Lactarius turpis | t-Student Test p-Value |
---|---|---|---|---|
Reducing power | Folin-Ciocalteu (mg GAE/g extract) | 13.13 ± 0.17 | 22.02 ± 0.09 | <0.001 |
Ferricyanide/Prussian blue (EC50; mg/mL) | 2.61 ± 0.13 | 1.53 ± 0.02 | <0.001 | |
Radical scavenging activity | DPPH scavenging activity (EC50; mg/mL) | 15.77 ± 0.27 | 4.18 ± 0.04 | <0.001 |
Lipid peroxidation inhibition | β-Carotene/linoleate (EC50; mg/mL) | 6.21± 0.24 | 4.92 ± 0.27 | <0.001 |
TBARS (EC50; mg/mL) | 0.82 ± 0.03 | 0.57 ± 0.02 | <0.001 |
3. Experimental Section
3.1. Sampling of Mushroom Species
3.2. Chemical Composition of L. citriolens and L. turpis Fruiting Bodies
3.2.1. Macronutrients.
3.2.2. Individual Compounds
3.3. Bioactivity of L. citriolens and L. turpis Methanolic Extracts
3.3.1. Extract Preparation
3.3.2. Antioxidant Activity Assays
3.3.3. Toxicity for Porcine Liver Cells
3.4. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kalac, P. Chemical composition and nutritional value of European species of wild growing mushrooms: A review. Food Chem. 2009, 113, 9–16. [Google Scholar] [CrossRef]
- Maga, J.A. Mushroom flavor. J. Agric. Food Chem. 1981, 29, 1–4. [Google Scholar] [CrossRef]
- Joshi, S.; Vishwakarma, M.P.; Mahar, R.; Bhatt, R.P. Medicinally important and edible species of genus Lactarius from Garhwal Himalaya, India. Mycosphere 2013, 4, 714–720. [Google Scholar] [CrossRef]
- Ferreira, I.C.F.R.; Barros, L.; Abreu, R.M.V. Antioxidants in wild mushrooms. Curr. Med. Chem. 2009, 16, 1543–1560. [Google Scholar] [CrossRef] [PubMed]
- Nuytinck, J.; Verbeken, A.; Rinaldi, A.C.; Leonardi, M.; Pacioni, C.; Comandini, O. Characterization of Lactarius tesquorum ectomycorrhizae on Cistus sp. and molecular phylogeny of related European Lactarius taxa. Mycologia 2004, 96, 272–282. [Google Scholar] [CrossRef] [PubMed]
- Heilmann-Clausen, J.; Verbeken, A.; Vesterholt, J. The Genus Lactarius—Fungi of Northern Europe. In Danish Mycological Society, 2nd ed; NHBS: Devon, UK, 1998. [Google Scholar]
- Liukkonen-Lilja, H.; Kuusi, T.; Laaksovirta, K.; Lodenius, M.; Piepponen, S. The effect of lead processing works on the lead, cadmium and mercury contents of fungi. Z. Lebensm.-Unters. Forsch. 1983, 176, 120–123. [Google Scholar] [CrossRef]
- Florianowicz, T. Inhibition of growth and sporulation of Penicillium expansum by extracts of selected Basidiomycetes. Acta Soc. Botan. Pol. 2000, 69, 263–267. [Google Scholar] [CrossRef]
- Fugmann, B.; Steffan, B.; Steglich, W. Necatorone, an alkaloidal pigment from the gilled toadstool Lactarius necator (agaricales). Tetrahedron Lett. 1984, 25, 3575–3578. [Google Scholar] [CrossRef]
- Fomina, M.A.; Alexander, I.J.; Colpaert, J.V.; Gadd, G.M. Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol. Biochem. 2005, 37, 851–866. [Google Scholar] [CrossRef]
- Lux, D.; Kammerer, L.; Riihm, W.; Wirth, E. Cycling of Pu, Sr, Cs, and other longliving radionuclides in forest ecosystems of the 30-km zone around Chernobyl. Sci. Total Environ. 1995, 173, 375–384. [Google Scholar] [CrossRef]
- Verbeken, A.; Stubbe, D.; van de Putte, K.; Eberhardt, U.; Nuytinck, J. Tales of the unexpected: angiocarpous representatives of the Russulaceae in tropical South East Asia. Persoonia 2014, 32, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Heleno, S.A.; Barros, L.; Sousa, M.J.; Martins, A.; Ferreira, I.C.F.R. Study and characterization of selected nutrients in wild mushrooms from Portugal by gas chromatography and high performance liquid chromatography. Microchem. J. 2009, 93, 195–199. [Google Scholar] [CrossRef]
- Reis, F.S.; Heleno, S.A.; Barros, L.; Sousa, M.J.; Martins, A.; Santos-Buelga, C.; Ferreira, I.C.F.R. Toward the antioxidant and chemical characterization of mycorrhizal mushrooms from northeast Portugal. J. Food Sci. 2011, 76, C824–C830. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, A.; António, A.L.; Barreira, J.C.M.; Botelho, M.L.; Oliveira, M.B.P.P.; Martins, A.; Ferreira, I.C.F.R. Effets of gamma irradiation on the chemical composition and antioxidant activity of Lactarius deliciosus L. wild edible mushroom. Food Bioprocess Technol. 2013, 6, 2895–2903. [Google Scholar] [CrossRef]
- Barros, L.; Baptista, P.; Estevinho, L.M.; Ferreira, I.C.F.R. Effect of fruiting body maturity stage on chemical composition and antimicrobial activity of Lactarius sp. mushrooms. J. Agric. Food Chem. 2007, 55, 8766–8771. [Google Scholar] [CrossRef] [PubMed]
- Barros, L.; Baptista, P.; Correia, D.M.; Morais, J.S.; Ferreira, I.C.F.R. Effects of conservation treatment and cooking on the chemical composition and antioxidant activity of Portuguese wild edible mushrooms. J. Agric. Food Chem. 2007, 55, 4781–4788. [Google Scholar] [CrossRef] [PubMed]
- Barros, L.; Baptista, P.; Correia, D.M.; Casal, S.; Oliveira, B.; Ferreira, I.C.F.R. Fatty acid and sugar compositions, and nutritional value of five wild edible mushrooms from Northeast Portugal. Food Chem. 2007, 105, 140–145. [Google Scholar] [CrossRef]
- Yin, J.Z.; Zhou, L.X. Analysis of nutritional components of 4 kinds of wild edible fungi in Yunnan. Food Res. Develop. 2008, 29, 133–136. [Google Scholar]
- Egwin, E.C.; Elem, R.C.; Egwuche, R.U. Proximate composition, phytochemical screening and antioxidant activity of ten wild edible Nigerian mushrooms. Am. J. Food Nutr. 2011, 1, 89–94. [Google Scholar] [CrossRef]
- Akata, I.; Ergönul, B.; Kalyoncu, F. Chemical compositions and antioxidant activities of 16 wild edible mushroom species grown in Anatolia. Int. J. Pharmacol. 2012, 8, 134–138. [Google Scholar] [CrossRef]
- Faravin, J.; Foppa, T.; Oliveira, L.P.; Locatelli, C. Avaliação físico química e nutricional do cogumelo Lactatius deliciosus: Aplicabilidade como alimento e ativo farmacológico. Extensão em Foco 2013, 1, 59–64. [Google Scholar]
- Kalogeropoulos, N.; Yanni, A.E.; Koutrotsios, G.; Aloupi, M. Bioactive microconstituents and antioxidant properties of wild edible mushrooms from the Island of Lesvos, Greece. Food Chem. Toxicol. 2013, 55, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Agrahar-Murugkar, D.; Subbulakshmi, G. Nutritional value of edible wild mushrooms collected from the Khasi hills of Meghalaya. Food Chem. 2005, 89, 599–603. [Google Scholar] [CrossRef]
- Kavishree, S.; Hemavathy, J.; Lokesh, B.R.; Shashirekha, M.N.; Rajarathnam, S. Fat and fatty acids of Indian edible mushrooms. Food Chem. 2008, 106, 597–602. [Google Scholar] [CrossRef]
- Suortti, T. Stability of necatorin, a highly mutagenic compound from Lactarius. necator mushroom. Food Chem. Toxicol. 1984, 22, 579–581. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.R. Morphology of Fungi; Discovery Publishing House: New Delhi, India, 2005. [Google Scholar]
- Phillips, R. Mushrooms: A Comprehensive Guide to Mushroom Identification; Macmillan: London, UK, 2006. [Google Scholar]
- Heleno, S.A.; Barros, L.; Martins, A.; Queiroz, M.J.R.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Phenolic, polysaccaridic, and lipidic fractions of mushrooms from Northeastern Portugal: Chemical compounds with antioxidant properties. J. Agric. Food Chem. 2012, 60, 4634–4640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, F.S.; Pereira, E.; Barros, L.; Sousa, M.J.; Martins, A.; Ferreira, I.C.F.R. Biomolecule profiles in inedible wild mushrooms with antioxidant value. Molecules 2011, 16, 4328–4338. [Google Scholar] [CrossRef] [PubMed]
- Hamano, H. Functional properties of sugar alcohols as low-calorie sugar substitutes. Food Ind. Nutr. 1997, 2, 1–6. [Google Scholar]
- Koide, R.T.; Shumway, D.L.; Stevens, C.M. Soluble carbohydrates of red pine (Pinus resinosa) mycorrhizas and mycorrhizal fungi. Mycol. Res. 2000, 104, 834–840. [Google Scholar] [CrossRef]
- Carvalho, L.M.; Carvalho, F.; Bastos, M.L.; Baptista, P.; Moreira, N.; Monforte, A.R.; Ferreira, A.C.S.; Pinho, P.G. Non-targeted and targeted analysis of toxic and edible mushrooms using gas chromatography-ion trap mass spectrometry. Talanta 2014, 118, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, M.; Tel, G.; Öztürk, F.A.; Duru, M.E. The cooking effect on two edible mushrooms in Anatolia: Fatty acid composition, total bioactive compounds, antioxidant and anticholinesterase activities. Rec. Nat. Prod. 2014, 8, 189–194. [Google Scholar]
- Karlinski, L.; Ravnskov, S.; Kieliszewska-Rokicka, B.; Larsen, J. Fatty acid composition of various ectomycorrhizal fungi and ectomycorrhizas of Norway spruce. Soil Biol. Biochem. 2007, 30, 854–866. [Google Scholar] [CrossRef]
- Ergönül, P.G.; Akata, I.; Kalyoncu, F.; Ergönül, B. Fatty acid compositions of six wild edible mushroom species. Sci. World J. 2013. [Google Scholar] [CrossRef]
- Gutiérrez, R.M.P. Actividad antimicrobiana de ácidos grasos aislados de Tubifex tubifex. Rev. Mex. Cienc. Farm. 2005, 36, 5–10. [Google Scholar]
- Heleno, S.A.; Barros, L.; Sousa, M.J.; Martins, A.; Ferreira, I.C.F.R. Tocopherols composition of Portuguese wild mushrooms with antioxidant capacity. Food Chem. 2010, 119, 1443–1450. [Google Scholar] [CrossRef]
- Steiner, M. Influence of vitamin E on platelet function in humans. J. Am. Coll. Nutr. 1991, 10, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Valentão, P.; Lopes, G.; Valente, M.; Barbosa, P.; Andrade, P.B.; Silva, B.M.; Baptista, P.; Seabra, R.M. Quantification of nine organic acids in wild mushrooms. J. Agric. Food Chem. 2007, 53, 3626–3630. [Google Scholar] [CrossRef]
- Barros, L.; Pereira, C.; Ferreira, I.C.F.R. Optimized analysis of organic acids in edible mushrooms from Portugal by Ultra-Fast Liquid Chromatography and Photodiode Array Detection. Food Anal. Methods 2013, 6, 309–316. [Google Scholar] [CrossRef]
- Barros, L.; Dueñas, M.; Ferreira, I.C.F.R.; Baptista, P.; Santos-Buelga, C. Phenolic acids determination by HPLC-DAD-ESI/MS in sixteen different Portuguese wild mushrooms species. Food Chem. Toxicol. 2009, 47, 1076–1079. [Google Scholar] [CrossRef] [PubMed]
- Vaz, J.A.; Barros, L.; Martins, A.; Morais, J.S.; Vasconcelos, M.H.; Ferreira, I.C.F.R. Phenolic profile of seventeen Portuguese wild mushrooms. LWT Food Sci. Technol. 2011, 44, 343–346. [Google Scholar] [CrossRef]
- Palacios, I.; Lozano, M.; Moro, C.; D’Arrigo, M.; Rostagno, M.A.; Martínez, J.A.; García-Lafuente, A.; Guillamón, E.; Villares, A. Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chem. 2011, 128, 674–678. [Google Scholar] [CrossRef]
- Puttaraju, N.G.; Venkateshaiah, S.U.; Dharmesh, S.M.; Urs, S.M.N.; Somasundaram, R. Antioxidant activity of indigenous edible mushrooms. J. Agric. Food Chem. 2006, 54, 9764–9772. [Google Scholar] [CrossRef] [PubMed]
- Özyürek, M.; Bener, M.; Güçlü, K.; Apak, R. Antioxidant/antiradical properties of microwave-assisted extracts of three wild edible mushrooms. Food Chem. 2014, 157, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Münzenberger, B.; Heilemann, J.; Strack, D.; Kottke, I.; Oberwinkler, F. Phenolics of mycorrhizas and non-mycorrhizal roots of Norway spruce. Planta 1990, 182, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Dogan, H.H.; Aydi, S. Some biological activities of Lactarius vellereus (Fr.) Fr. in Turkey. Pak. J. Biol. Sci. 2013, 16, 1279–1286. [Google Scholar] [CrossRef] [PubMed]
- Orhan, I.; Üstün, O. Determination of total phenol content, antioxidant activity and acetylcholinesterase inhibition in selected mushrooms from Turkey. J. Food Comp. Anal. 2011, 24, 386–390. [Google Scholar] [CrossRef]
- Unekwu, H.R.; Audu, J.A.; Makun, M.H.; Chidi, E.E. Phytochemical screening and antioxidant activity of methanolic extract of selected wild edible Nigerian mushrooms. Asian Pac. J. Trop. Dis. 2014, 4, S153–S157. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. In Official Methods of Analysis,, 16th ed.; AOAC: Arlington, VA, USA, 1995.
- Abreu, R.M.V.; Ferreira, I.C.F.R.; Calhelha, R.C.; Lima, R.T.; Vasconcelos, M.H.; Adega, F.; Chaves, R.; Queiroz, M.J.R.P. Anti-hepatocellular carcinoma activity using human HepG2 cells and hepatotoxicity of 6-substituted methyl 3-aminothieno[3,2-b]pyridine-2-carboxylate derivatives: In vitro evaluation, cell cycle analysis and QSAR studies. Eur. J. Med. Chem. 2011, 46, 5800–5806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sample Availability: Samples of the mushrooms are available from the authors.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vieira, V.; Barros, L.; Martins, A.; Ferreira, I.C.F.R. Expanding Current Knowledge on the Chemical Composition and Antioxidant Activity of the Genus Lactarius. Molecules 2014, 19, 20650-20663. https://doi.org/10.3390/molecules191220650
Vieira V, Barros L, Martins A, Ferreira ICFR. Expanding Current Knowledge on the Chemical Composition and Antioxidant Activity of the Genus Lactarius. Molecules. 2014; 19(12):20650-20663. https://doi.org/10.3390/molecules191220650
Chicago/Turabian StyleVieira, Vanessa, Lillian Barros, Anabela Martins, and Isabel C. F. R. Ferreira. 2014. "Expanding Current Knowledge on the Chemical Composition and Antioxidant Activity of the Genus Lactarius" Molecules 19, no. 12: 20650-20663. https://doi.org/10.3390/molecules191220650
APA StyleVieira, V., Barros, L., Martins, A., & Ferreira, I. C. F. R. (2014). Expanding Current Knowledge on the Chemical Composition and Antioxidant Activity of the Genus Lactarius. Molecules, 19(12), 20650-20663. https://doi.org/10.3390/molecules191220650