In Vitro Antioxidant Activities, Free Radical Scavenging Capacity, and Tyrosinase Inhibitory of Flavonoid Compounds and Ferulic Acid from Spiranthes sinensis (Pers.) Ames
Abstract
:1. Introduction
2. Results and Discussion
2.1. Discussion of the Five Different Extraction Methods to Obtain a Higher Content of Flavonoids and Ferulic Acid
2.2. DPPH Radical Scavenging Capacity
2.3. Metal Chelating Activity
2.4. Total Antioxidant Activity
2.5. Assay of Superoxide Radical Scavenging Capacity
2.6. Inhibitory Effect of S. sinensis E+U Extract on Mushroom Tyrosinase Activity
3. Experimental
3.1. Plant Material
3.2. Chemicals
3.3. Extraction Procedures
- Method 1 (W). Ten g of S. sinensis powder were added to 400 mL of water and then extracted at 60 °C for 30 min.
- Method 2 (E). Ten of S. sinensis powder were added to 400 mL of 75% ethanol and then extracted at 60 °C for 30 min.
- Method 3 (W+U). Ten g of S. sinensis powder were added to 400 mL of water, and then extracted with an ultrasonic frequency of 40 kHz at 60 °C for 30 min.
- Method 4 (E+U). Ten g of S. sinensis powder were added to 400 mL of 75% ethanol, and then extracted with an ultrasonic frequency of 40 kHz at 60 °C for 30 min.
- Method 5 (SFE). Ten g of S. sinensis powders and 400 mL of 75% ethanol were mixed; the mixture was then placed in the extraction tank for 30 min at 45 °C under 18 MPa to complete the extraction. The dynamic extraction mode was applied, and the flow rate of CO2 was 0.2 L/min. SFE was performed using a TS09-110 apparatus (Taiwan Supercritical Technology Co., Ltd., Changhua, Taiwan) by a procedure modified from the study of Chiu et al. [28].
3.4. Determination of Total Flavonoid Compounds
3.5. Determination of Ferulic Acid
3.6. In Vitro Evaluation of Antioxidant Activities
3.6.1. DPPH Radical Scavenging Capacity
3.6.2. Metal Chelating Activity
3.6.3. Total Antioxidant Activity
3.6.4. Assay of Superoxide Radical Scavenging Capacity
3.7. Mushroom Tyrosinase Inhibitor Assay
3.8. Statistical Analysis
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Esther, N.M.; van Johannes, S. Antibacterial and anti-inflammatory activities of some plants used for medicinal purpose in Kenya. J. Ethnopharmacol. 2003, 87, 35–41. [Google Scholar] [CrossRef]
- Peng, J.Y.; Xu, Q.W.; Xu, Y.W.; Qi, Y.; Han, X.; Xu, L.N. A new anticancer dihydroflavanoid from the root of Spiranthes australis (R. Brown) Lindl. Nat. Prod. Res. 2007, 21, 641–645. [Google Scholar] [CrossRef]
- Lin, Y.L.; Wang, W.Y.; Kuo, Y.H.; Liu, Y.H. Homocyclotirucallane and Two Dihydrophenanthrenes from Spiranthes sinensis. Chem. Pharm. Bull. 2001, 49, 1098–1101. [Google Scholar] [CrossRef]
- Yasuhiro, T.; Midori, U.; Tohru, K. Studies on the constituents of Orchidaceous plants. VIII. Constituents of Spiranthes sinensis (PERS.) AMES var. amoena (M. BIEBERSON) HARA. (1). Isolation and structure elucidation of spiranthol-A, spiranthol-B, and spirasineol-A, new isopentenyldihydrophenanthrenes. Chem. Pharm. Bull. 1989, 37, 3195–3199. [Google Scholar] [CrossRef]
- Kelly, E.H.; Anthony, R.T.; Dennis, J.B. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef]
- Erkan, N.; Ayranci, G.; Ayranci, E. Antioxidant activities of rosemary (Rosmarinus officinalis L.) extract, black seed (Nigella sativa L.) essential oil, carnosic acid, rosmarinic acid and sesamol. Food Chem. 2008, 110, 76–82. [Google Scholar] [CrossRef]
- Demirkiran, O.; Sabudak, T.; Ozturk, M.; Topcu, G. antioxidant and tyrosinase inhibitory activities of flavonoids from Trifolium nigrescens Subsp. petrisavi. J. Agric. Food Chem. 2013, 61, 12598–12603. [Google Scholar] [CrossRef]
- Kanski, J.; Aksenova, M.; Stoyanova, A.; Butterfield, D.A. Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro: Structure-activity studies. J. Nutr. Biochem. 2002, 13, 273–281. [Google Scholar] [CrossRef]
- Lee, H.S. Tyrosinase inhibitors of Pulsatilla cernua root-derived materials. J. Agric. Food Chem. 2002, 50, 1400–1403. [Google Scholar] [CrossRef]
- Lin, F.H.; Lin, J.Y.; Gupta, R.D.; Tournas, J.A.; Burch, J.A.; Selim, M.A.; Monteiro, N.A.; Grichnik, J.M.; Zielinski, J.; Pinnell, S.R. Ferulic acid stabilizes a solution of vitamins C and E and doubles its photoprotection of skin. J. Investig. Dermatol. 2005, 125, 826–832. [Google Scholar] [CrossRef]
- Li, Y.P.; George, K.S.; Gordon, M.E.; Dennis, K.T. Microwave-assistance provides very rapid and efficient extraction of grape seed polyphenols. Food Chem. 2011, 129, 570–576. [Google Scholar] [CrossRef]
- Wang, J.; Sun, B.G.; Cao, Y.P.; Tian, Y.; Li, X.H. Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chem. 2008, 106, 804–810. [Google Scholar] [CrossRef]
- Ueno, H.; Tanaka, M.; Machmudah, S.; Sasaki, M.; Goto, M. Supercritical Carbon Dioxide Extraction of Valuable Compounds from Citrus junos Seed. Food Bioprocess Tech. 2010, 1, 357–363. [Google Scholar]
- Horžić, D.; Jambrak, A.R.; Belščak-Cvitanović, A.; Komes, D.; Lelas, V. Comparison of conventional and ultrasound assisted extraction techniques of yellow tea and bioactive composition of obtained extracts. Food Bioprocess Tech. 2012, 5, 2858–2870. [Google Scholar] [CrossRef]
- Takeuchi, T.M.; Rubano, M.L.; Meireles, M.A.A. Characterization and functional properties of macela (Achyrocline satureioides) extracts obtained by supercritical fluid extraction using mixtures of CO2 plus ethanol. Food Bioprocess Tech. 2010, 3, 804–812. [Google Scholar] [CrossRef]
- Wheeler, J.R.; McNally, E. Separation of palm kernel oil from palm kernel with supercritical carbon dioxide using pressure swing technique. J. Chromatogr. Sci. 1989, 27, 534–539. [Google Scholar] [CrossRef]
- Zhao, Y.G.; Wang, S.M.; Cui, H.H.; Luo, L.; Chen, C. Study on methods of extraction of flavonoids in Spiranthes australis Ladiestresses Root. Chin. J. Ethnomed. Ethnopharm. 2011, 14, 46–48. [Google Scholar]
- Dong, M.L.; Chen, F.K.; Wu, L.J.; Gao, H.Y. A new flavonoid from the whole plant of Spiranthes australis (R. Brown) Lindl. J. Asian Nat. Prod. Res. 2005, 7, 71–74. [Google Scholar] [CrossRef]
- Lina, F.B.; José, A.T.; Solange, I.M. Selection of the solvent and extraction conditions for maximum recovery of antioxidant phenolic compounds from coffee silverskin. Food Bioprocess Tech. 2013, 1–11. [Google Scholar]
- Bruni, R.; Guerrini, A.; Scalia, S.; Romagnoli, C.; Sacchetti, G. Rapid techniques for the extraction of vitamin E isomers from Amaranthus caudatus seeds: Ultrasonic and supercritical fluid extraction. Phytochem. Anal. 2002, 13, 257–261. [Google Scholar] [CrossRef]
- You, T.T.; Zhou, S.K.; Wen, J.L.; Ma, C.; Xu, F. Chemical composition, properties, and antimicrobial activity of the water-soluble pigments from Castanea mollisima shells. J. Agric. Food Chem. 2014, 62, 1936–1944. [Google Scholar] [CrossRef]
- Husain, S.R.; Cillard, J.; Cillard, P. Hydroxyl radical scavenging activity of flavonoids. Phytochemistry 1987, 26, 2489–2491. [Google Scholar] [CrossRef]
- Roy, A.; Khanra, K.; Mishra, A.; Bhattacharyya, N. General analysis and antioxidant study of traditional fermented drink Handia, its concentrate and volatiles. Adv. Life Sci. 2012, 1, 54–57. [Google Scholar] [CrossRef]
- Luo, A.; He, X.; Zhou, S.; Fan, Y.; He, T.; Chun, Z. In vitro antioxidant activities of a water-soluble polysaccharide derived from Dendrobium nobile Lindl. extracts. Int. J. Biol. Macromol. 2009, 45, 359–363. [Google Scholar] [CrossRef]
- Naskar, S.; Islam, A.; Mozumdes, U.K.; Saha, P.; Haldar, P.K.; Gupta, M. In vitro and in vivo antioxidant potential of hydromethanolic extract of Phoenix dactylijera fruits. J. Sci. Res. 2010, 2, 144–157. [Google Scholar]
- Sakthidevi, G.; Mohan, V.R. Total phenolic, flavonoid contents and in vitro antioxidant activity of Dioscorea alata l. Tuber. J. Food Drug Anal. 2013, 5, 115–119. [Google Scholar]
- Kim, D.; Park, J.; Kim, J.; Han, C.; Yoon, J.; Kim, N.; Seo, J.; Lee, C. Flavonoids as Mushroom Tyrosinase Inhibitors: A Fluorescence Quenching Study. J. Agric. Food Chem. 2006, 54, 935–941. [Google Scholar]
- Chiu, K.; Cheng, Y.; Chen, J.; Chang, C.; Yang, P. Supercritical fluids extraction of Ginkgo ginkgolides and flavonoids. J. Supercrit. Fluid. 2002, 24, 77–87. [Google Scholar]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar]
- Yang, X.; Yao, Y.Y.; Zhang, Z.Q. Determination of ferulic acid in wheat bran by derivatization combined with spectrophotometry. Food Sci. 2011, 32, 155–158. [Google Scholar]
- Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T. Antioxidative properties of xanthone on the auto oxidation of soybean in cyclodextrin emulsion. J. Agric. Food Chem. 1992, 40, 945–948. [Google Scholar] [CrossRef]
- Decker, E.A.; Barbara, W. Role of ferritin as lipid oxidation catalyst in muscle food. J. Agric. Food. Chem. 1990, 38, 674–677. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Jing, T.Y.; Zhao, X.Y. The improved pyrogallol method by using termination agent for superoxide dismutase measurement. Prog. Biochem. Biophys. 1995, 22, 84–86. [Google Scholar]
- Rahman, A.U.; Choudhary, M.I.; Thomsen, W.J. Bioassay Techniques for Drug Development; Harwood Academic: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Sample Availability: Samples of the compounds from Spiranthes sinensis are available from the authors.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Liang, C.P.; Chang, C.H.; Liang, C.C.; Hung, K.Y.; Hsieh, C.W. In Vitro Antioxidant Activities, Free Radical Scavenging Capacity, and Tyrosinase Inhibitory of Flavonoid Compounds and Ferulic Acid from Spiranthes sinensis (Pers.) Ames. Molecules 2014, 19, 4681-4694. https://doi.org/10.3390/molecules19044681
Liang CP, Chang CH, Liang CC, Hung KY, Hsieh CW. In Vitro Antioxidant Activities, Free Radical Scavenging Capacity, and Tyrosinase Inhibitory of Flavonoid Compounds and Ferulic Acid from Spiranthes sinensis (Pers.) Ames. Molecules. 2014; 19(4):4681-4694. https://doi.org/10.3390/molecules19044681
Chicago/Turabian StyleLiang, Chung Pin, Chia Hao Chang, Chien Cheng Liang, Kuei Yu Hung, and Chang Wei Hsieh. 2014. "In Vitro Antioxidant Activities, Free Radical Scavenging Capacity, and Tyrosinase Inhibitory of Flavonoid Compounds and Ferulic Acid from Spiranthes sinensis (Pers.) Ames" Molecules 19, no. 4: 4681-4694. https://doi.org/10.3390/molecules19044681
APA StyleLiang, C. P., Chang, C. H., Liang, C. C., Hung, K. Y., & Hsieh, C. W. (2014). In Vitro Antioxidant Activities, Free Radical Scavenging Capacity, and Tyrosinase Inhibitory of Flavonoid Compounds and Ferulic Acid from Spiranthes sinensis (Pers.) Ames. Molecules, 19(4), 4681-4694. https://doi.org/10.3390/molecules19044681