miRNAs for the Detection of MultiDrug Resistance: Overview and Perspectives
Abstract
:1. Introduction
Compound | R | MDR1 a EC50, µM | Papp a | MDR1 interacting mechanism a |
8a | 3-OH | 0.25 ± 0.02 | 0.9 | inhibitor |
8c | 4-NO2 | 0.51 ± 0.032 | 2.7 | substrate |
2. Results and Discussion
miR-Dog | miR-Homo | Freq. MDCK-wt | RPM Freq. MDCK-wt | Freq. MDCK-MDR1 | RPM Freq. MDCK-MDR1 |
---|---|---|---|---|---|
cfa-miR-182 | hsa-miR-182-5p | 835,232 | 32,507,727 | 785,269 | 44,147.288 |
cfa-miR-21 | hsa-miR-21-5p | 767,174 | 29,858.950 | 582,432 | 32,744.188 |
cfa-miR-10a | hsa-miR-10a-5p | 1,610,023 | 62,662.126 | 944,420 | 53,094.446 |
cfa-miR-27b | hsa-miR-27a-3p | 612,930 | 23,855.867 | 319,758 | 17,977.170 |
cfa-miR-30a | hsa-miR-30a-5p | 515,654 | 20,069.943 | 312,771 | 17,584.374 |
cfa-miR-26a | hsa-miR-26a-5p | 545,522 | 21,232.388 | 359,038 | 20,185.414 |
cfa-miR-10b | hsa-miR-10a-5p | 2,127,806 | 82,813.929 | 1,602,329 | 90,080.803 |
cfa-miR-191 | hsa-miR-191-5p | 636,561 | 24,775.571 | 376,207 | 21,150.622 |
miR-Dog | miR-Homo | RPM-MDCK-MDR1 | RPM–Substrate-8c-MDCK-MDR1 | Substrate-8c-MDCK-MDR1/MDCK-wt |
---|---|---|---|---|
cfa-miR-181d | hsa-miR-181a-5p | 0.000 | 122.319 | 6.93450378 |
cfa-miR-218 | hsa-miR-218-5p | 8.814 | 40.113 | 2.186153174 |
cfa-miR-454 | hsa-miR-130a-3p | 9.264 | 0.000 | −3.211643438 |
cfa-miR-424 | hsa-miR-424-3p | 11.963 | 0.000 | −3.580449275 |
cfa-miR-1307 | - | 31.864 | 0.000 | −4.993842191 |
2.1. MiRNAs and MDR Pathway
2.1.1. cfa-miR-424 (hsa-miR-424-3p)
2.1.2. cfa-miR-454 (hsa-miR-130a-3p)
2.1.3. cfa-miR-218 (hsa-miR-218-5p)
2.1.4. miR-181a-5p
2.1.5. miR-1307
2.2. Perspective of microRNAs in MDR Diagnosis
microRNA | Normal tissue | Pancreatic cancer | PDAC |
---|---|---|---|
miR-103 | Basal level | Up-regulated | Basal level |
miR-107 | Basal level | Up-regulated | Basal level |
miR-155 | Basal level | Down-regulated | Basal level |
miR-216 | Basal level | Basal level | High level |
miR-217 | Basal level | Basal level | High level |
miR-133a | Basal level | Basal level | Absent |
miR-99 | Not detected | Detected | Detected |
miR-100 | Not detected | Detected | Detected |
Mir-100-1,2 | Not detected | Detected | Detected |
miR-125a | Not detected | Detected | Detected |
miR-125b-1 | Not detected | Detected | Detected |
miR199a-1 | Not detected | Detected | Detected |
miR199a-2 | Not detected | Detected | Detected |
miR-21 | Basal level | Detected | Detected |
miR-221 | Not detected | Detected | Detected |
miR-222 | Not detected | Detected | Detected |
miR-181a | Not detected | Detected | Detected |
miR-181b | Not detected | Detected | Detected |
miR-181d | Not detected | Detected | Detected |
miR-196a | Basal level | Detected | Detected |
2.3. Usefulness of miRNAs Recognition in Multidrug Resistance Chemotherapy: On Overview on Pancreatic Cancer
3. Experimental
3.1. Cells Lines
3.2. Data Processing
4. Conclusions
Supplementary Materials
Author Contributions
Conflicts of Interest
References
- Pharm, A.N.; Penchala, S.; Graf, R.A.; Wang, J.; Huang, Y. Pharmacogenomic Characterization of ABC Transporters. Involved in Multidrug Resistance. In Multidrug Resistance: Biological and Pharmaceutical Advance in the Antitumour Treatment; Colabufo, N.A., Ed.; Research Signpost: Kerala, India, 2008; pp. 19–62. [Google Scholar]
- Gimenez-Bonafe, P.; Guillen Canovas, A.; Ambrosio, S.; Tortosa, A.; Perez Tomas, R. Drugs Modulating MDR. In Multidrug Resistance: Biological and Pharmaceutical Advance in the Antitumour Treatment; Colabufo, N.A., Ed.; Research Signpost: Kerala, India, 2008; pp. 63–99. [Google Scholar]
- Perez-Tomas, R. Multidrug resistance: Retrospect and prospects in anti-cancer drug treatment. Curr. Med. Chem. 2006, 13, 1859–1876. [Google Scholar] [CrossRef]
- Teodori, E.; Dei, S.; Martelli, S.; Scapecchi, F.; Gualtieri, F. The functions and structure of ABC transporters: Implications for the design of new inhibitors of Pgp and MRP1 to control multidrug resistance (MDR). Curr. Drug Targets 2006, 7, 893–909. [Google Scholar] [CrossRef]
- Avendãno, C.; Menéndez, J.C. Inhibitors of multidrug resistance to antitumor agents (MDR). Curr. Med. Chem. 2002, 9, 159–119. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef]
- Kuzhandai, V.; Ramesh, R.; Srinivasan, A.R. Ciruclating MicroRNAs as biomarkers in health and disease. J. Clin. Diagn. Res. 2012, 6, 1791–1795. [Google Scholar]
- To, K.K. MicroRNA: A prognostic biomarker and a possible druggable target for circumventing multidrug resistance in cancer chemotherapy. J. Biomed. Sci. 2013, 20, 1–19. [Google Scholar] [CrossRef]
- Kovalchuk, O.; Fikowski, J.; Meservy, J.; Ilnytskyy, Y.; Tryndyak, V.P.; Chekhun, V.F.; Pogribny, I.P. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol. Cancer Ther. 2008, 7, 2152–2159. [Google Scholar] [CrossRef]
- To, K.K.; Zhan, Z.; Litman, T.; Bates, S.E. Regulation of ABCG2 expression at the 3'untranslated region of its mRNA through modulation of transcript stability and protein translation by a putative microRNA in the S1 colon cancer cell line. Mol. Cell Biol. 2008, 28, 5147–5161. [Google Scholar] [CrossRef]
- To, K.K.; Robey, R.W.; Knutsen, T.; Zhan, Z.; Ried, T.; Bates, S.E. Escape from hsa-miR-519c enables drug-resistant cells to maintain high expression of ABCG2. Mol. Cancer Ther. 2009, 8, 2959–2968. [Google Scholar] [CrossRef]
- Pan, Y.Z.; Morris, M.E.; Yu, A.M. MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol. Pharmacol. 2009, 75, 1374–1379. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Yoshioka, Y.; Minoura, K.; Takahashi, R.U.; Takeshita, F.; Taya, T.; Horii, R.; Fukuoka, Y.; Kato, T.; Kosaka, N.; et al. An integrative genomic analysis revealed therelevance of microRNA and gene expression for drug-resistance in human breast cancer cells. Mol. Cancer 2011, 10, 135. [Google Scholar] [CrossRef]
- Zhu, H.; Wu, H.; Liu, X.; Evans, B.R.; Medina, D.J.; Liu, C.G.; Yang, J.M. Role of MicroRNA mir27a and mir 451 in the regulation of MDR1/P glycoprotein. Biochem. Pharmacol. 2008, 76, 582–588. [Google Scholar] [CrossRef]
- Allen, K.E.; Weiss, G.J. Resistance may not be futile: MicroRNA biomarkers for chemoresisatnce and potential therapeutics. Mol. Cancer Ther. 2010, 9, 3126–3136. [Google Scholar] [CrossRef]
- Rodrigues, A.C.; Li, X.; Radecki, L.; Pan, Y.Z.; Winter, J.C.; Huang, M.; Yu, A.M. MicroRNA expression is differentially altered by xenobiotic drugs in different human cell lines. Biopharm. Drug Dispos. 2011, 32, 355–367. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, T.; Huang, C.; Zhang, L.; Lv, X.; Xu, T.; Hu, T.; Li, J. MiR-27a modulates the MDR1/P-glycoprotein expression by inhibiting FZD7/β-catenin pathway in hepatocellular carcinoma cells. Cell Signal. 2013, 25, 2693–2701. [Google Scholar] [CrossRef]
- Bao, L.; Hazari, S.; Mehra, S.; Kaushal, D.; Moroz, K.; Dash, S. Increased expression of P-glycoprotein and doxorubicin chemoresistance of metastatic breast cancer is regulated by miR-298. Am. J. Pathol. 2012, 180, 2490–2503. [Google Scholar] [CrossRef]
- Xu, Y.; Ohms, S.J.; Li, Z.; Wang, Q.; Gong, G.; Hu, Y.; Mao, Z.; Shannon, M.F.; Fan, J.Y. Changes in the expression of miR-381 and miR-495 are inversely associated with the expression of the MDR1 gene and development of multi-drug resistance. PLoS One 2013, 8, e82062. [Google Scholar]
- Contino, M.; Zinzi, L.; Perrone, M.G.; Leopoldo, M.; Berardi, F.; Perrone, R.; Colabufo, N.A. Potent and selective tariquidar bioisosters as potential PET. Bioorg. Med. Chem. Lett. 2013, 23, 1370–1374. [Google Scholar] [CrossRef]
- Ghosh, G.; Subramanian, I.V.; Adhikari, N.; Zhang, X.; Joshi, H.P.; Basi, D.; Chandrashekhar, Y.S.; Hall, J.L.; Roy, S.; Zeng, Y.; et al. Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-αisoforms and promotes angiogenesis. J. Clin. Invest. 2010, 120, 4141–4154. [Google Scholar] [CrossRef]
- Yang, L.; Li, N.; Wang, H.; Jia, X.; Wang, X.; Luo, J. Altered microRNA expression in cisplatin-resistant ovarian cancer cells and upregulation of miR-130a associated with MDR1/P-glycoprotein-mediated drug resistance. Oncol. Rep. 2012, 28, 592–600. [Google Scholar]
- Xu, N.; Shen, C.; Luo, Y.; Xia, L.; Xue, F.; Xia, Q.; Zhang, J. Upregulated miR-130a increases drug resistance by regulating RUNX3 and Wnt signaling in cisplatin-treated HCC cell. Biochem. Biophys Res. Commun. 2012, 425, 468–472. [Google Scholar] [CrossRef]
- Moitra, K.; Im, K.; Limpert, K.; Borsa, A.; Sawitzke, J.; Robey, R.; Yuhki, N.; Savan, R.; Huang da, W.; Lempicki, R.A.; et al. Differential gene and microRNA expression between etoposide resistant and etoposide sensitive MCF7 breast cancer cell lines. PLoS One 2012, 7, e45268. [Google Scholar] [CrossRef]
- Shi, L.; Cheng, Z.; Zhang, J.; Li, R.; Zhao, P.; Fu, Z.; You, Y. hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Res. 2008, 1236, 185–193. [Google Scholar] [CrossRef]
- Fanini, F., VI; Faabbri, M. MicroRNAs: Tiny players with a big role in the pathogenesis of leukemias and lymphomas. Hematol. Rev. 2009, 1, 40–45. [Google Scholar]
- Li, H.; Hui, L.; Xu, W. miR-181a sensitizes a multidrug-resistant leukemia cell line K562/A02 to daunorubicin by targeting BCL-2. Acta Biochim. Biophys. Sin. (Shanghai) 2012, 44, 269–277. [Google Scholar] [CrossRef]
- Kim, Y.H.; Park, J.W.; Lee, J.Y.; Surh, Y.J.; Kwon, T.K. Bcl-2 overexpression prevents daunorubicin-induced apoptosis through inhibition of XIAP and Akt degradation. Biochem. Pharmacol. 2003, 66, 1779–1786. [Google Scholar] [CrossRef]
- Roldo, C.; Missiaglia, E.; Hagan, J.P.; Falconi, M.; Capelli, P.; Bersani, S.; Calin, G.A.; Volinia, S.; Liu, C.G.; Scarpa, A.; et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J. Clin. Oncol. 2006, 24, 4677–4684. [Google Scholar] [CrossRef]
- Sun, M.; Estrov, Z.; Ji, Y.; Coombes, K.R.; Harris, D.H.; Kurzrock, R. Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol. Cancer Ther. 2008, 7, 464–473. [Google Scholar] [CrossRef]
- Bloomston, M.; Frankel, W.L.; Petrocca, F.; Volinia, S.; Alder, H.; Hagan, J.P.; Liu, C.G.; Bhatt, D.; Taccioli, C.; Croce, C.M. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 2007, 297, 1901–1908. [Google Scholar] [CrossRef]
- Gironella, M.; Seux, M.; Xie, M.J.; Cano, C.; Tomasini, R.; Gommeaux, J.; Garcia, S.; Nowak, J.; Yeung, M.L.; Jeang, K.T.; et al. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc. Natl. Acad. Sci. USA 2007, 104, 16170–16175. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.J.; Gusev, Y.; Jiang, J.; Nuovo, G.J.; Lerner, M.R.; Frankel, W.L.; Morgan, D.L.; Postier, R.G.; Brackett, D.J.; Schmittgen, T.D. Expression profiling identifies microRNA signature in pancreatic cancer. Int. J. Cancer 2007, 120, 1046–1054. [Google Scholar]
- Szafranska, A.E.; Davison, T.S.; John, J.; Cannon, T.; Sipos, B.; Maghnouj, A.; Labourier, E.; Hahn, S.A. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 2007, 26, 4442–4452. [Google Scholar] [CrossRef]
- Tsuda, N.; Ishiyama, S.; Li, Y.; Ioannides, C.G.; Abbruzzese, J.L.; Chang, D.Z. Synthetic microRNA designed to target glioma-associated antigen 1 transcription factor inhibits division and induces late apoptosis in pancreatic tumor cells. Clin. Cancer Res. 2006, 12, 6557–6564. [Google Scholar] [CrossRef]
- Zhang, S.; Cai, X.; Huang, F.; Zhong, W.; Yu, Z. Effect of trichostatin a on viability and microRNA expression in human pancreatic cancer cell line BxPC-3. Exp. Oncol. 2008, 30, 265–268. [Google Scholar]
- Lee, K.H.; Lotterman, C.; Karikari, C.; Omura, N.; Feldmann, G.; Habbe, N.; Goggins, M.G.; Mendell, J.T.; Maitra, A. Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology 2009, 9, 293–301. [Google Scholar] [CrossRef]
- Li, Y.; VandenBoom, T.G.; Kong, D.; Wang, Z.; Ali, S.; Philip, P.A.; Sarkar, F.H. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res. 2009, 69, 6704–6712. [Google Scholar] [CrossRef]
- Dillhoff, M.; Liu, J.; Frankel, W.; Croce, C.; Bloomston, M. MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J. Gastrointest. Surg. 2008, 12, 2171–2176. [Google Scholar] [CrossRef]
- Szafranska, A.E.; Doleshal, M.; Edmunds, H.S.; Gordon, S.; Luttges, J.; Munding, J.B.; Barth, R.J., Jr.; Gutmann, E.J.; Suriawinata, A.A.; Marc Pipas, J.; et al. Analysis of microRNAs in pancreatic fine-needle aspirates can classify benign and malignant tissues. Clin. Chem. 2008, 54, 1716–1724. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J.; Chang, P.; LeBlanc, A.; Li, D.; Abbruzzesse, J.L.; Frazier, M.L.; Killary, A.M.; Sen, S. MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev. Res. 2009, 2, 807–813. [Google Scholar] [CrossRef]
- Greither, T.; Grochola, L.; Udelnow, A.; Lautenschlager, C.; Wurl, P.; Taubert, H. Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumours associates with poorer survival. Int. J. Cancer 2010, 102, 731–737. [Google Scholar] [CrossRef]
- Boone, B.A; Steve, J.; Krasinskas, A.M.; Zureikat, A.H.; Lembersky, B.C.; Gibson, M.K.; Stoller, R.G.; Zeh, H.J.; Bahary, N. Outcomes with FOLFIRINOX for borderline resectable and locally unresectable pancreatic cancer. J. Surg. Oncol. 2013, 108, 236–224. [Google Scholar] [CrossRef]
- Ychou, M.; Conroy, T.; Seitz, J.F.; Gourgou, S.; Hua, A.; Mery-Mignard, D.; Kramar, A. An open phase I study assessing the feasibility of the triple combination: Oxaliplatin plus irinotecan plus leucovorin/5-fluorouracil every 2 weeks in patients with advanced solid tumors. Ann. Oncol. 2003, 14, 481–489. [Google Scholar] [CrossRef]
- Assaf, E.; Verlinde-Carvalho, M.; Delbaldo, C.; Grenier, J.; Sellam, Z.; Pouessel, D.; Bouaita, L.; Baumgaertner, I.; Sobhani, I.; Tayar, C.; et al. 5-Fluorouracil/leucovorin combined with irinotecanand oxaliplatin (FOLFIRINOX) as second-line chemotherapy in patients with metastatic pancreatic adenocarcinoma. Oncology 2011, 80, 301–306. [Google Scholar] [CrossRef]
- Conroy, T.; Paillot, B.; Francois, E.; Bugat, R.; Jacob, J.H.; Stein, U.; Nasca, S.; Metges, J.P.; Rixe, O.; Michel, P.; et al. Irinotecan plus oxaliplatin and leucovorin-modulated fluorouracil in advanced pancreatic cancer-A groupe tumeurs digestives of the federation nationale des centres de lutte contre le cancer study. J. Clin. Oncol. 2005, 23, 1228–1236. [Google Scholar] [CrossRef]
- Peddi, P.F.; Lubner, S.; McWilliams, R.; Tan, B.R.; Picus, J.; Sorscher, S.M.; Suresh, R.; Lockhart, A.C.; Wang, J.; Menias, C.; et al. Multi-institutional experience with FOLFIRINOX in pancreatic adenocarcinoma. JOP 2012, 13, 497–501. [Google Scholar]
- Gourgou-Bourgade, S.; Bascoul-Mollevi, C.; Desseigne, F.; Ychou, M.; Bouché, O.; Guimbaud, R.; Bécouarn, Y.; Adenis, A.; Raoul, J.L.; Boige, V.; et al. Impact of FOLFIRINOX compared with gemcitabine on quality of life in patients with metastatic pancreatic cancer: Results from the PRODIGE 4/ACCORD 11 randomized trial. J. Clin. Oncol. 2013, 31, 23–29. [Google Scholar] [CrossRef]
- Costello, E.; Greenhalf, W.; Neoptolemos, J.P. New biomarkers and targets in pancreatic cancer and their application to treatment. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 435–444. [Google Scholar] [CrossRef]
- Giovannetti, E.; Funel, N.; Peters, G.J.; Del Chiaro, M.; Erozenci, L.A.; Vasile, E.; Leon, L.G.; Pollina, L.E.; Groen, A.; Falcone, A.; et al. MicroRNA-21 in pancreatic cancer: Correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity. Cancer Res. 2010, 70, 4528–4538. [Google Scholar] [CrossRef]
- Ali, S.; Ahmad, A.; Banerjee, S.; Padhye, S.; Dominiak, K.; Schaffert, J.M.; Wang, Z.; Philip, P.A.; Sarkar, F.H. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res. 2010, 70, 3606–3617. [Google Scholar] [CrossRef]
- miRBase: The microRNA database. Available online: http://www.mirbase.org/ (accessed on 28 April 2014).
- Sample Availability: Compounds 8a and 8c are available from the authors.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Gisel, A.; Valvano, M.; El Idrissi, I.G.; Nardulli, P.; Azzariti, A.; Carrieri, A.; Contino, M.; Colabufo, N.A. miRNAs for the Detection of MultiDrug Resistance: Overview and Perspectives. Molecules 2014, 19, 5611-5623. https://doi.org/10.3390/molecules19055611
Gisel A, Valvano M, El Idrissi IG, Nardulli P, Azzariti A, Carrieri A, Contino M, Colabufo NA. miRNAs for the Detection of MultiDrug Resistance: Overview and Perspectives. Molecules. 2014; 19(5):5611-5623. https://doi.org/10.3390/molecules19055611
Chicago/Turabian StyleGisel, Andreas, Mirna Valvano, Imane Ghafir El Idrissi, Patrizia Nardulli, Amalia Azzariti, Antonio Carrieri, Marialessandra Contino, and Nicola Antonio Colabufo. 2014. "miRNAs for the Detection of MultiDrug Resistance: Overview and Perspectives" Molecules 19, no. 5: 5611-5623. https://doi.org/10.3390/molecules19055611
APA StyleGisel, A., Valvano, M., El Idrissi, I. G., Nardulli, P., Azzariti, A., Carrieri, A., Contino, M., & Colabufo, N. A. (2014). miRNAs for the Detection of MultiDrug Resistance: Overview and Perspectives. Molecules, 19(5), 5611-5623. https://doi.org/10.3390/molecules19055611