Effects of Piperine on the Intestinal Permeability and Pharmacokinetics of Linarin in Rats
Abstract
:1. Introduction
2. Results and Discussion
2.1. In Situ Permeability Study
2.2. In Vivo Pharmacokinetic Study
Time (h) | Linarin | Linarin + Piperine |
---|---|---|
(ng/mL) | (ng/mL) | |
0.017 | 52.12 ± 24.48 | 26.62 ± 24.10 |
0.033 | 118.91 ± 23.61 | 104.83 ± 92.52 |
0.083 | 108.81 ± 64.05 | 206.98 ± 149.73 |
0.167 | 56.60 ± 27.37 | 489.33 ± 259.63 |
0.25 | 46.66 ± 24.58 | 461.90 ± 187.20 |
0.5 | 38.20 ± 27.76 | 105.57 ± 73.11 |
1 | 20.40 ± 18.85 | 75.97 ± 47.60 |
1.5 | 10.46 ± 6.39 | 61.39 ± 34.09 |
3 | 8.44 ± 5.25 | 37.06 ± 27.87 |
5 | 5.99 ± 4.18 | 22.04 ± 15.70 |
8 | 4.22 ± 3.03 | 16.75 ± 14.30 |
12 | 3.13 ± 1.04 | 11.61 ± 10.61 |
24 | 0 | 8.32 ± 7.33 |
Parameters | Linarin | Linarin + Piperine |
---|---|---|
t1/2 (h) | 4.2 ± 1.3 | 4.7 ± 2.8 |
CLz (L/h/kg) | 556 ± 320 | 118 ± 75 |
AUC0-t (ng·h/mL) | 106 ± 67 | 554 ± 316 |
AUC0-∞ (ng·h/mL) | 122 ± 76 | 587 ± 347 |
Tmax (h) | 0.053 ± 0.027 | 0.200 ± 0.046 |
Cmax (ng/mL) | 145 ± 32 | 647 ± 96 |
3. Experimental Section
3.1. Materials
3.2. Animals
3.3. In Situ Intestinal Perfusion Experiment
3.4. Pharmacokinetic Study
3.5. HPLC Assay
3.6. LC–MS/MS Assay
3.7. Data Analysis and Statistical Analysis
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Martínez-Vázquez, M.; Apan, T.R.; Hidemi, A.M.; Bye, R. Analgesic and antipyretic activities of an aqueous extract and of the flavone linarin of Buddleia cordata. Planta Med. 1996, 62, 137–140. [Google Scholar] [CrossRef]
- Martínez-Vázquez, M.; Apan, T.R.; Lastra, A.L.; Bye, R. A comparative study of the analgesic and anti-inflammatory activities of pectolinarin isolated from Cirsium subcoriaceum and linarin isolated from Buddleia cordata. Planta Med. 1998, 64, 134–137. [Google Scholar]
- Oinonen, P.P.; Jokela, J.K.; Hatakka, A.I.; Vuorela, P.M. Linarin, a selective acetylcholinesterase inhibitor from Mentha arvensis. Fitoterapia 2006, 77, 429–434. [Google Scholar] [CrossRef]
- Lim, S.S.; Han, S.M.; Kim, S.Y.; Bae, Y.S.; Kang, I.J. Isolation of acetylcholinesterase inhibitors from the flowers of Chrysanthemum indicum Linne. Food Sci. Biotechnol. 2007, 16, 265–269. [Google Scholar]
- Fan, P.H.; Hay, A.E.; Marston, A.; Hostettmann, K. Acetylcholinesterase-inhibitory activity of linarin from Buddleja davidii, structure-activity relationships of related flavonoids, and chemical investigation of Buddleja nitida. Pharm. Biol. 2008, 46, 596–601. [Google Scholar] [CrossRef]
- Lou, H.Y.; Fan, P.H.; Perez, R.G.; Lou, H.Y. Neuroprotective effects of linarin through activation of the PI3K/Akt pathway in amyloid-β-induced neuronal cell death. Bioorg. Med. Chem. 2011, 19, 4021–4021. [Google Scholar] [CrossRef]
- Thilakarathna, S.H.; Rupasinghe, H.P.V. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients 2013, 5, 3367–3387. [Google Scholar] [CrossRef]
- Dudhatra, G.B.; Mody, S.K.; Awale, M.M.; Patel, H.B.; Modi, C.M.; Kumar, A.; Kamani, D.R.; Chauhan, B.N. A comprehensive review on pharmacotherapeutics of herbal bioenhancers. Sci. World J. 2012. [Google Scholar] [CrossRef]
- Atal, C.K. A breakthrough in drug bioavailability—A clue from age old wisdom of Ayurveda. I.D.M.A. Bull. 1979, 10, 483–484. [Google Scholar]
- Han, Y.; Tan, T.M.C.; Lim, L.Y. In vitro and in vivo evaluation of the effects of piperine on P-gp function and expression. Toxicol. Appl. Pharmacol. 2008, 230, 283–289. [Google Scholar] [CrossRef]
- Reen, R.K.; Jamwal, D.S.; Taneja, S.C.; Koul, J.L.; Dubey, R.K.; Wiebel, F.J.; Singh, J. Impairment of UDP-glucose dehydrogenase and glucuronidation activities in liver and small intestine of rat and guinea pig in vitro by piperine. Biochem. Pharmacol. 1993, 46, 229–238. [Google Scholar] [CrossRef]
- Atal, C.K.; Dubey, R.K.; Singh, J. Biochemical basis of enhanced drug bioavailability by piperine: Evidence that piperine is a potent inhibitor of drug metabolism. J. Pharmacol. Exp. Ther. 1985, 232, 258–262. [Google Scholar]
- Bajad, S.; Bedi, K.L.; Singla, A.K.; Johri, R.K. Piperine inhibits gastric emptying and gastrointestinal transit in rats and mice. Planta Med. 2001, 67, 176–179. [Google Scholar] [CrossRef]
- Bano, G.; Raina, R.K.; Zutshi, U.; Bedi, K.L.; Johri, R.K.; Sharma, S.C. Effect of piperine on bioavailability and pharmacokinetics of propranolol and theophylline in healthy volunteers. Eur. J. Clin. Pharmacol. 1991, 41, 615–617. [Google Scholar] [CrossRef]
- Velpandian, T.; Jasuja, R.; Bhardwaj, R.K.; Jaiswal, J.; Gupta, S.K. Piperine in food: Interference in the pharmacokinetics of phenytoin. Eur. J. Drug Metab. Pharmacokinet. 2001, 26, 241–247. [Google Scholar] [CrossRef]
- Shoba, G.; Joy, D.; Joseph, T.; Majeed, M.; Rajendran, R.; Srinivas, P.S. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998, 64, 353–356. [Google Scholar] [CrossRef]
- Johnson, J.J.; Nihal, M.; Siddiqui, I.A.; Scarlett, C.O.; Bailey, H.H.; Mukhtar, H.; Ahmad, N. Enhancing the bioavailability of resveratrol by combining it with piperine. Mol. Nutr. Food Res. 2011, 55, 1169–1176. [Google Scholar] [CrossRef]
- Jin, M.J.; Han, H.K. Effect of piperine, a major component of Black Pepper, on the intestinal absorption of fexofenadine and its implication on food–drug interaction. J. Food Sci. 2010, 75, H93–H96. [Google Scholar]
- Moorthi, C.; Krishnan, K.; Manavalan, R.; Kathiresan, K. Preparation and characterization of curcumin-piperine dual drug loaded nanoparticles. Asian Pac. J. Trop. Biomed. 2012, 2, 841–848. [Google Scholar] [CrossRef]
- Didziapetrisa, R.; Japertasa, P.; Avdeef, A.; Petrauskas, A. Classification Analysis of P-Glycoprotein Substrate Specificity. J. Drug Target. 2003, 11, 391–406. [Google Scholar] [CrossRef]
- Feng, X.C.; Liu, Y.P.; Wang, X.; Di, X. Analysis of linarin and its metabolites in rat urine by LC–MS/MS. Chromatographia 2014, 77, 571–579. [Google Scholar] [CrossRef]
- Sutton, S.C.; Rinaldi, M.T.; Vukovinsky, K.E. Comparison of the gravimetric, phenol red, and 14C-PEG-3350 methods to determine water absorption in the rat single-pass intestinal perfusion model. AAPS PharmSci 2001, 3, 93–97. [Google Scholar]
- Issa, C.; Gupta, P.; Bansal, A.K. Implications of density correction in gravimetric method for water flux determination using rat single-pass intestinal perfusion technique: A technical note. AAPS PharmSciTech 2003, 4, 44–49. [Google Scholar] [CrossRef]
- Sample Availability: Please contact the authors.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Feng, X.; Liu, Y.; Wang, X.; Di, X. Effects of Piperine on the Intestinal Permeability and Pharmacokinetics of Linarin in Rats. Molecules 2014, 19, 5624-5633. https://doi.org/10.3390/molecules19055624
Feng X, Liu Y, Wang X, Di X. Effects of Piperine on the Intestinal Permeability and Pharmacokinetics of Linarin in Rats. Molecules. 2014; 19(5):5624-5633. https://doi.org/10.3390/molecules19055624
Chicago/Turabian StyleFeng, Xinchi, Youping Liu, Xin Wang, and Xin Di. 2014. "Effects of Piperine on the Intestinal Permeability and Pharmacokinetics of Linarin in Rats" Molecules 19, no. 5: 5624-5633. https://doi.org/10.3390/molecules19055624
APA StyleFeng, X., Liu, Y., Wang, X., & Di, X. (2014). Effects of Piperine on the Intestinal Permeability and Pharmacokinetics of Linarin in Rats. Molecules, 19(5), 5624-5633. https://doi.org/10.3390/molecules19055624