Direct 2,3-O-Isopropylidenation of α-D-Mannopyranosides and the Preparation of 3,6-Branched Mannose Trisaccharides
Abstract
:1. Introduction
2. Results and Discussion
Entry | Reaction | R | TsOH (equiv) | T(°C) | Time(h) | Yield (%) | Ref. * |
---|---|---|---|---|---|---|---|
1 | 1a 3a | 0.1 | 70 | 4 | 93 | [5] | |
2 | 1b 3b | 0.3 | 50 | 1.5 | 89 | - | |
3 | 1c 3c | 0.1 | 70 | 2 | 91 | [6] | |
4 | 1d 3d | 0.3 | 70 | 3.5 | 92 | [7] | |
5 | 1e 3e | 0.5 | 50 | 4.5 | 85 | [21] | |
6 | 1f 3f | 0.1 | 70 | 2 | 88 | [22] | |
7 | 1g 3g | 0.3 | 70 | 2 | 90 | [23] |
3. Experimental Section
3.1. General Methods
3.2. Chemical Synthesis: Representative Procedure for the Synthesis of 2,3-O-Isopropylidene-α-d-mannopyranosides 3a~3f
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wang, C.C.; Lee, J.C.; Luo, S.Y.; Kulkarni, S.S.; Huang, Y.W.; Lee, C.C.; Chang, K.L.; Hung, S.C. Regioselective one-pot protection of carbohydrates. Nature 2007, 446, 896–899. [Google Scholar]
- Seeberger, P.H.; Werz, D.B. Synthesis and medical applications of oligosaccharides. Nature 2007, 446, 1046–1051. [Google Scholar]
- Guo, J.; Ye, X.S. Protecting groups in carbohydrate chemistry: Influence on stereoselectivity of glycosylations. Molecules 2010, 15, 7235–7265. [Google Scholar]
- Bertozzi, C.R.; Kiessling, L.L. Chemical glycobiology. Science 2001, 291, 2357–2364. [Google Scholar]
- Liu, C.; Skogman, F.; Cai, Y.; Lowary, T.L. Synthesis of the ‘primer–adaptor’ trisaccharide moiety of Escherichia coli O8, O9, and O9a lipopolysaccharide. Carbohydr. Res. 2007, 342, 2818–2825. [Google Scholar]
- Gigg, J.; Gigg, R.; Payne, S.; Conant, R. Synthesis of propyl 4-O-(3,6-di-O-methyl-β-d-glucopyranosyl)-2,3-di-O-methyl-α-d-rhamnopyranoside. Carbohydr.Res 1985, 141, 91–97. [Google Scholar]
- Chung, S.K.; Moon, S.H. Synthesis and biological activities of (4,6-di-O-phosphonato-β-d-mannopyranosyl)-methylphosphonate as an analogue of 1l-myo-inositol 1,4,5-trisphosphate. Carbohydr. Res. 1994, 260, 39–50. [Google Scholar]
- Evans, M.E.; Parrish, F.W. Monomolar acetalations of methyl α-d-mannosides-synthesis of methyl α-d-talopyranoside. Carbohydr. Res. 1977, 54, 105–114. [Google Scholar]
- Fleet, G.W.; Smith, P.W. Enantiospecific syntheses of deoxymannojirimycin, fagomine and 2r, 5r-dihydroxymethyl-3r, 4r-dihydroxypyrrolidine from d-glucose. Tetrahedron Lett. 1985, 26, 1469–1472. [Google Scholar]
- Yadav, J.; Chander, M.C.; Reddy, K.K. Stereoselective synthesis of 10(S), 11(R), 12(R)-trihydroxyeicosa-5(Z), 8(Z), 14(Z)-trienoic acid from d-mannose. Tetrahedron Lett. 1992, 33, 135–138. [Google Scholar]
- Manna, S.; Viala, J.; Yadagiri, P.; Falck, J. Synthesis of 12(S), 20-, 12(S), 19(R)-, and 12(S), 19(S)-dihydroxyeicosa-cis-5,8,14-trans-10-tetraenoic acids, metabolites of 12(S)-hete. Tetrahedron Lett 1986, 27, 2679–2682. [Google Scholar]
- Vijayasaradhi, S.; Singh, J.; Aidhen, I.S. An Efficient, Selective Hydrolysis of Terminal Isopropylidene Acetal Protection by Zn (NO3)2 6H2O in Acetonitrile. Synlett 2000, 1, 110–112. [Google Scholar]
- Swamy, N.R.; Venkateswarlu, Y. A mild and efficient method for chemoselective deprotection of acetonides by bismuth (III) trichloride. Tetrahedron Lett. 2002, 43, 7549–7552. [Google Scholar]
- Ki, H.P.; Yong, J.Y.; Sang, G.L. Efficient cleavage of terminal acetonide group: Chirospecific synthesis of 2, 5-dideoxy-2, 5-imino-d-mannitol. Tetrahedron Lett. 1994, 35, 9737–9740. [Google Scholar]
- Kim, K.S.; Song, Y.H.; Lee, B.H.; Hahn, C.S. Efficient and selective cleavage of acetals and ketals using ferric chloride adsorbed on silica gel. J. Org. Chem. 1986, 51, 404–407. [Google Scholar]
- Mahender, G.; Ramu, R.; Ramesh, C.; Das, B. A simple and facile chemo-and regioselective deprotection of acetonides using silica supported sodium hydrogen sulfate as a heterogeneous catalyst. Chem. Lett. 2003, 8, 734–735. [Google Scholar]
- Agarwal, A.; Vankar, Y.D. Selective deprotection of terminal isopropylidene acetals and trityl ethers using HClO4 supported on silica gel. Carbohydr. Res. 2005, 340, 1661–1667. [Google Scholar]
- Fauré, R.; Shiao, T.C.; Damerval, S.; Roy, R. Practical synthesis of valuable d-rhamnoside building blocks for oligosaccharide synthesis. Tetrahedron Lett. 2007, 48, 2385–2388. [Google Scholar]
- Zong, G.; Yu, N.; Xu, Y.; Zhang, J.; Wang, D.; Liang, X. Synthesis of a mannose hexasaccharide related to the cell wall mannan of candida dubliniensis and trychophyton mentagrophytes. Synthesis 2010, 10, 1666–1672. [Google Scholar]
- Cheng, L.; Chen, Q.; Liu, J.; Du, Y. Synthesis of a fluorescence-labeled K30 antigen repeating unit using click chemistry. Carbohydr. Res. 2007, 342, 975–981. [Google Scholar]
- Zegelaar-Jaarsveld, K.; Duynstee, H.I.; van der Marel, G.A.; van Boom, J.H. Iodonium ion-assisted synthesis of tetrameric fragments corresponding to the cell wall phenolic glycolipids of Mycobacterium kansasii serovars II and IV. Tetrahedron 1996, 52, 3575–3592. [Google Scholar]
- Lemanski, G.; Ziegler, T. Intramolecular mannosylations of glucose derivatives via prearranged glycosides. Helv. Chim. Acta 2000, 83, 2655–2675. [Google Scholar]
- Rana, S.S.; Barlow, J.J.; Matta, K.L. Synthetic studies in carbohydrates. Part XVIII. Synthesis of p-nitrophenyl 6-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-α-d-mannopyranoside. Carbohydr. Res. 1981, 96, 79–85. [Google Scholar]
- Sparrow, L.G.; Lawrence, M.C.; Gorman, J.J.; Strike, P.M.; Robinson, C.P.; McKern, N.M.; Ward, C.W. N-linked glycans of the human insulin receptor and their distribution over the crystal structure. Proteins: Struct. Funct. Bioinform. 2008, 71, 426–439. [Google Scholar]
- De Leoz, M.L.A.; Young, L.J.T.; An, H.J.; Kronewitter, S.R.; Kim, J.; Miyamoto, S.; Borowsky, A.D.; Chew, H.K.; Lebrilla, C.B. High-mannose glycans are elevated during breast cancer progression. Mol. Cell. Proteomics 2011, 10, 1–9. [Google Scholar]
- Moremen, K.W.; Tiemeyer, M.; Nairn, A.V. Vertebrate protein glycosylation: Diversity, synthesis and function. Nat. Rev. Mol. Cell Bio. 2012, 13, 448–462. [Google Scholar]
- Nairn, A.V.; Aoki, K.; dela Rosa, M.; Porterfield, M.; Lim, J.M.; Kulik, M.; Pierce, J.M.; Wells, L.; Dalton, S.; Tiemeyer, M.; et al. Regulation of glycan structures in murine embryonic stem cells. combined transcript profiling of glycan-related genes and glycan structural analysis. J. Biol. Chem. 2012, 287, 37835–37856. [Google Scholar]
- Zhang, J.J.; Kong, F.Z. Efficient and practical syntheses of mannose tri-, tetra-, penta-, hexa-, hepta-, and octasaccharides existing in N-glycans. Tetrahedron: Asymmetry 2002, 13, 243–252. [Google Scholar]
- Zhang, J.J.; Kong, F.Z. A facile large scale synthesis of the core mannose pentasaccharide of N-linked glycoprotein and its isomer. Acta Chim. Sinica 2002, 1, 150–156. [Google Scholar]
- Mikkelsen, L.M.; Krintel, S.L.; Jiménez-Barbero, J.; Skrydstrup, T. Application of the anomeric samarium route for the convergent synthesis of the C-linked trisaccharide α-d-Man-(1→ 3)-[α-d-man-(1→ 6)]-d-man and the disaccharides α-d-man-(1→ 3)-d-man and α-d-man-(1→ 6)-d-man. J. Org. Chem. 2002, 67, 6297–6308. [Google Scholar]
- Liu, Y.; Chen, G. Chemical synthesis of N-linked glycans carrying both mannose-6-phosphate and glcnac-mannose-6-phosphate motifs. J. Org. Chem. 2011, 76, 8682–8689. [Google Scholar]
- Ogawa, T.; Katano, K.; Matsui, M. Regio- and stereo-controlled synthesis of core oligosaccharides of glycopeptides. Carbohydr. Res. 1978, 64, C3–C9. [Google Scholar]
- Winnik, F.M.; Brisson, J.R.; Carver, J.P.; Krepinsky, J.J. Syntheses of model oligosaccharides of biological significance. Synthesis of methyl 3,6-di-O-(α-d-mannopyranosyl)-α-d-mannopyranoside and the corresponding mannobiosides. Carbohydr. Res. 1982, 103, 15–28. [Google Scholar]
- Kaur, K.J.; Alton, G.; Hindsgaul, O. Use of N-acetylglucosaminyltransferases I and II in the preparative synthesis of oligosaccharides. Carbohydr. Res. 1991, 210, 145–153. [Google Scholar]
- Kaur, K.J.; Hindsgaul, O. A simple synthesis of octyl 3,6-di-O-(α-d-mannopyranosyl)-β-d-mannopyranoside and its use as an acceptor for the assay of N-acetylglucosaminyltransferase-I activity. Glycoconjugate J. 1991, 8, 90–94. [Google Scholar]
- Oscarson, S.; Tiden, A.K. Synthesis of the octyl and tetradecyl glycosides of 3,6-di-O-α-d-mannopyranose and of 3,4-di-O-α-d-mannopyranosyl-α-d-mannopyranose. A new way for 2,4-di-O-protection of mannopyranosides. Carbohydr. Res. 1993, 247, 323–328. [Google Scholar]
- Figueroa-Perez, S.; Verez-Bencomo, V.J. Synthesis of neoglycolipids containing oligosaccharides based on 3,6-branched-α-d-mannopyranosides as the carbohydrate moieties. Carbohydr. Chem. 1998, 17, 851–868. [Google Scholar]
- Tanaka, H.; Nishida, Y.; Kobayashi, K. A facile synthesis of a glycoconjugate cationic polymer carrying the 3,6-branched α-d-mannosyl trisaccharide cluster. J. Carbohydr. Chem. 2000, 19, 413–418. [Google Scholar]
- Ratner, D.M.; Plante, O.J.; Seeberger, P.H. A linear synthesis of branched high-mannose oligosaccharides from the HIV-1 viral surface envelope glycoprotein gp120. Eur. J. Org. Chem. 2002, 5, 826–833. [Google Scholar]
- Abronina, P.I.; Backinowsky, L.V.; Grachev, A.A.; Sedinkin, S.L.; Malysheva, N.N. An easy access to a 3,6-branched mannopentaoside bearing one terminal [1-13C]-labeled d-mannopyranose residue. Russ. Chem. Bull. 2005, 54, 1287–1293. [Google Scholar]
- Mukhopadhyay, B.; Maurer, S.V.; Rudolph, N.; van Well, R.M.; Russell, D.A.; Field, R.A. From solution phase to “on-column” chemistry: Trichloroacetimidate-based glycosylation promoted by perchloric acid-silica. J. Org. Chem. 2005, 70, 9059–9062. [Google Scholar]
- Arnarp, J.; Lonngren, J. Synthesis of 3,6-di-O-(α-d-mannopyranosyl)-d-mannose. Acta Chem. Scand. Ser. B 1978, B32, 696. [Google Scholar]
- Sample Availability: Samples of the compounds 1a, 2a, 3a–g, 4–8, 10 are available from the authors.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Jiang, R.; Zong, G.; Liang, X.; Jin, S.; Zhang, J.; Wang, D. Direct 2,3-O-Isopropylidenation of α-D-Mannopyranosides and the Preparation of 3,6-Branched Mannose Trisaccharides. Molecules 2014, 19, 6683-6693. https://doi.org/10.3390/molecules19056683
Jiang R, Zong G, Liang X, Jin S, Zhang J, Wang D. Direct 2,3-O-Isopropylidenation of α-D-Mannopyranosides and the Preparation of 3,6-Branched Mannose Trisaccharides. Molecules. 2014; 19(5):6683-6693. https://doi.org/10.3390/molecules19056683
Chicago/Turabian StyleJiang, Rui, Guanghui Zong, Xiaomei Liang, Shuhui Jin, Jianjun Zhang, and Daoquan Wang. 2014. "Direct 2,3-O-Isopropylidenation of α-D-Mannopyranosides and the Preparation of 3,6-Branched Mannose Trisaccharides" Molecules 19, no. 5: 6683-6693. https://doi.org/10.3390/molecules19056683
APA StyleJiang, R., Zong, G., Liang, X., Jin, S., Zhang, J., & Wang, D. (2014). Direct 2,3-O-Isopropylidenation of α-D-Mannopyranosides and the Preparation of 3,6-Branched Mannose Trisaccharides. Molecules, 19(5), 6683-6693. https://doi.org/10.3390/molecules19056683