Trends in Protein-Based Biosensor Assemblies for Drug Screening and Pharmaceutical Kinetic Studies
Abstract
:1. Introduction
2. Proteins as Biolog ical Recognition Elements
Method/Binding Nature | Advantages | Drawbacks |
---|---|---|
Adsorption | Simple and easy; Limited loss of protein activity. | Desorption; Random orientation; Non-specific adsorption. |
Covalent-coupling | Stable; No diffusion barriers; Short response time. | Coupling with toxic product; Random orientation; Poor reproducibility. |
Cross-linking | Simple technique. | High protein activity loss. |
Affinity Interaction | Perfect control of enzyme orientation during immobilization procedure. | Require the presence of specific groups on the enzyme. |
Entrapment | No chemical reaction between the monomer and the enzyme that could affect the activity; Several types of enzymes can be immobilized within the same polymer. | Enzyme leakage; Diffusion Barrier; Require high concentration of monomer and enzyme in the electropolymerization step. |
2.1. Enzymes
Immobilized Technique | Analyte | Immobilized Enzyme | Detection Method | Detection Limit | Linear Range | Sensitivity | References | |
---|---|---|---|---|---|---|---|---|
Adsorption | Physical Adsorption | H2O2 | HRP | Amperometric | 2 μmol∙L−1 | 8.0 μmol∙L−1 to 3.0 mmol∙L−1 | - | [37] |
Layer-by-layer | Glucose | GOD | Amperometric | 0.20 mmol∙L−1 | - | 16 µA mmol∙L−1∙cm−2 | [38] | |
Layer-by-layer | Glucose | GOD | Amperometric | 83 µmol/L | 0.5 to 5.5 mmol/L | - | [39] | |
Electrochemical doping | Choline | ChOD | Amperometric | - | 1 × 10−7 to 1 × 10−4 M | - | [40] | |
Lipidic microenvironement | Lactase | Lactase/GalOD | Amperometric | - | 5.6 × 10−2 to 3.3 × 10−1 | - | [41] | |
Covalent coupling | Lactate | LDH | Amperometric | 1 μM | 5 to 90 μM | 0.0106 μA/μM | [42] | |
Dopamine | Tyrosinase | Amperometric | - | 5–120 μM | - | [43] | ||
Dopamine | Tyrosinase | Amperometric | - | 1–200 µM | 232.5 mA∙M−1∙cm−2 | [44] | ||
Urea | Urease | Amperometric | - | 0.16–5.02 μM | - | [45] | ||
Urea | Urease | Amperometric | 0.02 mM | 0.1 to 0.7 mM | 4.5 µA/mM | [46] | ||
Cross-linking | Glucose | GOD | Amperometric | 1 µM | 5 × 10−5 to 1.2 × 10−2 M | 21.7 A/mM∙cm2 | [47] | |
Glucose | GOD | Amperometric | 70–420 mg∙dL−1 | - | [48] | |||
MSG | (l-GLOD)/(l-GLDH) | Amperometric | 0.02 mg/L | 0.02 to 1.2 mg/L | - | [49] | ||
Affinity | Biotin/avidin | Urea | Urease | ChemFEC | - | 10−4 to 10−1 M | - | [23] |
Chelation | Paraoxon | AChE | Electrochemical | 10−12 M | 10−8 to 10−13 | - | [50] | |
Entrapment | Electropolymerization | Glucose | GOD/HRP | Amperometry | 3 × 10−5 M | (3.00 × 10−5 to 2.43 × 10−3 M | 7.01 ± 0.18 μA∙mM−1∙cm−2 | [51] |
Photopolymerization | Dichlorvos | AChE | Amperometry | 9.6 × 10−11 mol∙L−1 | 2 × 10−10–1 × 10−8 | - | [52] | |
Silica-sol-gel | Glucose | GOD | Amperometry | 50 μM | 0.2–20 mM | 196 nA/mM | [53] | |
Polysaccharide-based gel | Ethanol | ADH | Amperometry | 0.52 μM | - | 0.1646 AM−1·cm−2 | [54] | |
Carbon Paste electrodes | Dopamine | HRP | Amperometry | 9.0 × 10−6 mol∙L−1 | 9.9 × 10−5 to 1.6 × 10−3 mol∙L−1 | - | [55] | |
Agarose | Dopamine | Tyrosinase | Amperometry | 9.0 × 10−7 | 2.0 × 10−6 to 1.0 × 10−5 | - | [56] | |
Sol-gel | Xantine | XO, SOD and HRP | Fluorescence | 20 nM | 0–3.5 µM | - | [57] |
2.2. Antibodies
2.3. Other Proteins
3. The New Era in Biosensors Nanostructures Assembly
4. Biosensosr Based on Transduction
4.1. Electrochemical Biosensors
4.1.1. Amperometric Biosensors
4.1.2. Potentiometric Biosensors
4.2. Optical Biosensors
4.2.1. Surface Plasmon Resonance Based Biosensors
4.2.2. Flourescence Based Immunosensors
5. Conclusions and Future Perspectives
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Vuignier, K.; Veuthey, J.-L.; Carrupt, P.-A.; Schappler, J. Global analytical strategy to measure drug–plasma protein interactions: From high-throughput to in-depth analysis. Drug Discov. Today 2013, 18, 1030–1034. [Google Scholar] [CrossRef]
- Macarron, R.; Banks, M.N.; Bojanic, D.; Burns, D.J.; Cirovic, D.A.; Garyantes, T.; Green, D.V.; Hertzberg, R.P.; Janzen, W.P.; Paslay, J.W. Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Discov. 2011, 10, 188–195. [Google Scholar] [CrossRef]
- Murray, C.W.; Verdonk, M.L.; Rees, D.C. Experiences in fragment-based drug discovery. Trends Pharmacol. Sci. 2012, 33, 224–232. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Chen, Y.-P.P. Structure-based drug design to augment hit discovery. Drug Discov. Today 2011, 16, 831–839. [Google Scholar] [CrossRef]
- Cheng, T.; Li, Q.; Zhou, Z.; Wang, Y.; Bryant, S.H. Structure-based virtual screening for drug discovery: A problem-centric review. AAPS J. 2012, 14, 133–141. [Google Scholar] [CrossRef]
- Souza-Fagundes, E.M.; Frank, A.O.; Feldkamp, M.D.; Dorset, D.C.; Chazin, W.J.; Rossanese, O.W.; Olejniczak, E.T.; Fesik, S.W. A high-throughput fluorescence polarization anisotropy assay for the 70N domain of replication protein A. Anal. Biochem. 2012, 421, 742–749. [Google Scholar] [CrossRef]
- Lea, W.A.; Simeonov, A. Fluorescence polarization assays in small molecule screening. Expert Opin. Drug Discov. 2011, 6, 17–32. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, S.; Tu, D.; Chen, Z.; Huang, M.; Zhu, H.; Ma, E.; Chen, X. Amine-functionalized lanthanide-doped zirconia nanoparticles: Optical spectroscopy, time-resolved fluorescence resonance energy transfer biodetection, and targeted imaging. J. Am. Chem. Soc. 2012, 134, 15083–15090. [Google Scholar] [CrossRef]
- He, H.-T.; Marguet, D. Detecting nanodomains in living cell membrane by fluorescence correlation spectroscopy. Annu. Rev. Phys. Chem. 2011, 62, 417–436. [Google Scholar]
- Kask, P.; Palo, K.; Ullmann, D.; Gall, K. Fluorescence-intensity distribution analysis and its application in biomolecular detection technology. Proc. Natl. Acad. Sci. USA 1999, 96, 13756–13761. [Google Scholar] [CrossRef]
- Nasr, M.L.; Singh, S.K. Radioligand binding to nanodisc-reconstituted membrane transporters assessed by the scintillation proximity assay. Biochemistry 2013, 53, 4–6. [Google Scholar] [CrossRef]
- Cooper, M.A. Biosensor profiling of molecular interactions in pharmacology. Curr. Opin. Pharmacol. 2003, 3, 557–562. [Google Scholar] [CrossRef]
- Cooper, M.A. Optical biosensors in drug discovery. Nat. Rev. Drug Discov. 2002, 1, 515–528. [Google Scholar] [CrossRef]
- Perumal, V.; Hashim, U. Advances in biosensors: Principle, architecture and applications. J. Appl. Biomed. 2014, 12, 1–15. [Google Scholar] [CrossRef]
- Keusgen, M. Biosensors: New approaches in drug discovery. Naturwissenschaften 2002, 89, 433–444. [Google Scholar] [CrossRef]
- Conroy, P.J.; Hearty, S.; Leonard, P.; O’Kennedy, R.J. Antibody production, design and use for biosensor-based applications. Semin. Cell Dev. Biol. 2009, 20, 10–26. [Google Scholar] [CrossRef]
- Pejcic, B.; de Marco, R. Impedance spectroscopy: Over 35 years of electrochemical sensor optimization. Electrochim. Acta 2006, 51, 6217–6229. [Google Scholar] [CrossRef]
- D’Orazio, P. Biosensors in clinical chemistry. Clin. Chim. Acta 2003, 334, 41–69. [Google Scholar] [CrossRef]
- Garcia-Galan, C.; Berenguer-Murcia, Á.; Fernandez-Lafuente, R.; Rodrigues, R.C. Potential of different enzyme immobilization strategies to improve enzyme performance. Adv. Synth. Catal. 2011, 353, 2885–2904. [Google Scholar] [CrossRef]
- Stepankova, V.; Bidmanova, S.; Koudelakova, T.; Prokop, Z.; Chaloupkova, R.; Damborsky, J. Strategies for stabilization of enzymes in organic solvents. ACS Catal. 2013, 3, 2823–2836. [Google Scholar] [CrossRef]
- Yu, X.; Chattopadhyay, D.; Galeska, I.; Papadimitrakopoulos, F.; Rusling, J.F. Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes. Electrochem. Commun. 2003, 5, 408–411. [Google Scholar] [CrossRef]
- Yan, J.; Pan, G.; Li, L.; Quan, G.; Ding, C.; Luo, A. Adsorption, immobilization, and activity of β-glucosidase on different soil colloids. J. Colloid Interface Sci. 2010, 348, 565–570. [Google Scholar]
- Barhoumi, H.; Maaref, A.; Cosnier, S.; Martelet, C.; Jaffrezic-Renault, N. Urease immobilization on biotinylated polypyrrole coated ChemFEC devices for urea biosensor development. IRBM 2008, 29, 192–201. [Google Scholar] [CrossRef]
- Shen, Q.; Yang, R.; Hua, X.; Ye, F.; Zhang, W.; Zhao, W. Gelatin-templated biomimetic calcification for β-galactosidase immobilization. Process Biochem. 2011, 46, 1565–1571. [Google Scholar] [CrossRef]
- Barsan, M.M.; Brett, C. A new modified conducting carbon composite electrode as sensor for ascorbate and biosensor for glucose. Bioelectrochemistry 2009, 76, 135–140. [Google Scholar] [CrossRef]
- Rodrigues, R.C.; Ortiz, C.; Berenguer-Murcia, Á.; Torres, R.; Fernández-Lafuente, R. Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev. 2013, 42, 6290–6307. [Google Scholar] [CrossRef]
- Barbosa, O.; Torres, R.; Ortiz, C.; Berenguer-Murcia, Á.; Rodrigues, R.C.; Fernandez-Lafuente, R. Heterofunctional supports in enzyme immobilization: From traditional immobilization protocols to opportunities in tuning enzyme properties. Biomacromolecules 2013, 14, 2433–2462. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, K.; Fernandez-Lafuente, R. Control of protein immobilization: Coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. Enzym. Microb. Techchnol. 2011, 48, 107–122. [Google Scholar] [CrossRef]
- Hwang, E.T.; Gu, M.B. Enzyme stabilization by nano/microsized hybrid materials. Eng. Life Sci. 2013, 13, 49–61. [Google Scholar] [CrossRef]
- Findlay, J.B.; Tang, L.; Whyteside, G. Yeast-Based Biosensors and Their Incorporation of Mammalian Protein Receptors for High-Throughput Screening. In Handbook of Biosensors and Biochips; John Wiley and Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Zhao, Z.; Jiang, H. Enzyme-based electrochemical biosensors. In Biosensors; Serra, P.A., Ed.; Intech: Vukovar, Croatia, 2010. [Google Scholar]
- Thust, M.; Schöning, M.; Vetter, J.; Kordos, P.; Lüth, H. A long-term stable penicillin-sensitive potentiometric biosensor with enzyme immobilized by heterobifunctional cross-linking. Anal. Chim. Acta 1996, 323, 115–121. [Google Scholar] [CrossRef]
- Švorc, L.; Sochr, J.; Rievaj, M.; Tomčík, P.; Bustin, D. Voltammetric determination of penicillin V in pharmaceutical formulations and human urine using a boron-doped diamond electrode. Bioelectrochemistry 2012, 88, 36–41. [Google Scholar] [CrossRef]
- Poghossian, A.; Schöning, M.; Schroth, P.; Simonis, A.; Lüth, H. An ISFET-based penicillin sensor with high sensitivity, low detection limit and long lifetime. Sens. Actuators B-Chem. 2001, 76, 519–526. [Google Scholar] [CrossRef]
- Poghossian, A.; Thust, M.; Schöning, M.; Müller-Veggian, M.; Kordos, P.; Lüth, H. Cross-sensitivity of a capacitive penicillin sensor combined with a diffusion barrier. Sens. Actuators B-Chem. 2000, 68, 260–265. [Google Scholar] [CrossRef]
- Wu, Y.; Tang, L.; Huang, L.; Han, Z.; Wang, J.; Pan, H. A low detection limit penicillin biosensor based on single graphene nanosheets preadsorbed with hematein/ionic liquids/penicillinase. Mat. Sci. Eng. C-Mater. 2014, 39, 92–99. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; Di, J.; Tu, Y. Electrodeposition of gold nanoparticles on indium/tin oxide electrode for fabrication of a disposable hydrogen peroxide biosensor. Talanta 2009, 77, 1454–1459. [Google Scholar] [CrossRef]
- Ferreira, M.; Fiorito, P.A.; Oliveira, O.N., Jr.; de Torresi, S.I.C. Enzyme-mediated amperometric biosensors prepared with the Layer-by-Layer (LbL) adsorption technique. Biosens. Bioelectron. 2004, 19, 1611–1615. [Google Scholar] [CrossRef]
- Liu, S.N.; Yin, Y.J.; Cai, C.X. Immobilization and characterization of glucose oxidase on single-walled carbon nanotubes and its application to sensing glucose. Chin. J. Chem. 2007, 25, 439–447. [Google Scholar] [CrossRef]
- Zhang, J.; Shan, D.; Mu, S. Improvement in selectivity and storage stability of a choline biosensor fabricated from poly (aniline-co-o-aminophenol). Front. Biosci. 2007, 12, 783–790. [Google Scholar] [CrossRef]
- Sharma, S.K.; Singhal, R.; Malhotra, B.; Sehgal, N.; Kumar, A. Langmuir-blodgett film based biosensor for estimation of galactose in milk. Electrochim. Acta 2004, 49, 2479–2485. [Google Scholar] [CrossRef]
- Rahman, M.; Shiddiky, M.J.; Rahman, M.A.; Shim, Y.-B. A lactate biosensor based on lactate dehydrogenase/nictotinamide adenine dinucleotide (oxidized form) immobilized on a conducting polymer/multiwall carbon nanotube composite film. Anal. Biochem. 2009, 384, 159–165. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Tian, R.H.; Zhi, J.F. Amperometric biosensor based on tyrosinase immobilized on a boron-doped diamond electrode. Biosens. Bioelectron. 2007, 22, 822–828. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhi, J. Development of an amperometric biosensor based on covalent immobilization of tyrosinase on a boron-doped diamond electrode. Electrochem. Commun. 2006, 8, 1811–1816. [Google Scholar] [CrossRef]
- Bisht, V.; Takashima, W.; Kaneto, K. An amperometric urea biosensor based on covalent immobilization of urease onto an electrochemically prepared copolymer poly (N-3-aminopropyl pyrrole-co-pyrrole) film. Biomaterials 2005, 26, 3683–3690. [Google Scholar] [CrossRef]
- Bozgeyik, İ.; Şenel, M.; Çevik, E.; Abasıyanık, M.F. A novel thin film amperometric urea biosensor based on urease-immobilized on poly (N-glycidylpyrrole-co-pyrrole). Curr. Appl. Phys. 2011, 11, 1083–1088. [Google Scholar] [CrossRef]
- Kong, T.; Chen, Y.; Ye, Y.; Zhang, K.; Wang, Z.; Wang, X. An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes. Sens. Actuators B-Chem. 2009, 138, 344–350. [Google Scholar] [CrossRef]
- Yonemori, Y.; Takahashi, E.; Ren, H.; Hayashi, T.; Endo, H. Biosensor system for continuous glucose monitoring in fish. Anal. Chim. Acta 2009, 633, 90–96. [Google Scholar] [CrossRef]
- Basu, A.K.; Chattopadhyay, P.; Roychudhuri, U.; Chakraborty, R. A biosensor based on co-immobilized l-glutamate oxidase and l-glutamate dehydrogenase for analysis of monosodium glutamate in food. Biosens. Bioelectron. 2006, 21, 1968–1972. [Google Scholar] [CrossRef]
- Ganesana, M.; Istarnboulie, G.; Marty, J.-L.; Noguer, T.; Andreescu, S. Site-specific immobilization of a (His) 6-tagged acetylcholinesterase on nickel nanoparticles for highly sensitive toxicity biosensors. Biosens. Bioelectron. 2011, 30, 43–48. [Google Scholar] [CrossRef]
- Zhu, L.; Yang, R.; Zhai, J.; Tian, C. Bienzymatic glucose biosensor based on co-immobilization of peroxidase and glucose oxidase on a carbon nanotubes electrode. Biosens. Bioelectron. 2007, 23, 528–535. [Google Scholar] [CrossRef]
- Valdés-Ramírez, G.; Cortina, M.; Ramírez-Silva, M.T.; Marty, J.-L. Acetylcholinesterase-based biosensors for quantification of carbofuran, carbaryl, methylparaoxon, and dichlorvos in 5% acetonitrile. Anal. Bioanal. Chem. 2008, 392, 699–707. [Google Scholar] [CrossRef]
- Salimi, A.; Compton, R.G.; Hallaj, R. Glucose biosensor prepared by glucose oxidase encapsulated sol-gel and carbon-nanotube-modified basal plane pyrolytic graphite electrode. Anal. Biochem. 2004, 333, 49–56. [Google Scholar] [CrossRef]
- Lee, C.-A.; Tsai, Y.-C. Preparation of multiwalled carbon nanotube-chitosan-alcohol dehydrogenase nanobiocomposite for amperometric detection of ethanol. Sens. Actuators B-Chem. 2009, 138, 518–523. [Google Scholar] [CrossRef]
- Fritzen-Garcia, M.B.; Oliveira, I.R.W.; Zanetti-Ramos, B.G.; Fatibello-Filho, O.; Soldi, V.; Pasa, A.A.; Creczynski-Pasa, T.B. Carbon paste electrode modified with pine kernel peroxidase immobilized on pegylated polyurethane nanoparticles. Sens. Actuators B-Chem. 2009, 139, 570–575. [Google Scholar] [CrossRef]
- Tembe, S.; Karve, M.; Inamdar, S.; Haram, S.; Melo, J.; D’Souza, S.F. Development of electrochemical biosensor based on tyrosinase immobilized in composite biopolymeric film. Anal. Biochem. 2006, 349, 72–77. [Google Scholar] [CrossRef]
- Salinas-Castillo, A.; Pastor, I.; Mallavia, R.; Mateo, C.R. Immobilization of a trienzymatic system in a sol–gel matrix: A new fluorescent biosensor for xanthine. Biosens. Bioelectron. 2008, 24, 1053–1056. [Google Scholar] [CrossRef]
- Nordin, H.; Jungnelius, M.; Karlsson, R.; Karlsson, O.P. Kinetic studies of small molecule interactions with protein kinases using biosensor technology. Anal. Biochem. 2005, 340, 359–368. [Google Scholar] [CrossRef]
- Ou, L.-J.; Jin, P.-Y.; Chu, X.; Jiang, J.-H.; Yu, R.-Q. Sensitive and visual detection of sequence-specific DNA-binding protein via a gold nanoparticle-based colorimetric biosensor. Anal. Chem. 2010, 82, 6015–6024. [Google Scholar] [CrossRef]
- Lu, L.-M.; Zhang, X.-B.; Kong, R.-M.; Yang, B.; Tan, W. A ligation-triggered DNAzyme cascade for amplified fluorescence detection of biological small molecules with zero-background signal. J. Am. Chem. Soc. 2011, 133, 11686–11691. [Google Scholar] [CrossRef]
- Narciso, J.E.T.; Uy, I.D.C.; Cabang, A.B.; Chavez, J.F.C.; Pablo, J.L.B.; Padilla-Concepcion, G.P.; Padlan, E.A. Analysis of the antibody structure based on high-resolution crystallographic studies. New Biotechnol. 2011, 28, 435–447. [Google Scholar] [CrossRef]
- Grogan, C.; Raiteri, R.; O’Connor, G.; Glynn, T.; Cunningham, V.; Kane, M.; Charlton, M.; Leech, D. Characterisation of an antibody coated microcantilever as a potential immuno-based biosensor. Biosen. Bioelectron. 2002, 17, 201–207. [Google Scholar] [CrossRef]
- Holford, T.R.; Davis, F.; Higson, S.P. Recent trends in antibody based sensors. Biosens. Bioelectron. 2012, 34, 12–24. [Google Scholar] [CrossRef]
- Luong, J.H.; Male, K.B.; Glennon, J.D. Biosensor technology: Technology push versus market pull. Biotechnol. Adv. 2008, 26, 492–500. [Google Scholar] [CrossRef]
- Cimitan, S.; Lindgren, M.T.; Bertucci, C.; Danielson, U.H. Early absorption and distribution analysis of antitumor and anti-AIDS drugs: Lipid membrane and plasma protein interactions. J. Med. Chem. 2005, 48, 3536–3546. [Google Scholar] [CrossRef]
- Frostell-Karlsson, Å.; Remaeus, A.; Roos, H.; Andersson, K.; Borg, P.; Hämäläinen, M.; Karlsson, R. Biosensor analysis of the interaction between immobilized human serum albumin and drug compounds for prediction of human serum albumin binding levels. J. Med. Chem. 2000, 43, 1986–1992. [Google Scholar] [CrossRef]
- Karlsson, R.; Kullman-Magnusson, M.; Hämäläinen, M.D.; Remaeus, A.; Andersson, K.; Borg, P.; Gyzander, E.; Deinum, J. Biosensor analysis of drug–target interactions: Direct and competitive binding assays for investigation of interactions between thrombin and thrombin inhibitors. Anal. Biochem. 2000, 278, 1–13. [Google Scholar] [CrossRef]
- Bean, P.; Patnaik, M.; Graziano, F.; Aziz, D. Therapeutic drug monitoring of antiretroviral agents. Am. Clin. Lab. 2000, 19, 20–22. [Google Scholar]
- Zhang, L.; Jiang, X.; Wang, E.; Dong, S. Attachment of gold nanoparticles to glassy carbon electrode and its application for the direct electrochemistry and electrocatalytic behavior of hemoglobin. Biosens. Bioelectron. 2005, 21, 337–345. [Google Scholar] [CrossRef]
- Lanzellotto, C.; Favero, G.; Antonelli, M.; Tortolini, C.; Cannistraro, S.; Coppari, E.; Mazzei, F. Nanostructured enzymatic biosensor based on fullerene and gold nanoparticles: Preparation, characterization and analytical applications. Biosens. Bioelectron. 2014, 55, 430–437. [Google Scholar] [CrossRef]
- Guo, S.; Wang, E. Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors. Nano Today 2011, 6, 240–264. [Google Scholar] [CrossRef]
- Yang, M.; Yang, Y.; Liu, Y.; Shen, G.; Yu, R. Platinum nanoparticles-doped sol–gel/carbon nanotubes composite electrochemical sensors and biosensors. Biosens. Bioelectron. 2006, 21, 1125–1131. [Google Scholar] [CrossRef]
- Ju, H.; Liu, S.; Ge, B.; Lisdat, F.; Scheller, F.W. Electrochemistry of cytochrome c immobilized on colloidal gold modified carbon paste electrodes and its electrocatalytic activity. Electroanalysis 2002, 14, 141–147. [Google Scholar] [CrossRef]
- Liu, S.; Ju, H. Electrocatalysis via direct electrochemistry of myoglobin immobilized on colloidal gold nanoparticles. Electroanalysis 2003, 15, 1488–1493. [Google Scholar] [CrossRef]
- Zhao, J.; Henkens, R.W.; Stonehuerner, J.; O’Daly, J.P.; Crumbliss, A.L. Direct electron transfer at horseradish peroxidase—Colloidal gold modified electrodes. J. Electroanal. Chem. 1992, 327, 109–119. [Google Scholar] [CrossRef]
- El-Deab, M.S.; Ohsaka, T. Direct electron transfer of copper-zinc superoxide dismutase (SOD) on crystallographically oriented Au nanoparticles. Electrochem. Commun. 2007, 9, 651–656. [Google Scholar] [CrossRef]
- Murata, K.; Kajiya, K.; Nakamura, N.; Ohno, H. Direct electrochemistry of bilirubin oxidase on three-dimensional gold nanoparticle electrodes and its application in a biofuel cell. Energy Environ. Sci. 2009, 2, 1280–1285. [Google Scholar] [CrossRef]
- Dagys, M.; Haberska, K.; Shleev, S.; Arnebrant, T.; Kulys, J.; Ruzgas, T. Laccase-gold nanoparticle assisted bioelectrocatalytic reduction of oxygen. Electrochem. Commun. 2010, 12, 933–935. [Google Scholar] [CrossRef]
- Salamon, Z.; Macleod, H.A.; Tollin, G. Coupled plasmon-waveguide resonators: A new spectroscopic tool for probing proteolipid film structure and properties. Biophys. J. 1997, 73, 2791–2797. [Google Scholar] [CrossRef]
- Wegner, G.J.; Lee, H.J.; Corn, R.M. Characterization and optimization of peptide arrays for the study of epitope-antibody interactions using surface plasmon resonance imaging. Anal. Chem. 2002, 74, 5161–5168. [Google Scholar] [CrossRef]
- He, H.; Xu, X.; Wu, H.; Jin, Y. Enzymatic plasmonic engineering of Ag/Au bimetallic nanoshells and their use for sensitive optical glucose sensing. Adv. Mater. 2012, 24, 1736–1740. [Google Scholar] [CrossRef]
- Retra, K.; Irth, H.; van Muijlwijk-Koezen, J.E. Surface Plasmon Resonance biosensor analysis as a useful tool in FBDD. Drug Discov. Today Technol. 2010, 7, e181–e187. [Google Scholar] [CrossRef]
- Ren, X.; Meng, X.; Chen, D.; Tang, F.; Jiao, J. Using silver nanoparticle to enhance current response of biosensor. Biosens. Bioelectron. 2005, 21, 433–437. [Google Scholar] [CrossRef]
- Abel, B.; Aslan, K. Immobilization of enzymes to silver island films for enhanced enzymatic activity. J. Colloid Interf. Sci. 2014, 415, 133–142. [Google Scholar] [CrossRef]
- Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef]
- Wang, J. Amperometric biosensors for clinical and therapeutic drug monitoring: A review. J. Pharmaceut. Biomed. 1999, 19, 47–53. [Google Scholar] [CrossRef]
- Castillo, J.; Gáspár, S.; Leth, S.; Niculescu, M.; Mortari, A.; Bontidean, I.; Soukharev, V.; Dorneanu, S.; Ryabov, A.; Csöregi, E. Biosensors for life quality: Design, development and applications. Sens. Actuators B-Chem. 2004, 102, 179–194. [Google Scholar] [CrossRef]
- Zhang, L.-Y.; Liu, Y.-J. Label-free amperometric immunosensor based on prussian blue as artificial peroxidase for the detection of methamphetamine. Anal. Chim. Acta 2014, 806, 204–209. [Google Scholar] [CrossRef]
- Conzuelo, F.; Campuzano, S.; Gamella, M.; Pinacho, D.G.; Reviejo, A.J.; Marco, M.P.; Pingarrón, J.M. Integrated disposable electrochemical immunosensors for the simultaneous determination of sulfonamide and tetracycline antibiotics residues in milk. Biosens. Bioelectron. 2013, 50, 100–105. [Google Scholar] [CrossRef]
- Chen, J.; Yan, F.; Du, D.; Wu, J.; Ju, H. Electrochemical Immunoassay of human chorionic gonadotrophin based on its immobilization in gold nanoparticles-chitosan membrane. Electroanalysis 2006, 18, 670–676. [Google Scholar] [CrossRef]
- Tan, F.; Yan, F.; Ju, H. Sensitive reagentless electrochemical immunosensor based on an ormosil sol–gel membrane for human chorionic gonadotrophin. Biosens. Bioelectron. 2007, 22, 2945–2951. [Google Scholar] [CrossRef]
- Grennan, K.; Strachan, G.; Porter, A.J.; Killard, A.J.; Smyth, M.R. Atrazine analysis using an amperometric immunosensor based on single-chain antibody fragments and regeneration-free multi-calibrant measurement. Anal. Chim. Acta 2003, 500, 287–298. [Google Scholar] [CrossRef]
- Sanvicens, N.; Mannelli, I.; Salvador, J.; Valera, E.; Marco, M. Biosensors for pharmaceuticals based on novel technology. Trac-Trend. Anal. Chem. 2011, 30, 541–553. [Google Scholar] [CrossRef]
- Kim, D.-M.; Rahman, M.A.; Do, M.H.; Ban, C.; Shim, Y.-B. An amperometric chloramphenicol immunosensor based on cadmium sulfide nanoparticles modified-dendrimer bonded conducting polymer. Biosens. Bioelectron. 2010, 25, 1781–1788. [Google Scholar] [CrossRef]
- Júnior, R.L.; de Oliveira Neto, G.; Fernandes, R.J.; Kubota, T.L. Determination of salicylate in blood serum using an amperometric biosensor based on salicylate hydroxylase immobilized in a polypyrrole-glutaraldehyde matrix. Talanta 2000, 51, 547–557. [Google Scholar] [CrossRef]
- Martı́n, C.; Domı́nguez, E. A new enzyme electrode for quantification of salicylic acid in a FIA system. J. Pharm. Biomed. 1999, 19, 107–113. [Google Scholar] [CrossRef]
- Cui, Y.; Barford, J.P.; Renneberg, R. Amperometric trienzyme ATP biosensors based on the coimmobilization of salicylate hydroxylase, glucose-6-phosphate dehydrogenase, and hexokinase. Sens. Actuators B-Chem. 2008, 132, 1–4. [Google Scholar] [CrossRef]
- Sanghavi, B.J.; Srivastava, A.K. Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode. Electrochim. Acta 2010, 55, 8638–8648. [Google Scholar] [CrossRef]
- González-Sánchez, M.; Rubio-Retama, J.; López-Cabarcos, E.; Valero, E. Development of an acetaminophen amperometric biosensor based on peroxidase entrapped in polyacrylamide microgels. Biosens. Bioelectron. 2011, 26, 1883–1889. [Google Scholar] [CrossRef]
- Messina, G.A.; de Vito, I.E.; Raba, J. On-line microfluidic sensor integrated with an enzyme-modified pre-cell for the monitoring of paracetamol in pharmaceutical samples. Anal. Chim. Acta 2006, 559, 152–158. [Google Scholar] [CrossRef]
- Du, D.; Chen, S.; Cai, J.; Song, D. Comparison of drug sensitivity using acetylcholinesterase biosensor based on nanoparticles–chitosan sol–gel composite. J. Electroanal. Chem. 2007, 611, 60–66. [Google Scholar] [CrossRef]
- Schneider, E.; Clark, D.S. Cytochrome P450 (CYP) enzymes and the development of CYP biosensors. Biosens. Bioelectron. 2013, 39, 1–13. [Google Scholar] [CrossRef]
- Bistolas, N.; Wollenberger, U.; Jung, C.; Scheller, F.W. Cytochrome P450 biosensors—A review. Biosens. Bioelectron. 2005, 20, 2408–2423. [Google Scholar] [CrossRef]
- Panicco, P.; Dodhia, V.R.; Fantuzzi, A.; Gilardi, G. Enzyme-based amperometric platform to determine the polymorphic response in drug metabolism by cytochromes P450. Anal. Chem. 2011, 83, 2179–2186. [Google Scholar] [CrossRef]
- Baj-Rossi, C.; Rezzonico Jost, T.; Cavallini, A.; Grassi, F.; de Micheli, G.; Carrara, S. Continuous monitoring of Naproxen by a cytochrome P450-based electrochemical sensor. Biosens. Bioelectron. 2014, 53, 283–287. [Google Scholar] [CrossRef]
- Ameer, Q.; Adeloju, S.B. Development of a potentiometric catechol biosensor by entrapment of tyrosinase within polypyrrole film. Sens. Actuators B-Chem. 2009, 140, 5–11. [Google Scholar] [CrossRef]
- Lawal, A.T.; Adeloju, S.B. Polypyrrole based amperometric and potentiometric phosphate biosensors: A comparative study B. Biosen. Bioelectron. 2013, 40, 377–384. [Google Scholar] [CrossRef]
- Mataveli, L.R.V.; de Jesus Antunes, N.; Brigagão, M.R.P.L.; de Magalhães, C.S.; Wisniewski, C.; Luccas, P.O. Evaluation of a simple and low cost potentiometric biosensor for pharmaceutical and in vivo adrenaline determination. Biosens. Bioelectron. 2010, 26, 798–802. [Google Scholar] [CrossRef]
- Cuartero, M.; García, M.S.; García-Cánovas, F.; Ortuño, J.Á. New approach for the potentiometric-enzymatic assay of reversible-competitive enzyme inhibitors. Application to acetylcholinesterase inhibitor galantamine and its determination in pharmaceuticals and human urine. Talanta 2013, 110, 8–14. [Google Scholar] [CrossRef]
- Huber, W.; Mueller, F. Biomolecular interaction analysis in drug discovery using surface plasmon resonance technology. Curr. Pharm. Des. 2006, 12, 3999–4021. [Google Scholar] [CrossRef]
- Myszka, D.G.; Rich, R.L. Implementing surface plasmon resonance biosensors in drug discovery. Pharm. Sci. Technol. Today 2000, 3, 310–317. [Google Scholar] [CrossRef]
- Karlsson, R. SPR for molecular interaction analysis: A review of emerging application areas. J. Mol. Recognit. 2004, 17, 151–161. [Google Scholar] [CrossRef]
- Milkani, E.; Lambert, C.R.; McGimpsey, W.G. Direct detection of acetylcholinesterase inhibitor binding with an enzyme-based surface plasmon resonance sensor. Anal. Biochem. 2011, 408, 212–219. [Google Scholar] [CrossRef]
- Markgren, P.-O.; Schaal, W.; Hämäläinen, M.; Karlén, A.; Hallberg, A.; Samuelsson, B.; Danielson, U.H. Relationships between structure and interaction kinetics for HIV-1 protease inhibitors. J. Med. Chem. 2002, 45, 5430–5439. [Google Scholar] [CrossRef]
- Kumar, S.; Boehm, J.; Lee, J.C. p38 MAP kinases: Key signalling molecules as therapeutic targets for inflammatory diseases. Nat. Rev. Drug Discov. 2003, 2, 717–726. [Google Scholar] [CrossRef]
- Das, A.; Zhao, J.; Schatz, G.C.; Sligar, S.G.; van Duyne, R.P. Screening of type I and II drug binding to human cytochrome P450–3A4 in nanodiscs by localized surface plasmon resonance spectroscopy. Anal. Chem. 2009, 81, 3754–3759. [Google Scholar] [CrossRef]
- Gaudin, V.; Maris, P. Development of a biosensor-based immunoassay for screening of chloramphenicol residues in milk. Food Agric. Immunol. 2001, 13, 77–86. [Google Scholar] [CrossRef]
- DiPilato, L.M.; Zhang, J. Fluorescent protein-based biosensors: Resolving spatiotemporal dynamics of signaling. Curr. Opin. Chem. Biol. 2010, 14, 37–42. [Google Scholar] [CrossRef]
- Morris, M.C. Fluorescent biosensors—Probing protein kinase function in cancer and drug discovery. BBA-Proteins Proteomics 2013, 1834, 1387–1395. [Google Scholar] [CrossRef]
- Sosa-Peinado, A.; González-Andrade, M. Fluorescent Biosensors for Protein Interactions and Drug Discovery. In Biosensors for Health, Environment and Biosecurity; Serra, P.A., Ed.; InTech: Vukovar, Croatia, 2011. [Google Scholar]
- Ueda, H.; Dong, J. From fluorescence polarization to quenchbody: Recent Progress in fluorescent reagentless biosensors based on antibody and other binding proteins. BBA-Proteins Proteomics 2014. [Google Scholar] [CrossRef]
- González-Andrade, M.; Rivera-Chávez, J.; Sosa-Peinado, A.; Figueroa, M.; Rodríguez-Sotres, R.; Mata, R. Development of the fluorescent biosensor h calmodulin (h CaM) L39C-monobromobimane (mBBr)/V91C-mBBr, a novel tool for discovering new calmodulin Inhibitors and detecting calcium. J. Med. Chem. 2011, 54, 3875–3884. [Google Scholar] [CrossRef]
- Muriano, A.; Thayil, K.; Salvador, J.; Loza-Alvarez, P.; Soria, S.; Galve, R.; Marco, M. Two-photon fluorescent immunosensor for androgenic hormones using resonant grating waveguide structures. Sens. Actuators B-Chem. 2012, 174, 394–401. [Google Scholar] [CrossRef]
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Gonçalves, A.M.; Pedro, A.Q.; Santos, F.M.; Martins, L.M.; Maia, C.J.; Queiroz, J.A.; Passarinha, L.A. Trends in Protein-Based Biosensor Assemblies for Drug Screening and Pharmaceutical Kinetic Studies. Molecules 2014, 19, 12461-12485. https://doi.org/10.3390/molecules190812461
Gonçalves AM, Pedro AQ, Santos FM, Martins LM, Maia CJ, Queiroz JA, Passarinha LA. Trends in Protein-Based Biosensor Assemblies for Drug Screening and Pharmaceutical Kinetic Studies. Molecules. 2014; 19(8):12461-12485. https://doi.org/10.3390/molecules190812461
Chicago/Turabian StyleGonçalves, Ana M., Augusto Q. Pedro, Fátima M. Santos, Luís M. Martins, Cláudio J. Maia, João A. Queiroz, and Luís A. Passarinha. 2014. "Trends in Protein-Based Biosensor Assemblies for Drug Screening and Pharmaceutical Kinetic Studies" Molecules 19, no. 8: 12461-12485. https://doi.org/10.3390/molecules190812461
APA StyleGonçalves, A. M., Pedro, A. Q., Santos, F. M., Martins, L. M., Maia, C. J., Queiroz, J. A., & Passarinha, L. A. (2014). Trends in Protein-Based Biosensor Assemblies for Drug Screening and Pharmaceutical Kinetic Studies. Molecules, 19(8), 12461-12485. https://doi.org/10.3390/molecules190812461