Magnetite Nanostructures as Novel Strategies for Anti-Infectious Therapy
Abstract
:1. Introduction
Antibiotic-Resistant Bacteria | Number of Cases of Infection * | Number of Extra Deaths | Number of Extra Hospital Days |
---|---|---|---|
Antibiotic-resistant Gram-positive bacteria | |||
Methicillin-resistant Staphylococcus aureus (MRSA) | 171,200 (12%) | 5400 (37%) | 1,050,000 (16%) |
Vancomycin-resistant Enterococcus faecium | 18,100 (9%) | 1500 (28%) | 111,000 (22%) |
Penicillin-resistant Streptococcus pneumoniae | 3500 (27%) | Not calculable | Not calculable |
Sub-total | 192,800 (12%) | 6900 (35%) | 1,161,000 (16%) |
Antibiotic-resistant Gram-negative bacteria | |||
Third-generation cephalosporin-resistant Escherichia coli | 32,500 (27%) | 5100 (52%) | 358,000 (27%) |
Third-generation cephalosporin-resistant Klebsiella pneumoniae | 18,900 (27%) | 2900 (52%) | 208,000 (27%) |
Carbapenem-resistant Pseudomonas aeruginosae | 141,900 (3%) | 10,200 (7%) | 809,000 (3%) |
Sub-total | 193,300 (9%) | 18,200 (27%) | 1,375,000 (13%) |
Total | 386,100 (11%) | 25,100 (29%) | 2,536,000 (14%) |
1930s | 1940s | 1950s | 1960s | 1970s | 1980s | 1990s | 2000s |
---|---|---|---|---|---|---|---|
Sulfonamides | Beta-lactams * | Glycopeptides | Lincosamides | Trimethoprim | Oxazolidinones | ||
Aminoglycosides | Chloramphenicol | Quinolones | Lipopeptides | ||||
Tetracyclines | Streptogramins | ||||||
Macrolides |
2. Antimicrobial Approaches Based on Nanotechnology
3. Magnetite Nanoparticles Used in Biomedical Applications
4. Functionalized Magnetite Nanoparticles to Treat Infections
4.1. MNPs to Inhibit Yeasts
4.1.1. Candida albicans
4.1.2. Candida tropicalis
4.1.3. Candida krusei
4.1.4. Candida glabrata
4.1.5. Saccharomyces cerevisiae
Type of Nanoparticles | Altered Microbial Phenotype | Bacteria Species | Reference |
---|---|---|---|
MNPs/Rosmarinus officinalis | Adherence, biofilm formation | Candida albicans | [38] |
MNPs/Ag/chitosan | Adherence, biofilm formation | Candida albicans | [39] |
MNPs/chitosan/nystatin | Growth on solid media | Candida albicans | [40] |
MNPs/Rosmarinus officinalis | Adherence, biofilm formation | Candida tropicalis | [38] |
MNPs/chitosan/nystatin | Growth rate | Candida tropicalis | [39] |
MNPs/Anethum graveolens | Adherence, biofilm formation | Candida krusei | [12] |
MNPs/dextran | Growth | Candida krusei | [41] |
MNPs/Anethum graveolens | Adherence, biofilm formation | Candida glabrata | [12] |
MNPs/oleic acids | Adherence, biofilm formation | Saccharomyces cerevisiae | [42] |
MNPs/Ag/chitosan | Growth | Candida parapsilosis | [39] |
4.2. MNPs to Inhibit Bacteria
4.2.1. Escherichia coli
4.2.2. Staphylococcus aureus
4.2.3. Pseudomonas aeruginosa
4.2.4. Enterococcus faecalis
Type of Nanoparticles | Altered Microbial Phenotype | Bacteria Species | Reference | ||||
---|---|---|---|---|---|---|---|
MNPs/chitosan/cephalosporins | Viability, growth | Escherichia coli | [25] | ||||
MNPs/Ag/chitosan | Viability, growth | Escherichia coli | [39] | ||||
Polyacrylamide doped MNPs | Viability | Escherichia coli | [43] | ||||
MNPs/Na-PGA | Viability, growth | Escherichia coli | [44] | ||||
MNPs stabilized with thioglycerol | Viability, growth | Escherichia coli | [45] | ||||
66 nm of iron oxide MNPs | Viability, growth Inhibition on solid media | Escherichia coli | [48] | ||||
Dextran coated MNPs | Viability, growth | Escherichia coli | [41] | ||||
MNPs/chitosa/aminoglycosides | Growth | Staphylococcus aureus | [27] | ||||
MNPs/chitosan/Cephalosporins | Viability, growth | Staphylococcus aureus | [25] | ||||
Spherical MNPs coated with eugenol | Adherence, biofilm formation | Staphylococcus aureus | [46] | ||||
MNPs/chitosan/ antibiotics (penicillins, macrolides, aminoglycosides, rifampicines quinolones) | Viability, growth | Staphylococcus aureus | [26] | ||||
MNPs/Ag/chitosan | Viability, growth | Staphylococcus aureus | [39] | ||||
MNPs stabilized with thioglycerol | Viability, growth | Staphylococcus aureus | [45] | ||||
66 nm of iron oxide MNPs | Viability, growth | Staphylococcus aureus | [48] | ||||
MNPs/chitosan/ aminoglycosides (kanamycin and neomycin) | Viability, growth | Pseudomonas aeruginosa | [27] | ||||
Spherical MNPs coated with eugenol | Adherence, biofilm formation | Pseudomonas aeruginosa | [46] | ||||
MNPs/chitosan/carboxymethylcellulose/antibiotics (penicillins, macrolides, aminoglycosides, rifampicines quinolones) | Viability, growth | Pseudomonas aeruginosa | [26] | ||||
MNPs/Ag/chitosan | Viability | Pseudomonas aeruginosa | [39] | ||||
MNPs stabilized with thioglycerol | Viability, growth | Pseudomonas aeruginosa | [45] | ||||
MNPs coated with vancomycin, penicillin and streptomycin | Adherence, biofilm formation | Enterococcus faecalis | [47] | ||||
MNPs/Ag/chitosan | Viability, growth | Enterococcus faecalis | [39] | ||||
dextran coated MNPs | Viability, growth | Enterococcus faecalis | [41] | ||||
MNPs/Ag/chitosan | Viability, growth | Staphylococcus epidermidis | [39] | ||||
66 nm of iron oxide MNPs | Growth inhibition on solid media | Staphylococcus epidermidis | [48] | ||||
MNPs/Ca-PGA | Viability, growth | Salmonella enteritidis | [44] | ||||
MNPs/Na-PGA | |||||||
MNPs/Ag/chitosan | Viability, growth | Klebsiella pneumoniae | [39] | ||||
MNPs coated with amino acids (l-arginine and l-lysine) | Viability, growth | Listeria monocytogenes | [49] | ||||
MNPs stabilized with thioglycerol | Viability, growth | Bacilus subtilis | [45] | ||||
66 nm of iron oxide MNPs | Viability, growth | Bacilus subtilis | [48] | ||||
66 nm of iron oxide MNPs | Viability, growth | Bacilus licheniformis | [48] | ||||
66 nm of iron oxide MNPs | Viability, growth | Bacilus brevis | [48] | ||||
66 nm of iron oxide MNPs | Viability, growth | Vibrio cholerae | [48] | ||||
66 nm of iron oxide MNPs | Viability, growth | Streptococcus aureus | [48] |
4.3. MNPs to Treat Respiratory Diseases
5. Conclusions and Perspectives
Acknowledgments
Conflicts of Interest
References
- The Evolving Threat of Antimicrobial Resistance-Options for Action; World Health Organization: Geneva, Switzerland, 2012; p. 120.
- Nordberg, P.; Monnet, D.L.; Cars, O. Antibacterial Drug Resistance (Background Document for the WHO Project: Priority Medicines for Europe and the World. “A Public Health Approach to Innovation”); WHO: Geneva, Switzerland, 2004. [Google Scholar]
- Norrby, R.; Powell, M.; Aronsson, B.; Monnet, D.L.; Lutsar, I.; Bocsan, I.S.; Cars, O.; Giamarellou, H.; Gyssens, I.C. The Bacterial Challenge: Time to React; ECDC/EMEA Joint Technical Report; European Centre for Disease Prevention and Control (ECDC) and European Medicines Agency (EMEA): Stockholm, Sweden, 2009. [Google Scholar]
- Qazi, S.; Weber, M.; Boschi-Pinto, C.; Cherian, T. Global Action Plan for the Prevention and Control of Pneumonia (GAPP): Report of an Informal Consultation; World Health Organization: Geneva, Switzerland, 2008. Available online: http://whqlibdoc.who.int/publications/2008/9789241596336_eng.pdf (accessed on 15 March 2014).
- WHO Global Strategy for Containment of Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2001. Available online: http://www.who.int/csr/resources/publications/drugresist/en/EGlobal_Strat.pdf (accessed on 15 March 2014).
- Singh, M.P.; Greenstein, M. Antibacterial leads from microbial natural products discovery. Curr. Opin. Drug Discov. Dev. 2000, 3, 167–176. [Google Scholar]
- Boa, A.N. Antibacterial and Antifungal Drugs. Department of Chemistry, University of Hull. Available online: http://www.hull.ac.uk/php/chsanb/BactWeb/Antiinfectives.pdf (accessed on 15 March 2014).
- Liakos, I.; Rizzello, L.; Bayer, I.S.; Pompa, P.P.; Cingolani, R.; Athanassiou, A. Controlled Antiseptic Release by Alginate Polymer Films and Beads. Carbohydr. Polym. 2013, 92, 176–183. [Google Scholar]
- Mazumdar, N.; Chikindas, M.L.; Ulrich, K. Slow Release Polymer-Iodine Tablets for Disinfection of Untreated Surface Water. J. Appl. Polym. Sci. 2010, 117, 329–334. [Google Scholar]
- Liakos, I.; Rizzello, L.; Scurr, D.J.; Pompa, P.P.; Bayer, I.S.; Athanassiou, A. All-natural composite wound dressing films of essential oils encapsulated in sodium alginate with antimicrobial properties. Int. J. Pharm. 2014, 463, 137–145. [Google Scholar] [CrossRef]
- Grumezescu, A.M. Essential oils and nanotechnology for combating microbial biofilms. Curr. Org. Chem. 2013, 17, 90–96. [Google Scholar]
- Saviuc, C.; Grumezescu, A.M.; Chifiriuc, C.M.; Mihaiescu, D.E.; Hristu, R.; Stanciu, G.; Oprea, E.; Radulescu, V.; Lazar, V. Hybrid Nanosystem for Stabilizing Essential Oils in Biomedical Applications. Dig. J. Nanomater. Biostruct. 2011, 6, 1657–1666. [Google Scholar]
- Common Side Effects, Allergies and Reactions to Antibiotics. Available online: http://www.drugs.com/article/antibiotic-sideeffects-allergies-reactions.html (accessed on 15 March 2014).
- Edris, A.E. Pharmaceutical and Therapeutic Potentials of Essential Oils and Their Individual Volatile Constituents: A Review. Phytother. Res. 2007, 21, 308–323. [Google Scholar]
- Inouye, S.; Takizawa, T.; Yamaguchi, H. Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J. Antimicrob. Chemother. 2001, 47, 565–573. [Google Scholar]
- Saviuc, C.; Holban, A.M.; Grumezescu, A.M.; Bleotu, C.; Banu, O.; Lazar, V.; Mihaiescu, D.E.; Chifiriuc, M.C. Testing antifungal activity of some essential oils using flow cytometry. Lett. Appl. Nanobiosci. 2012, 1, 67–71. [Google Scholar]
- Bose, S.; Du, Y.C.; Takhistov, P.; Michniak-Kohn, B. Formulation optimization and topical delivery of quercetin from solid lipid based nanosystems. Int. J. Pharm. 2013, 441, 56–66. [Google Scholar] [CrossRef]
- Fan, X.C.; Chen, J.J.; Shen, Q. Docetaxel-nicotinamide complex-loaded nanostructured lipid carriers for transdermal delivery. Int. J. Pharm. 2013, 458, 296–304. [Google Scholar] [CrossRef]
- Filippousi, M.; Papadimitriou, S.A.; Bikiaris, D.N.; Pavlidou, E.; Angelakeris, M.; Zamboulis, D.; Tian, H.; van Tendeloo, G. Novel core-shell magnetic nanoparticles for Taxol encapsulation in biodegradable and biocompatible block copolymers: Preparation, characterization and release properties. Int. J. Pharm. 2013, 448, 221–230. [Google Scholar] [CrossRef]
- Han, M.H.; Liu, X.L.; Guo, Y.F.; Wang, Y.H.; Wang, X.T. Preparation, characterization, biodistribution and antitumor efficacy of hydroxycamptothecin nanosuspensions. Int. J. Pharm. 2013, 455, 85–92. [Google Scholar] [CrossRef]
- He, W.; Lu, Y.; Qi, J.P.; Chen, L.Y.; Hu, F.Q.; Wu, W. Nanoemulsion-templated shell-crosslinked nanocapsules as drug delivery systems. Int. J. Pharm. 2013, 445, 69–78. [Google Scholar] [CrossRef]
- Huang, J.; Gou, G.J.; Xue, B.; Yan, Q.S.; Sun, Y.; Dong, L.E. Preparation and characterization of “dextran-magnetic layered double hydroxide- fluorouracil” targeted liposomes. Int. J. Pharm. 2013, 450, 323–330. [Google Scholar] [CrossRef]
- Yoo, D.; Guk, K.; Kim, H.; Khang, G.; Wu, D.; Lee, D. Antioxidant polymeric nanoparticles as novel therapeutics for airway inflammatory diseases. Int. J. Pharm. 2013, 450, 87–94. [Google Scholar] [CrossRef]
- Zheng, J.; Tian, X.J.; Sun, Y.F.; Lu, D.R.; Yang, W.L. pH-sensitive poly( glutamic acid) grafted mesoporous silica nanoparticles for drug delivery. Int. J. Pharm. 2013, 450, 296–303. [Google Scholar] [CrossRef]
- Chifiriuc, C.M.; Grumezescu, A.M.; Saviuc, C.; Croitoru, C.; Mihaiescu, D.E.; Lazar, V. Improved antibacterial activity of cephalosporins loaded in magnetic chitosan microspheres. Int. J. Pharm. 2012, 436, 201–205. [Google Scholar]
- Grumezescu, A.M.; Andronescu, E.; Ficai, A.; Bleotu, C.; Mihaiescu, D.E.; Chifiriuc, M.C. Synthesis, characterization and in vitro assessment of the magnetic chitosan–carboxymethylcellulose biocomposite interactions with the prokaryotic and eukaryotic cells. Int. J. Pharm. 2012, 436, 771–777. [Google Scholar]
- Grumezescu, A.M.; Andronescu, E.; Holban, A.M.; Ficai, A.; Ficai, D.; Voicu, G.; Grumezescu, V.; Balaure, P.C.; Chifiriuc, C.M. Water dispersible cross-linked magnetic chitosan beads for increasing the antimicrobial efficiency of aminoglycoside antibiotics. Int. J. Pharm. 2013, 454, 233–240. [Google Scholar]
- Pan, X.; Guan, J.; Yoo, J.-W.; Epstein, A.J.; Lee, L.J.; Lee, R.J. Cationic lipid-coated magnetic nanoparticles associated with transferrin for gene delivery. Int. J. Pharm. 2008, 358, 263–270. [Google Scholar]
- Wilczewska, A.Z.; Niemirowicz, K.; Markiewicz, K.H.; Car, H. Nanoparticles as drug delivery systems. Pharmacol. Rep. 2012, 64, 1020–1037. [Google Scholar]
- Zhang, L.; Gu, F.X.; Chan, J.M.; Wang, A.; Langer, R.; Farokhzad, O. Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Ther. 2008, 83, 761–769. [Google Scholar]
- Gelperina, S.; Kisich, K.; Iseman, M.D.; Heifets, L. The Potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am. J. Respir. Crit. Care Med. 2005, 172, 1487–1490. [Google Scholar]
- Baumgartner, J.; Bertinetti, L.; Widdrat, M.; Hirt, A.M.; Faivre, D. Formation of magnetite nanoparticles at low temperature: From superparamagnetic to stable single domain particles. PLoS One 2013, 8, e57070. [Google Scholar]
- Singh, R.K.; Kim, T.H.; Patel, K.D.; Knowles, J.C.; Kim, H.W. Biocompatible magnetite nanoparticles with varying silica-coating layer for use in biomedicine: Physicochemical and magnetic properties, and cellular compatibility. J. Biomed. Mater. Res. A 2012, 100, 1734–1742. [Google Scholar]
- Figuerola, A.; di Corato, R.; Manna, L.; Pellegrino, T. From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacol. Res. 2010, 62, 126–143. [Google Scholar]
- Chifiriuc, M.C.; Grumezescu, A.M.; Saviuc, C.; Hristu, R.; Grumezescu, V.; Bleotu, C.; Stanciu, G.; Mihaiescu, D.E.; Andronescu, E.; Lazar, V.; et al. Magnetic nanoparticles for controlling in vitro fungal biofilms. Curr. Org. Chem. 2013, 17, 1023–1028. [Google Scholar]
- Ho, J.; Al-Deen, F.M.N.; Al-Abboodi, A.; Selomulya, C.; Xiang, S.D.; Plebanski, M.; Forde, G.M. N,N'-Carbonyldiimidazole-mediated functionalization of superparamagnetic nanoparticles as vaccine carrier. Colloids Surf. B Biointerfaces 2011, 83, 83–90. [Google Scholar]
- Morozov, V.N.; Kanev, I.L.; Mikheev, A.Y.; Shlyapnikova, E.A.; Shlyapnikov, Y.M.; Nikitin, M.P.; Nikitin, P.I.; Nwabueze, A.O.; van Hoek, M.L. Generation and delivery of nanoaerosols from biological and biologically active substances. J. Aerosol Sci. 2014, 69, 48–61. [Google Scholar]
- Chifiriuc, C.; Grumezescu, V.; Grumezescu, A.M.; Saviuc, C.; Lazăr, V.; Andronescu, E. Hybrid magnetite nanoparticles/Rosmarinus officinalis essential oil nanobiosystem with antibiofilm activity. Nanoscale Res. Lett. 2012, 7, 209. [Google Scholar]
- Markova, Z.; Siskova, K.; Filip, J.; Safarova, K.; Prucek, R.; Panacek, A.; Kolar, M.; Zboril, R. Chitosan-based synthesis of magnetically-driven nanocomposites with biogenic magnetite core, controlled silver size, and high antimicrobial activity. Green Chem. 2012, 14, 2550–2558. [Google Scholar]
- Hussein-Al-Ali, S.H.; El Zowalaty, M.E.; Kura, A.U.; Geilich, B.; Fakurazi, S.; Webster, T.J.; Hussein, M.Z. Antimicrobial and controlled release studies of a novel nystatin conjugated iron oxide nanocomposite. BioMed Res. Int. 2014, 2014. [Google Scholar] [CrossRef]
- Iconaru, S.L.; Prodan, A.M.; Motelica-Heino, M.; Sizaret, S.; Predoi, D. Synthesis and characterization of polysaccharide-maghemite composite nanoparticles and their antibacterial properties. Nanoscale Res. Lett. 2012, 7, 576. [Google Scholar]
- Saviuc, C.; Grumezescu, A.M.; Chifiriuc, M.C.; Bleotu, C.; Stanciu, G.; Hristu, R.; Mihaiescu, D.E.; Lazar, V. In vitro methods for the study of microbial biofilms. Biointerface Res. Appl. Chem. 2011, 1, 31–40. [Google Scholar]
- Mukherje, M. In vitro antimicrobial activity of polyacrylamide doped magnetic iron oxide nanoparticles. Int. J. Mater. Mech. Manuf. 2014, 2, 64–66. [Google Scholar]
- Inbaraj, B.S.; Kao, T.H.; Tsai, T.Y.; Chiu, C.P.; Kumar, R.; Chen, B.H. The synthesis and characterization of poly(γ-glutamic acid)-coated magnetite nanoparticles and their effects on antibacterial activity and cytotoxicity. Nanotechnology 2011, 22, 1–9. [Google Scholar]
- Ramteke, C.; Sarangi, B.K.; Chakrabarti, T.; Mudliar, S.; Satpute, D.; Pandey, R.A. Synthesis and broad spectrum antibacterial activity of magnetite ferrofluid. Curr. Nanosci. 2010, 6, 587–591. [Google Scholar]
- Grumezescu, V.; Holban, A.M.; Iordache, F.; Socol, G.; Mogoşanu, G.D.; Grumezescu, A.M.; Ficai, A.; Vasile, B.Ş.; Truşcă, R.; Chifiriuc, M.C.; et al. MAPLE fabricated magnetite@eugenol and (3-hidroxybutyric acid-co-3-hidroxyvaleric acid)-polyvinyl alcohol microspheres coated surfaces with anti-microbial properties. Appl. Surf. Sci. 2014, 306, 16–22. [Google Scholar] [CrossRef]
- Chifiriuc, M.C.; Grumezescu, A.M.; Andronescu, E.; Ficai, A.; Cotar, A.I.; Grumezescu, V.; Bezirtzoglou, E.; Lazar, V.; Radulescu, R. Water dispersible magnetite nanoparticles influence the efficacy of antibiotics agains planktonic and biofilm embedded Enterococcus faecalis cells. Anaerobe 2013, 22, 14–19. [Google Scholar]
- Behera, S.S.; Patra, J.K.; Pramanik, K.; Panda, N.; Thatoi, H. Characterization and evaluation of antibacterial activities of chemically synthesized iron oxide nanoparticles. World J. Nano Sci. Eng. 2012, 2, 196–200. [Google Scholar]
- Ebrahiminezhad, A.; Davaran, S.; Rasoul-Amini, S.; Barar, J.; Moghadam, M.; Ghasemi, Y. Synthesis, characterization and anti-listeria monocytogenes effect of amino acid coated magnetite nanoparticles. Curr. Nanosci. 2012, 8, 868–874. [Google Scholar]
- Siauw, W. Silver Nanoparticles: A valuable weapon in microbial warfare. Available online: http://illumin.usc.edu/printer/244/silver-nanoparticles-a-valuable-weapon-in-microbial-warfare/ (accessed on 13 August 2014).
- Rastogi, S.K.; Jabal, J.M.F.; Zhang, H.; Gibson, C.M.; Haler, K.J.; Qiang, Y.; Aston, D.E.; Branen, A.L. Antibody@silica coated iron oxide nanoparticles: Synthesis, capture of E. coli and SERS titration of biomolecules with antibacterial silver colloid. J. Nanomedic Nanotechnol. 2011, 2, 2–8. [Google Scholar]
- Dames, P.; Gleich, B.; Flemmer, A.; Hajek, K.; Seidl, N.; Wiekhorst, F.; Eberbeck, D.; Bittmann, I.; Bergemann, C.; Weyh, T.; et al. Targeted delivery of magnetic aerosol droplets to the lung. Nat. Nanotechnol. 2007, 2, 495–499. [Google Scholar]
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Liakos, I.; Grumezescu, A.M.; Holban, A.M. Magnetite Nanostructures as Novel Strategies for Anti-Infectious Therapy. Molecules 2014, 19, 12710-12726. https://doi.org/10.3390/molecules190812710
Liakos I, Grumezescu AM, Holban AM. Magnetite Nanostructures as Novel Strategies for Anti-Infectious Therapy. Molecules. 2014; 19(8):12710-12726. https://doi.org/10.3390/molecules190812710
Chicago/Turabian StyleLiakos, Ioannis, Alexandru Mihai Grumezescu, and Alina Maria Holban. 2014. "Magnetite Nanostructures as Novel Strategies for Anti-Infectious Therapy" Molecules 19, no. 8: 12710-12726. https://doi.org/10.3390/molecules190812710
APA StyleLiakos, I., Grumezescu, A. M., & Holban, A. M. (2014). Magnetite Nanostructures as Novel Strategies for Anti-Infectious Therapy. Molecules, 19(8), 12710-12726. https://doi.org/10.3390/molecules190812710