Nutritional Value and Volatile Compounds of Black Cherry (Prunus serotina) Seeds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Proximate Composition
Component (% Dry Basis) | Raw Black Cherry Seeds | Toasted Black Cherry Seeds | Almonds | Peanuts |
---|---|---|---|---|
Moisture | 8.92 ± 0.42 a | 10.75 ± 0.35 a | 6.08 ± 0.4 b | 5.45 ± 0.38 c |
Fat | 40.37 ± 0.73 a | 39.97 ± 0.20 a | 49.64 ± 0.42 b | 41.12 ± 1.51 a |
Protein | 37.95 ± 0.16 a | 36.55 ± 0.22 a | 19.91 ± 0.01 b | 22.82 ± 0.01 c |
Ash | 3.19 ± 0.18 a | 2.72 ± 0.21 a | 3.18 ± 0.21 a | 2.41 ± 0.19 a |
Crude Fiber | 10.73 ± 1.49 a | 12.12 ± 4.06 a | 10.91 ± 1.45 a | 9.21 ± 1.59 a |
Carbohydrates | 7.76 ± 2.24 a | 8.65 ± 4.28 a | 10.26 ± 1.98 b | 18.95 ± 2.68 c |
2.2. Minerals
Mineral (Dry Basis) mg/100 g | Raw Black Cherry Seeds | Toasted Black Cherry Seeds | Almonds | Peanuts |
---|---|---|---|---|
Ca | 192.30 ± 0.58 a | 127.11 ± 17.51 b | 305.43 ± 1.88 c | 91.43 ± 0.05 d |
Fe | 9.49 ± 0.3 a | 1.21 ± 0.003 b | 6.08 ± 0.01 c | 8.31 ± 0.02 d |
Mg | 249.15 ± 0.34 a | 216.68 ± 18.75 a | 282.09 ± 0.32 b | 172.75 ± 0.77 c |
P | 439.0 ± 0.16 a | 323.40 ± 0.14 b | 387.03 ± 0.7 c | 347.41 ± 0.07 d |
K | 873.22 ± 12.64 a | 454.82 ± 0.41 b | 656.25 ± 23.80 c | 571.57 ± 10.03 d |
Zn | 3.40 ± 0.10 a | 2.96 ± 0.24 b | 4.48 ± 0.17 c | 3.92 ± 0.10 d |
Na | 82.98 ± 0.90 a | 23.59 ± 0.8 b | 76.57 ± 0.38 a | 62.99 ± 0.65 c |
2.3. Vitamins
2.4. Protein Nutritional Quality
Amino Acid | Raw Seeds mg/g Protein | Toasted Seeds mg/g Protein |
---|---|---|
Asp | 112.29 | 116.97 |
Glu | 256.84 | 273.73 |
Ser | 32.84 | 42.11 |
His | 21.60 | 21.29 |
Gly | 37.43 | 38.82 |
Thr | 52.85 | 59.16 |
Arg | 84.24 | 87.42 |
Ala | 41.47 | 44.06 |
Tyr | 48.75 | 60.99 |
Met | 8.93 | 9.83 |
Val | 45.48 | 45.62 |
Phe | 48.64 | 52.00 |
Ile | 39.17 | 40.33 |
Leu | 75.10 | 82.11 |
Lys | 8.85 | 11.17 |
AA | FAO Reference Pattern | AAS * | AAS * |
---|---|---|---|
Raw Seeds | Toasted Seeds | ||
His | 19 | 1.37 | 1.12 |
Thr | 34 | 1.55 | 1.74 |
Met | 25 | 0.36 | 0.39 |
Val | 35 | 1.30 | 1.33 |
Phe | 63 | 0.77 | 0.82 |
Ile | 28 | 1.40 | 1.44 |
Leu | 66 | 1.38 | 1.24 |
Lys ** | 58 | 0.15 | 0.19 |
2.5. Volatile Compounds
RI Calculated a | RI Literature b | Compound | Raw c | Toasted c | ID e | ||
---|---|---|---|---|---|---|---|
DB5 | WAX | DB5 | WAX | (ppm d) | (ppm d) | ||
Aldehydes | |||||||
573 | 805 | 801 | Propanal, 2-methyl- | 0.604 | MS, RI | ||
638 | 640 | 2-Butenal | 0.180 | MS, RI | |||
642 | 908 | 642 | Butanal, 3-methyl- | 1.095 | MS, RI | ||
652 | 910 | 653 | Butanal, 2-methyl- | 1.419 | MS, RI | ||
695 | 965 | 695 | 970 | Pentanal | 2.065 | MS, RI | |
740 | 740 | 2-Butenal, 2-methyl- | 0.500 | MS, RI | |||
1074 | 1078 | Hexanal | 0.096 | MS, RI | |||
834 | 1440 | 835 | 1443 | Furfural | 2.609 | MS, RI | |
902 | 905 | Heptanal | 0.084 | MS, RI | |||
908 | 909 | Propanal, 3-(methylthio)- | 0.041 | MS, RI | |||
1199 | 1196 | 2-Hexenal, (E)- | 0.014 | MS, RI | |||
964 | 963 | 2-Furancarboxaldehyde, 5-methyl- | 0.112 | MS, RI | |||
967 | 1508 | 969 | 1508 | Benzaldehyde | 1.371 | 7.597 | MS, RI |
1053 | 1053 | Benzeneacetaldehyde | 0.411 | MS, RI | |||
1106 | 1108 | Nonanal | 0.056 | 0.201 | MS, RI | ||
1443 | 1455 | 3-Furaldehyde | 0.090 | MS, RI | |||
1221 | 1697 | 1221 | 1697 | 2,4-Nonadienal, (E,E)- | 0.091 | MS, RI | |
1279 | 1930 | 1279 | 1933 | Benzeneacetaldehyde, alpha.-ethylidene- | 0.045 | MS, RI | |
Ketones | |||||||
707 | 1303 | 708 | 1301 | 2-Butanone, 3-hydroxy- | 0.329 | 0.361 | MS, RI |
986 | 986 | 3-Octanone | 0.055 | MS, RI | |||
1027 | 1043 | 1,2-Cyclopentanedione, 3-methyl- | 0.221 | MS | |||
1067 | 1958 | 1067 | 1957 | Ethanone, 1-(1H-pyrrol-2-yl)- | 0.233 | MS,RI | |
1071 | 1071.6 | Acetophenone | 0.051 | MS,RI | |||
1114 | 1117 | 1,7-Octadien-3-one, 2-methyl-6-methylene- | 0.037 | MS,RI | |||
1448 | Cyclohexanone, 5-methyl-2-(1-methylethyl)-, (2S-trans)- | 0.037 | MS | ||||
1486 | 1489 | Ethanone, 1-(2-furanyl)- | 0.119 | MS, RI | |||
1487 | 1-(3H-Imidazol-4-yl)-ethanone | 0.226 | MS | ||||
1151 | 1151 | 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- | 0.107 | MS, RI | |||
1569 | 1573 | 2-Cyclopentene-1,4-dione | 1.536 | MS, RI | |||
1588 | 1587 | Ethanone, 1-(2-pyridinyl)- | 0.526 | MS, RI | |||
1814 | 1,2-Cyclopentanedione, 3-methyl- | 0.134 | MS | ||||
2012 | 2(3H)-Furanone, dihydro-3-hydroxy-4,4-dimethyl- | 0.101 | MS | ||||
Carboxylic acids | |||||||
613 | 1415 | 610 | 1415 | Acetic acid | 2.163 | 5.939 | MS, RI |
1608 | Benzoic acid, hydrazide | 0.040 | MS | ||||
1616 | Butanoic acid, 4-hydroxy- | 0.184 | 0.656 | MS | |||
1829 | 1827 | Hexanoic acid | 0.282 | 0.089 | MS, RI | ||
2028 | 2030 | Octanoic Acid | 0.110 | 0.209 | MS, RI | ||
Esters | |||||||
719 | 972 | 720 | 971 | Butanoic acid, methyl ester | 0.019 | MS, RI | |
774 | 1007 | 776 | 1007 | Acetic acid, 2-methylpropyl ester | 0.191 | 0.096 | MS, RI |
826 | 1076 | 825 | 1075 | Pentanoic acid, methyl ester | 0.166 | MS, RI | |
878 | 1115 | 877 | 1115 | 1-Butanol, 3-methyl-, acetate | 0.282 | 0.404 | MS, RI |
880 | 880 | 1-Butanol, 2-methyl-, acetate | 0.260 | MS, RI | |||
912 | 1616 | 912 | 1617 | Butyrolactone | 0.297 | MS, RI | |
925 | 926 | Hexanoic acid, methyl ester | 0.120 | MS, RI | |||
1320 | 1317 | Heptanoic acid, ethyl ester | 0.061 | MS, RI | |||
1045 | Pantolactone | 0.192 | MS | ||||
1099 | 1607 | 1100 | 1605 | Benzoic acid, methyl ester | 0.162 | MS,RI | |
1167 | 1165 | Acetic acid, phenylmethyl ester | 0.096 | MS,RI | |||
Alcohols | |||||||
615 | 1085 | 618 | 1086 | 1-Propanol, 2-methyl- | 0.389 | 0.229 | MS, RI |
918 | 920 | Isopropyl Alcohol | 0.080 | MS, RI | |||
734 | 1189 | 730 | 1190 | 1-Butanol, 3-methyl- | 0.173 | MS, RI | |
738 | 1189 | 1-Butanol, 2-methyl-, (+/−)- | 0.381 | MS | |||
767 | 1231 | 766 | 1232 | 1-Pentanol | 0.595 | 0.536 | MS, RI |
797 | 1584 | 800 | 1583 | 2,3-Butanediol [R-(R*,R*)]- | 17.039 | 17.448 | MS, RI |
1088 | 1,2-Cyclopentanediol, trans- | 0.030 | MS | ||||
1136 | 1136 | 1-Butanol | 0.050 | 0.062 | MS, RI | ||
858 | 1635 | 858 | 1638 | 2-Furanmethanol | 0.747 | MS, RI | |
955 | 1700 | 953 | 2-Furanmethanol, 5-methyl- | 0.096 | MS, RI | ||
1334 | 1335 | 1-Hexanol | 0.201 | MS, RI | |||
1039 | 1866 | 1039 | 1866 | Benzyl alcohol | 0.332 | 1.019 | MS, RI |
1051 | 3-Octen-1-ol | 0.069 | MS | ||||
1379 | 1379 | Ethanol, 2-butoxy- | 0.063 | MS, RI | |||
1580 | Cyclohexanol, 5-methyl-2-(1-methylethyl)-, (1α, 2β, 5α)- | 0.743 | MS | ||||
1885 | 3,6,9,12-Tetraoxatetradecan-1-ol | 0.008 | MS | ||||
1903 | 1905 | Phenylethyl Alcohol | 0.065 | 0.166 | MS, RI | ||
1684 | 2,6-Bis(1,1-dimethylethyl)-4-(1-oxopropyl)phenol | 0.010 | 0.014 | MS | |||
Hydrocarbons | |||||||
647 | 923 | 648 | 924 | Benzene | 0.043 | 0.086 | MS, RI |
765 | 1029 | 765 | 1029 | Toluene | 0.052 | 0.110 | MS, RI |
1094 | Undecane | 0.030 | MS | ||||
1126 | 1123 | Benzene, 1,3-dimethyl- | 0.050 | MS, RI | |||
862 | 863 | Ethylbenzene | 0.022 | MS, RI | |||
872 | Cyclopropane, propyl- | 0.324 | MS | ||||
1166 | 1164 | p-Xylene | 0.010 | MS, RI | |||
893 | 1237 | 894 | 1236 | Styrene | 0.108 | 0.084 | MS, RI |
899 | Nonane | 0.020 | 0.074 | MS | |||
931 | 2,4-Octadiene | 0.057 | MS | ||||
1238 | 1264 | 1,3,5,7-Cyclooctatetraene | 0.300 | MS | |||
996 | 996 | Benzene, 1,3,5-trimethyl- | 0.040 | MS, RI | |||
999 | 997 | Decane | 0.096 | 0.089 | MS | ||
1033 | 1079 | 1030 | D-Limonene | 0.025 | 0.048 | MS, RI | |
1412 | Benzene, 2-ethyl-1,4-dimethyl- | 0.011 | MS | ||||
1413 | Benzene, 1-ethyl-2,3-dimethyl- | 0.027 | MS | ||||
1125 | 1120 | Benzene, 1,2,3,4-tetramethyl- | 0.040 | MS, RI | |||
1303 | 1300 | Tridecane | 0.015 | 0.027 | MS, RI | ||
1399 | 1400 | Tetradecane | 0.015 | 0.040 | MS, RI | ||
2056 | 1,4,7,10,13,16-Hexaoxacyclooctadecane | 0.029 | MS | ||||
Pyrazines | |||||||
826 | 1247 | 827 | 1247 | Pyrazine, methyl- | 3.745 | MS, RI | |
896 | 1487 | 1491 | 2,3,5-Trimethyl-6-ethylpyrazine | 0.221 | MS, RI | ||
915 | 1306 | 915 | 1308 | Pyrazine, 2,5-dimethyl- | 7.344 | MS, RI | |
1312 | 1314 | Pyrazine, 2,6-dimethyl- | 1.297 | MS, RI | |||
998 | 1365 | 998 | 1367 | Pyrazine, 2-ethyl-6-methyl- | 0.701 | MS, RI | |
1002 | 1384 | 1005 | 1381 | Pyrazine, trimethyl- | 1.685 | MS, RI | |
1330 | 1326 | Pyrazine, 2,3-dimethyl- | 0.287 | MS, RI | |||
1371 | 1367 | Pyrazine, 2-ethyl-5-methyl- | 1.494 | MS, RI | |||
1078 | 1425 | 1078 | 1430 | Pyrazine, 3-ethyl-2,5-dimethyl- | 1.907 | MS, RI | |
1085 | 1085 | Pyrazine, 2-ethyl-3,5-dimethyl- | 0.143 | MS, RI | |||
1086 | 1458 | 1088 | 1457 | Pyrazine, tetramethyl- | 0.106 | 0.597 | MS, RI |
1411 | 1415 | Pyrazine, 2,6-diethyl- | 0.066 | MS, RI | |||
1094 | 1091 | Pyrazine, 2,5-diethyl- | 0.106 | MS, RI | |||
1472 | 1485 | Pyrazine, 2-ethenyl-6-methyl- | 0.105 | MS, RI | |||
1147 | 1609 | 1605 | 5H-5-Methyl-6,7-dihydrocyclopentapyrazine | 0.500 | MS, RI | ||
1153 | 1475 | 1156 | 1478 | Pyrazine, 2,3-diethyl-5-methyl- | 0.130 | MS, RI | |
1157 | 1156 | Pyrazine, 3,5-diethyl-2-methyl- | 0.245 | MS, RI | |||
1161 | 1357 | 2,5-Dimethyl-3-n-pentylpyrazine | 0.021 | MS | |||
1683 | 1679 | 1-(6-Methyl-2-pyrazinyl)-1-ethanone | 0.146 | MS, RI | |||
1318 | 1254 | Pyrazine, 2-butyl-3,5-dimethyl- | 0.019 | MS | |||
1705 | 1740 | Pyrazinamide | 0.208 | MS | |||
Pyrroles and Furans | |||||||
811 | 1165 | 811 | 1168 | 1H-Pyrrole, 1-ethyl- | 0.144 | MS, RI | |
847 | 841 | 1H-Pyrrole, 3-methyl- | 0.082 | MS, RI | |||
948 | 1H-Pyrrole, 1-butyl- | 0.021 | MS | ||||
891 | 1122 | 892.1 | 1123 | 2-n-Butylfuran | 0.707 | MS, RI | |
991 | 1211 | 991 | 1213 | Furan, 2-pentyl- | 0.077 | 0.236 | MS, RI |
1037 | 2,3-Dihydrofuran | 0.008 | MS | ||||
1016 | 2004 | 1016 | 2006 | 1H-Pyrrole-2-carboxaldehyde | 0.114 | MS, RI | |
1076 | 2020 | 1076 | 2020 | 2-Pyrrolidinone | 0.477 | MS, RI | |
1675 | 1678 | 2-Pyrrolidinone, 1-methyl- | 0.057 | MS, RI | |||
Miscellaneous | |||||||
632 | 643 | Methanethiol | 0.046 | MS | |||
559 | 701 | Dimethyl sulfide | 0.052 | 0.071 | MS | ||
567 | 531 | Methylene chloride | 0.844 | 0.474 | MS | ||
612 | 1009 | 615 | 1010 | Trichloromethane | 0.059 | 0.028 | MS, RI |
724 | Propanamide, N,N-dimethyl- | 0.025 | MS | ||||
850 | 850 | Oxazole, trimethyl- | 0.034 | MS, RI | |||
1020 | 1020 | Benzene, 1,4-dichloro- | 0.450 | 0.253 | MS, RI | ||
1419 | Benzene, 1,2-dichloro- | 0.450 | MS | ||||
1710 | 6-Aminoindoline | 0.136 | MS | ||||
1923 | 1912 | Benzonitrile, 2-methyl- | 0.060 | MS | |||
1537 | N-(2-Benzoyl-4-nitrophenyl)-4-tert-butylbenzamide | 0.041 | MS | ||||
2051 | Octaethylene glycol | 0.007 | MS |
3. Experimental Section
3.1. Samples
3.2. Chemical Proximate Analysis
3.3. Determination of Vitamins A, C, and E
3.4. Mineral Content
3.5. In Vitro Protein Digestibility
3.6. Amino Acid Analysis
3.7. Nutritional Quality of Proteins
3.8. Volatile Compounds Analysis
3.9. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- McVaugh, R. A revision of the North American black cherries (Prunus serotina Ehrh) and relatives. Brittonia 1951, 7, 279–315. [Google Scholar] [CrossRef]
- Ordaz-Galindo, A.; Wesche-Ebeling, P.; Wrolstad, R.E.; Rodríguez- Saona, L.; Argaiz-Jamet, A. Purification and identification of Capulin (Prunus serotina Ehrh) anthocyanins. Food Chem. 1999, 65, 201–206. [Google Scholar] [CrossRef]
- Starfinger, U.; Kowarik, I.; Rode, M.; Schepker, H. From desirable ornamental plant to pest to accepted addition to the flora?—The perception of an alien tree species through the centuries. Biol. Invasions 2003, 5, 323–335. [Google Scholar] [CrossRef]
- Vázquez-Yanes, C.; Batis-Muñoz, A.I.; Alcocer-Silva, M.I.; Gual-Díaz, M.; Sánchez-Dirzo, C. Árboles y arbustos nativos potencialmente valiosos para la restauración ecológica y la reforestación. PROYECTO J-084—CONABIO. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). Available online: http://www.conabio.gob.mx/conocimiento/info_especies/arboles/doctos/inicio.pdf (accessed on 15 November 2014).
- Argueta, A. Monografías de plantas medicinales. In Atlas de las Plantas de la Medicina Tradicional Mexicana; Instituto Nacional Indigenista: México, México, 1994; Volume 1, pp. 319–320. [Google Scholar]
- Martínez, M. Plantas cuyas propiedades están comprobadas científicamente. In Plantas Medicinales de México; Editorial Botas: México, México, 1991; Volume 1, pp. 61–62. [Google Scholar]
- McCune, L.M.; Johns, T. Antioxidant activity relates to plant part, life form and growing condition in some diabetes remedies. J. Ethnopharmacol. 2007, 112, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Ibarra-Alvarado, C.; Rojas, A.; Luna, F.; Rojas, J.I.; Rivero-Cruz, B.; Rivero-Cruz, F. Vasorelaxant constituents of the leaves of Prunus serotina “capulín”. Rev. Latinoam. Quim. 2009, 37, 164–173. [Google Scholar]
- Luna-Vázquez, F.J.; Ibarra-Alvarado, C.; Rojas-Molina, A.; Rojas-Molina, J.I.; Yahia, E.M.; Rivera-Pastrana, D.M.; Rojas-Molina, A.; Zavala-Sánchez, M.A. Nutraceutical value of black cherry Prunus serotina Ehrh. Fruits: Antioxidant and antihypertensive properties. Molecules 2013, 18, 14597–14612. [Google Scholar] [CrossRef] [PubMed]
- Alveano-Aguerrebere, I.; Rojas-Molina, A.; Oomah, D.V.; Drover, J.C.G. Characteristics of Prunus serotina seed oil. Food Chem. 2011, 124, 983–990. [Google Scholar] [CrossRef]
- Calder, P.C.; Grimble, R.F. Polyunsaturated fatty acids, inflammation and immunity. Eur. J. Clin. Nutr. 2002, 56, S14–S19. [Google Scholar] [CrossRef] [PubMed]
- Kinsella, E.J.; Lokesh, B.; Stone, R.A. Dietary n-3 polyunsaturated fatty acids and amelioration of cardiovascular disease: Possible mechanisms1. Am. J. Clin. Nutr. 1990, 52, 1–28. [Google Scholar] [PubMed]
- Moon, H.S.; Guo, D.D.; Lee, H.G.; Choi, Y.J.; Kang, J.S.; Jo, K.; Eom, J.M.; Yun, C.H. Alpha-eleostearic acid suppresses proliferation of MCF-7 breast cancer cells via activation of PPARγ and inhibition of ERK 1/2. Cancer Sci. 2010, 101, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Swain, E.; Poulton, J.E. Utilization of amygdalin during seedling development of Prunus serotina. Plant Physiol. 1994, 106, 437–445. [Google Scholar] [PubMed]
- Khattab, R.Y.; Arntfield, S.D. Nutritional quality of legume seeds as affected by some physical treatments 2. Antinutritional factors. LWT-Food Sci. Technol. 2009, 42, 1113–1118. [Google Scholar] [CrossRef]
- Cao, J.; Qi, M.; Zhang, Y.; Zhou, Z.; Shao, Q.; Fu, R. Analysis of volatile compounds in Curcuma wenyujin Y.H. Chen et C. Ling by headspace solvent microextraction-gas chromatography-mass spectrometry. Anal. Chim. Acta 2006, 561, 88–95. [Google Scholar] [CrossRef]
- Ahrens, S.; Venkatachalam, M.; Mistry, A.M.; Lapsley, K.; Sathe, S.K. Almond (Prunus dulcis L.) protein quality. Plant Food Hum. Nutr. 2005, 60, 123–128. [Google Scholar] [CrossRef]
- Singh, B.; Singh, U. Peanut as a source of protein for human foods. Plant Food Hum. Nutr. 1991, 41, 165–177. [Google Scholar] [CrossRef]
- Kamel, B.S.; Kakuda, Y. Characterization of the seed oil and meal from apricot, cherry, nectarine, peach and plum. J. Am. Oil Chem. Soc. 1992, 69, 492–424. [Google Scholar] [CrossRef]
- Venkatachalam, M.; Sathe, S.K. Chemical composition of selected edible nut seeds. J. Agric. Food Chem. 2006, 54, 4705–4714. [Google Scholar] [CrossRef] [PubMed]
- Ros, E.; Mataix, J. Fatty acid composition of nuts—Implications for cardiovascular health. Br. J. Nutr. 2006, 96, S29–S35. [Google Scholar] [CrossRef] [PubMed]
- Caglarirmak, N.; Batkan, A.C. Nutrients and biochemistry of nuts in different consumption types in Turkey. J. Food Process. Pres. 2005, 29, 407–423. [Google Scholar] [CrossRef]
- Lazos, E.S. Nutritional, fatty acid, and oil characteristics of pumpkin and melon seeds. J. Food Sci. 1986, 51, 1382–1383. [Google Scholar] [CrossRef]
- Anderson, J.W.; Smith, B.M.; Gustafson, N.J. Health benefits and practical aspects of high-fiber diets. Am. J. Clin. Nutr. 1994, 59, 1242S–1247S. [Google Scholar] [PubMed]
- Chandalia, M.; Abhimanyu, G.; Lutjohann, D.; Bergmann, V.K.; Scott, M.G.; Brinkley, L.J. Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N. Engl. J. Med. 2000, 342, 1392–1398. [Google Scholar] [CrossRef] [PubMed]
- Chitra, U.; Singh, U.; Venkateswara, P.R. Phytic acid, in vitro protein digestibility, dietary fibers and minerals of pulses as influenced by processing methods. Plant Food Hum. Nutr. 1996, 49, 307–316. [Google Scholar] [CrossRef]
- Gamel, T.H.; Linssen, J.P.; Mesallam, A.S.; Damir, A.A.; Shekib, L.A. Effect of seed treatments on the chemical composition of two amaranth species: Oil, sugars, fibres, minerals and vitamins. J. Sci. Food Agric. 2006, 86, 82–89. [Google Scholar] [CrossRef]
- Kornsteiner, M.; Wagner, K.H.; Elmadfa, I. Tocopherols and total phenolics in 10 different nut types. Food Chem. 2006, 98, 381–387. [Google Scholar] [CrossRef]
- Muñoz Chávez, M. Oleaginosas. In Tablas de valor nutritivo de los alimentos de mayor consumo en Latinoamérica; Pax: México, D.F., México, 1996; p. 44. [Google Scholar]
- FAO/WHO. Findings and recommendations of the 2011 FAO expert consultation on protein quality Evaluation in human nutrition. In Dietary Protein Quality Evaluation in Human Nutrition, Report of an FAO Expert Consultation; Food and Agricultural Organization of the United Nations: Rome, Italy, 2013; Volume 92, p. 19. [Google Scholar]
- Hughes, G.J.; Ryan, D.J.; Mukherjea, R.; Schasteen, C.S. Protein digestibility-corrected amino acid scores (PDCAAS) for soy protein isolates and concentrate: Criteria for evaluation. J. Agric. Food Chem. 2011, 59, 12707–12712. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, D.C.; Freitas, J.B.; Czedera, L.P.; Naves, M.M.V. Nutritional composition and protein value of the baru (Dipteryx alata Vog.) almond from the Brazilian Savanna. J. Sci. Food Agric. 2010, 90, 1650–1655. [Google Scholar] [CrossRef] [PubMed]
- Alasalvar, C.; Shahidi, F.; Cadwallader, K.R. Comparison of natural and roasted Turkish Tombul hazelnut (Corylus avellana L.) volatiles and flavor by DHA/GC/MS and descriptive sensory analysis. J. Agric. Food Chem. 2003, 51, 5067–5072. [Google Scholar] [CrossRef] [PubMed]
- Wirthensohn, M.G.; Chin, W.L.; Franks, T.K.; Baldock, G.; Ford, C.M.; Sedgley, M. Investigation of flavour compounds from sweet, semi-bitter and bitter almond kernels. Options Méditerranéennes 2010, 94, 117–122. [Google Scholar]
- Chandra, A.; Nair, M.G. Quantification of benzaldehyde and its precursors in Montmorency cherry (Prunus cerasus L.) kernels. Phytochem. Anal. 1993, 4, 120–123. [Google Scholar] [CrossRef]
- Santamour, F.S. Amygdalin in Prunus leaves. Phytochemistry 1998, 47, 1537–1538. [Google Scholar] [CrossRef]
- Swain, E.; Li, C.P.; Poulton, J.E. Development of the potential for cyanogenesis in maturing black cherry (Prunus serotina Ehrh.) fruits. Plant. Physiol. 1992, 98, 1423–1428. [Google Scholar] [CrossRef] [PubMed]
- Poulton, J.E. Enzymology of cyanogenesis in rosaceous stone fruits. In β-Glucosidases: Biochemistry and Molecular Biology; ACS Symposium Series No. 533; Esen, A., Ed.; American Chemical Society: Washington, DC, USA, 1993; pp. 170–190. [Google Scholar]
- Sánchez-Pérez, R.; Sáenz Belmonte, F.; Borch, J.; Dicenta, F.; Møller, B.L.; Jørgensen, K. Prunasin hydrolases during fruit development in sweet and bitter almonds. Plant Physiol. 2012, 158, 1916–1932. [Google Scholar] [CrossRef] [PubMed]
- Swain, E.; Li, C.P.; Poulton, J.E. Tissue and subcellular localization of enzymes catabolizing (R)-Amygdalin in mature Prunus serotina seeds. Plant Physiol. 1992, 100, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Adamiec, J.; Rössner, J.; Cejpek, J.V.K.; Šavel, J. Minor strecker degradation products of phenylalanine and phenylglycine. Eur. Food Res. Technol. 2001, 212, 135–140. [Google Scholar] [CrossRef]
- Chu, F.L.; Yaylayan, V.A. Model studies on the oxygen-induced formation of benzaldehyde from phenylacetaldehyde using pyrolysis GC-MS and FTIR. J. Agric. Food Chem. 2008, 56, 10697–10704. [Google Scholar] [CrossRef] [PubMed]
- Siegmund, B.; Murkovic, M. Changes in chemical composition of pumpkin seeds during the roasting process for production of pumpkin seed oil (Part 2: volatile compounds). Food Chem. 2004, 84, 367–374. [Google Scholar] [CrossRef]
- Liu, X.; Jin, Q.; Liu, Y.; Huang, J.; Wang, X.; Mao, W.; Wang, S. Changes in volatile compounds of peanut oil during the roasting process for production of aromatic roasted peanut oil. J. Food Sci. 2011, 76, C404–C412. [Google Scholar] [CrossRef] [PubMed]
- Guillén, M.D.; Ibargoitia, M.L.; Sopelana, P.; Palencia, G. Components detected by headspacesolid phase microextraction in artisanal fresh goat’s cheese smoked using prickly pear (Opuntia ficus indica). Le Lait 2004, 84, 385–397. [Google Scholar] [CrossRef]
- Soria, A.C.; González, M.; de Lorenzo, C.; Martínez-Castro, I.; Sanz, J. Estimation of the honeydew ration in honey samples from their physicochemical data and from their volatile composition obtained by SPME and GC-MS. J. Sci. Food Agric. 2005, 85, 817–824. [Google Scholar] [CrossRef]
- Wu, S.; Xu, T.; Akoh, C.C. Effect of roasting on the volatile constituents of Trichosanthes kirilowii seeds. J. Food Drug Anal. 2014, 22, 310–317. [Google Scholar] [CrossRef]
- Vázquez-Araújo, L.; Enguix, L.A.; Verdú, L.; García-García, E.; Carbonell-Barrachina, A.A. Investigation of aromatic compounds in toasted almonds used for the manufacture of turrón. Eur. Food Res. Technol. 2008, 227, 243–254. [Google Scholar] [CrossRef]
- Mexis, S.F.; Kontominas, M.G. Effect of oxygen absorber, nitrogen flushing, packaging material oxygen transmission rate and storage conditions on quality retention of raw whole unpeeled almond kernels (Prunus dulcis). Food Sci. Technol. 2010, 43, 1–11. [Google Scholar]
- Krist, S.; Stuebiger, G.; Bail, S.; Unterweger, H. Analysis of volatile compounds and triacylglycerol composition of fatty seed oil gained from flax and false flax. Eur. J. Lipid Sci. Technol. 2006, 108, 48–60. [Google Scholar] [CrossRef]
- Amrani-Hemaimi, M.; Cerny, C.; Fay, L.B. Mechanisms of formation of alkylpyrazines in the Maillard reaction. J. Agric. Food Chem. 1995, 43, 2818–2822. [Google Scholar] [CrossRef]
- Krist, S.; Unterweger, H.; Bandion, F.; Buchbauer, G. Volatile compound analysis of SPME headspace and extract samples from roasted Italian chestnuts (Castanea sativa Mill.) using GC-MS. Eur. Food Res. Technol. 2004, 219, 470–473. [Google Scholar] [CrossRef]
- Ho, C.T.; Lee, M.H.; Chang, S.S. Isolation and identification of volatile compounds from roasted peanuts. J. Food Sci. 1981, 47, 127–133. [Google Scholar] [CrossRef]
- Agila, A.; Barringer, S. Effect of roasting conditions on color and volatile profile including HMF level in sweet almonds (Prunus dulcis). J. Food Sci. 2012, 77, 461–468. [Google Scholar] [CrossRef]
- Hsu, H.W.; Vavak, D.L.; Satterlee, L.D.; Miller, G.A. A multienzyme technique for estimating protein digestibility. J. Food Sci. 1977, 42, 1269–1273. [Google Scholar] [CrossRef]
- Bidlingmeyer, B.A.; Cohen, S.A.; Tarvin, T.L. Rapid analysis of amino acids using pre-column derivatization. J. Chomatogr. 1984, 336, 93–104. [Google Scholar] [CrossRef]
- Van den Dool, H.; Kratz, PD. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar]
- National Institute for Standards and Technology. Available online: http://webbook.nist.gov/chemistry/cas-ser.html (accessed on 23 October 2014).
- Sample Availability: Samples of the compounds are available from the authors.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Aguilar, L.; Rojas-Molina, A.; Ibarra-Alvarado, C.; Rojas-Molina, J.I.; Vázquez-Landaverde, P.A.; Luna-Vázquez, F.J.; Zavala-Sánchez, M.A. Nutritional Value and Volatile Compounds of Black Cherry (Prunus serotina) Seeds. Molecules 2015, 20, 3479-3495. https://doi.org/10.3390/molecules20023479
García-Aguilar L, Rojas-Molina A, Ibarra-Alvarado C, Rojas-Molina JI, Vázquez-Landaverde PA, Luna-Vázquez FJ, Zavala-Sánchez MA. Nutritional Value and Volatile Compounds of Black Cherry (Prunus serotina) Seeds. Molecules. 2015; 20(2):3479-3495. https://doi.org/10.3390/molecules20023479
Chicago/Turabian StyleGarcía-Aguilar, Leticia, Alejandra Rojas-Molina, César Ibarra-Alvarado, Juana I. Rojas-Molina, Pedro A. Vázquez-Landaverde, Francisco J. Luna-Vázquez, and Miguel A. Zavala-Sánchez. 2015. "Nutritional Value and Volatile Compounds of Black Cherry (Prunus serotina) Seeds" Molecules 20, no. 2: 3479-3495. https://doi.org/10.3390/molecules20023479
APA StyleGarcía-Aguilar, L., Rojas-Molina, A., Ibarra-Alvarado, C., Rojas-Molina, J. I., Vázquez-Landaverde, P. A., Luna-Vázquez, F. J., & Zavala-Sánchez, M. A. (2015). Nutritional Value and Volatile Compounds of Black Cherry (Prunus serotina) Seeds. Molecules, 20(2), 3479-3495. https://doi.org/10.3390/molecules20023479