Synthesis, Central Nervous System Activity and Structure-Activity Relationships of Novel 1-(1-Alkyl-4-aryl-4,5-dihydro-1H-imidazo)-3-substituted Urea Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Estimation of Drug-Likeness
Comp. | Molar Mass | AlogP | HBD | HBA | Number of Atoms | Molar Refractivity | Rings | Rigid Bonds | Rotatable Bonds | Druglikeness Score |
---|---|---|---|---|---|---|---|---|---|---|
3a | 308.378 | 2.630 | 2 | 5 | 43 | 91.64 | 3 | 21 | 4 | 5.22 |
3b | 322.404 | 2.951 | 2 | 5 | 46 | 96.24 | 3 | 19 | 5 | 5.74 |
3c | 304.344 | 1.102 | 0 | 7 | 42 | 82.41 | 2 | 17 | 6 | 5.77 |
3d | 366.414 | 2.827 | 2 | 7 | 49 | 102.91 | 3 | 23 | 6 | 1.30 |
3e | 322.404 | 3.116 | 2 | 5 | 46 | 96.06 | 3 | 22 | 4 | 3.87 |
3f | 336.431 | 3.437 | 2 | 5 | 49 | 100.67 | 3 | 22 | 5 | 4.39 |
3g | 318.371 | 1.589 | 2 | 7 | 45 | 86.84 | 2 | 18 | 6 | -1.23 |
3h | 380.44 | 3.313 | 2 | 7 | 52 | 107.33 | 3 | 24 | 6 | -0.14 |
4c | 261.280 | 0.815 | 4 | 7 | 34 | 69.30 | 2 | 18 | 2 | 5.56 |
4g | 275.306 | 1.301 | 4 | 7 | 37 | 73.72 | 2 | 19 | 2 | 4.16 |
2.3. Prediction of ADMET Properties
Comp. | LogS | Toxicity Risk | Drug Score | |||
---|---|---|---|---|---|---|
Mutagenic | Tumorigenic | Irritant | Reproductive Effective | |||
3a | −3.454 | 1.00 | 1.00 | 1.00 | 1.00 | 0.85 |
3b | −3.618 | 1.00 | 1.00 | 1.00 | 1.00 | 0.82 |
3c | −2.118 | 1.00 | 1.00 | 1.00 | 1.00 | 0.93 |
3d | −3.818 | 1.00 | 1.00 | 1.00 | 1.00 | 0.67 |
3e | −3.923 | 1.00 | 1.00 | 1.00 | 1.00 | 0.80 |
3f | −4.078 | 1.00 | 1.00 | 1.00 | 1.00 | 0.77 |
3g | −2.594 | 1.00 | 1.00 | 1.00 | 1.00 | 0.55 |
3h | −4.255 | 1.00 | 1.00 | 1.00 | 1.00 | 0.51 |
4c | −2.004 | 0.80 | 0.80 | 1.00 | 0.80 | 0.48 |
4g | −2.501 | 0.80 | 0.80 | 1.00 | 0.80 | 0.46 |
Comp. | Surface Å2 | PSA Å2 | Volume Å3 | Ovality | HOMO eV | LUMO eV | Polarizability | Molecular Weight |
---|---|---|---|---|---|---|---|---|
3a | 586.1 | 61.2 | 288.6 | 1.652 | −9.24 | 0.43 | 34.836 | 308.37 |
3b | 573.1 | 65.0 | 304.7 | 1.706 | −9.10 | 0.49 | 36.896 | 322.40 |
3c | 589.8 | 107.7 | 278.8 | 1.702 | −9.14 | 0.58 | 31.729 | 304.34 |
3d | 660.9 | 104.3 | 328.4 | 1.734 | −8.92 | −0.65 | 39.549 | 366.41 |
3e | 614.6 | 55.6 | 301.1 | 1.670 | −9.20 | 0.42 | 36.854 | 322.40 |
3f | 616.3 | 54.3 | 321.9 | 1.739 | −9.07 | 0.53 | 38.789 | 336.43 |
3g | 601.7 | 131.0 | 290.9 | 1.697 | −9.26 | 0.38 | 33.862 | 318.37 |
3h | 683.8 | 92.9 | 342.6 | 1.770 | −9.00 | −0.14 | 41.710 | 380.44 |
4c | 482.5 | 170.8 | 225.8 | 1.556 | −9.40 | 0.46 | 27.094 | 261.28 |
4g | 523.3 | 175.1 | 245.2 | 1.630 | −9.28 | 0.42 | 28.801 | 275.30 |
2.4. Pharmacological Activity
2.5. Structure-Activity Relationship
3. Experimental Section
3.1. Chemistry
3.1.1. General Procedure for the Synthesis of Compounds 3a–3h
3.1.2. General Procedure to Obtain Compounds 4c, 4g
3.2. Pharmacology
3.3. Molecular Modeling
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Manjiani, D.; Paul, D.B.; Kunnumpurath, S.; Kaye, A.D.; Vadivelu, N. Availability and utilization of opioids for pain management: Global issues. Ochsner. J. 2014, 14, 208–215. [Google Scholar] [PubMed]
- Rządkowska, M.; Szacoń, E.; Kaczor, A.A.; Fidecka, S.; Kędzierska, E.; Matosiuk, D. Synthesis, pharmacological activity and molecular modeling of 1-aryl-7-hydroxy-2,3-dihydroimidazo[1,2-a]pyrimidine-5(1H)-ones and their 6-substituted derivatives. Med. Chem. 2014, 10, 460–475. [Google Scholar] [CrossRef] [PubMed]
- Kaczor, A.; Matosiuk, D. Non-peptide opioid receptor ligands—Recent advances. Part I—Agonists. Curr. Med. Chem. 2002, 9, 1567–1589. [Google Scholar] [CrossRef] [PubMed]
- Kaczor, A.; Matosiuk, D. Non-peptide opioid receptor ligands—Recent advances. Part II—Antagonists. Curr. Med. Chem. 2002, 9, 1591–1603. [Google Scholar] [CrossRef] [PubMed]
- Rządkowska, M.; Szacoń, E.; Kaczor, A.A.; Fidecka, S.; Kędzierska, E.; Matosiuk, D. Synthesis, central nervous system activity, and structure–activity relationship of 1-aryl-6-benzyl-7-hydroxy-2,3-dihydroimidazo[1,2-a]pyrimidine-5(1H)-ones. Med. Chem. Res. 2014, 23, 4221–4237. [Google Scholar] [CrossRef] [PubMed]
- Szacoń, E.; Rządkowska, M.; Kaczor, A.A.; Kędzierska, E.; Fidecka, S.; Matosiuk, D. Synthesis, central nervous system activity and structure-activity relationship of N-substituted derivatives of 1-arylimidazolidyn-2-ylideneurea and products of their cyclization. J. Enzym. Inhib. Med. Chem. 2015, in press. [Google Scholar]
- Huang, P.; Kim, S.; Loew, G. Development of a common 3D pharmacophore for delta-opioid recognition from peptides and non-peptides using a novel computer program. J. Comput. Aided Mol. Des. 1997, 11, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Mosberg, H.I.; Omnaas, J.R.; Lomize, A.; Heyl, D.L.; Nordan, I.; Mousigian, C.; Davis, P.; Porreca, F. Development of a model for the delta opioid receptor pharmacophore. 2. Conformationally restricted Phe3 replacements in the cyclic delta receptor selective tetrapeptide Tyr-c[D-Cys-Phe-D-Pen]OH (JOM-13). J. Med. Chem. 1994, 37, 4384–4391. [Google Scholar] [CrossRef] [PubMed]
- Korlipara, V.L.; Takemori, A.E.; Portoghese, P.S. Electrophilic N-benzylnaltrindoles as delta opioid receptor-selective antagonists. J. Med. Chem. 1995, 38, 1337–1343. [Google Scholar] [CrossRef] [PubMed]
- Matosiuk, D.; Fidecka, S.; Antkiewicz-Michaluk, L.; Dybała, I.; Kozioł, A.E. Synthesis and pharmacological activity of new carbonyl derivatives of 1-aryl-2-iminoimidazolidine. Part 1. Synthesis and pharmacological activity of chain derivatives of 1-aryl-2-iminoimidazolidine containing urea moiety. Eur. J. Med. Chem. 2001, 36, 783–797. [Google Scholar] [CrossRef] [PubMed]
- Matosiuk, D.; Fidecka, S.; Antkiewicz-Michaluk, L.; Dybała, I.; Kozioł, A.E. Synthesis and pharmacological activity of new carbonyl derivatives of 1-aryl-2-iminoimidazolidine. Part 3. Synthesis and pharmacological activity of 1-aryl-5,6(1H)dioxo-2,3-dihydroimidazo[1,2-a]imidazoles. Eur. J. Med. Chem. 2002, 37, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Matosiuk, D.; Fidecka, S.; Antkiewicz-Michaluk, L.; Lipkowski, J.; Dybała, I.; Kozioł, A.E. Synthesis and pharmacological activity of new carbonyl derivatives of 1-aryl-2-iminoimidazolidine: Part 2. Synthesis and pharmacological activity of 1,6-diaryl-5,7(1H)dioxo-2,3-dihydroimidazo[1,2-a][1,3,5]triazines. Eur. J. Med. Chem. 2002, 37, 761–772. [Google Scholar] [CrossRef] [PubMed]
- Sztanke, K.; Fidecka, S.; Kędzierska, E.; Karczmarzyk, Z.; Pihlaja, K.; Matosiuk, D. Antinociceptive activity of new imidazolidine carbonyl derivatives. Part 4. Synthesis and pharmacological activity of 8-aryl-3,4-dioxo-2H,8H-6,7-dihydroimidazo[2,1-c] [1,2,4]triazines. Eur. J. Med. Chem. 2005, 40, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.K.; Chang, G.S.; Lee, I.H.; Chung, J.E.; Sung, K.Y.; No, K.T. The PreADME: Pc-based program for batch prediction of adme properties. In Proceedings of the EuroQSAR2004, Istanbul, Turkey, 5–10 September 2004.
- Pajouhesh, H.; Lenz, G.R. Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2005, 2, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Osiris Property Explorer. Available online: http://www.organic-chemistry.org/prog/peo/logS.html (accessed on 1 December 2014).
- Le Bars, D.; Gozariu, M.; Cadden, S. Animal models of nociception. Pharmacol. Rev. 2001, 53, 597–652. [Google Scholar] [PubMed]
- Vogel, G.H.; Vogel, W.H. Drug discovery and evaluation. In Pharmacological Assays; Springer-Verlag: Berlin, Germany, 1997; pp. 204–207. [Google Scholar]
- Gutstein, H.B.; Akil, H. Opioid analgesics. In Goodman and Gilman’s. The Pharmacological Basis of Therapeutics, XIth ed.; MacGrow Hill: New York, NY, USA, 2006; pp. 547–590. [Google Scholar]
- Peroutka, S.J.; Lebovitz, R.M.; Snyder, S.H. Two distinct central serotonin receptors with different physiological functions. Science 1981, 212, 827–829. [Google Scholar] [CrossRef] [PubMed]
- Colpaert, F.C.; Janssen, P.A. The head-twitch response to intraperitoneal injection of 5-hydroxytryptophan in the rat: Antagonist effects of purported 5-hydroxytryptamine antagonists and of pirenperone, an LSD antagonist. Neuropharmacology 1983, 22, 993–1000. [Google Scholar] [CrossRef] [PubMed]
- Green, A.R.; O’Shaughnessy, K.; Hammond, M.; Schachter, M.; Grahame-Smith, D.G. Inhibition of 5-hydroxytryptamine-mediated behaviour by the putative 5-HT2 antagonist pirenperone. Neuropharmacology 1983, 22, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, G.M.; Green, A.R. A behavioural and biochemical study in mice and rats of putative selective agonists and antagonists for 5-HT1 and 5-HT2 receptors. Br. J. Pharmacol. 1985, 84, 743–753. [Google Scholar] [CrossRef] [PubMed]
- Darmani, N.A.; Martin, B.R.; Glennon, R.A. Withdrawal from chronic treatment with (±)-DOI causes super-sensitivity to 5-HT2 receptor-induced head-twitch behaviour in mice. Eur. J. Pharmacol. 1990, 186, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Darmani, N.A.; Martin, B.R.; Pandy, U.; Glennon, R.A. Do functional relationships exist between 5-HT1A and 5-HT2 receptors? Pharmacol. Biochem. Behav. 1990, 36, 901–906. [Google Scholar] [CrossRef] [PubMed]
- Darmani, N.A.; Martin, B.R.; Glennon, R.A. Behavioral evidence for differential adaptation of the serotonergic system after acute and chronic treatment with (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) or ketanserin. J. Pharmacol. Exp. Ther. 1992, 262, 692–698. [Google Scholar] [PubMed]
- Fantegrossi, W.E.; Kiessel, C.L.; Leach, P.T.; Van Martin, C.; Karabenick, R.L.; Chen, X.; Ohizumi, Y.; Ullrich, T.; Rice, K.C.; Woods, J.H. Nantenine: An antagonist of the behavioral and physiological effects of MDMA in mice. Psychopharmacology 2004, 173, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Ortmann, R.; Biscoff, S.; Radeke, E.; Bueche, O.; Delini-Stula, A. Correlation between different measures of antiserotonin activity of drugs. Naunyn Schmiedebergs Arch. Pharmacol. 1982, 321, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Lucki, I.; Nobler, M.S.; Frazer, A. Differential actions of serotonin antagonists on two behavioral models of serotonin receptor activation in the rat. J. Pharmacol. Exp. Ther. 1984, 228, 133–139. [Google Scholar] [PubMed]
- Handley, S.L.; Singh, L. The modulation of head-twitch behaviour by drugs acting on beta-adrenoceptors: Evidence for the involvement of both beta 1- and beta 2-adrenoceptors. Pharmacology 1986, 7, 320–324. [Google Scholar]
- Corne, S.J.; Pickering, R.W. A possible correlation between druginduced hallucinations in man and a behavioural response in mice. Psychopharmacology 1967, 11, 65–68. [Google Scholar] [CrossRef]
- Handley, S.L.; Brown, J. Effects on the 5-hydroxytryptamine-induced head-twitch of drugs with selective actions on alpha1 and alpha2-adrenoceptors. Neuropharmacology 1982, 21, 507–510. [Google Scholar] [CrossRef] [PubMed]
- Cox, B.; Lomax, P. Pharmacological studies on the central regulation of body temperature. Ann. Rev. Pharmacol. Toxicol. 1997, 17, 341–353. [Google Scholar] [CrossRef]
- Cooper, K.E.; Craneston, W.I.; Honour, A.J. Effects of intraventricular and intra-hypothalamic injection of noradrenaline and 5-HT on body temperature in conscious rabbits. J. Physiol. 1965, 181, 852–864. [Google Scholar] [CrossRef] [PubMed]
- Feldberg, W.; Mers, R.D. A new concept of temperature regulation by amines in the hypothalamus. Nature 1963, 200, 1325–1328. [Google Scholar] [CrossRef] [PubMed]
- Ulugol, A.; Karadag, H.C.; Dokmeci, D.; Al.-Khatib, I.; Dokmeci, I. The protective effect of moclobemide against hypoxia-induced lethality in mice is not due to a decrease in body temperature. Pharmacol. Biochem. Behav. 1995, 51, 245–247. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Ducan, W.C., Jr.; Wehr, T.A. Clorgyline-induced reduction in body temperature and its relationship to vigilance states in Syrian hamsters. Neuropsychopharmacology 1991, 4, 187–1897. [Google Scholar] [PubMed]
- Adell, A.; Bigg, T.A.; Myers, R.D. Action of harman (1-methyl-β-carboline) on the brain: Body temperature and in vivo efflux of 5-HT from hippocampus of the rat. Neuropharmacology 1996, 35, 1101–1107. [Google Scholar] [CrossRef] [PubMed]
- Litchfield, L.T.; Wilcoxon, F. Simplified method of evaluating dose effect experiments. J. Pharmacol. Exp. Ther. 1949, 96, 99–113. [Google Scholar] [PubMed]
- Koster, R.; Anderson, M.; DeBeer, E.J. Acetic acid for analgesic screening. Fed. Proc. 1959, 18, 412–416. [Google Scholar]
- Gross, F.; Tripod, J.; Meir, R. Zur pharmakologischen charakterisierung des schlafmittels doriden. Schweiz. Med. Wochschr. 1995, 85, 305–309. [Google Scholar]
- Boissier, J.R.; Tardy, J.; Diverres, J.C. Une nouvelle méthode simple pour explorer l’action tranquilisante: Le test de la cheminée. Med. Exp. 1960, 3, 81–84. [Google Scholar]
- Corne, S.J.; Pickering, R.W.; Werner, B.T. A method for assessing the effects of drugs on the central actions of 5-hydroxytryptamine. Br. J. Pharmacol. 1963, 20, 106–120. [Google Scholar]
- LigPrep, version 2.4; Schrödinger, LLC: New York, NY, USA, 2010.
- Epik, version 2.1; Schrödinger, LLC: New York, NY, USA, 2010.
- Pedretti, A.; Villa, L.; Vistoli, G. VEGA—An open platform to develop chemo-bio-informatic applications, using plug-in architecture and script’ programming. J. Comput. Aided Mol. Des. 2004, 18, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Discovery Studio 3.1; Accelrys: San Diego, CA, USA, 2010.
- Argus Lab. Available online: http://www.arguslab.com/arguslab.com/ArgusLab.html (accessed on 2 December 2014).
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szacoń, E.; Rządkowska, M.; Kaczor, A.A.; Kędzierska, E.; Fidecka, S.; Matosiuk, D. Synthesis, Central Nervous System Activity and Structure-Activity Relationships of Novel 1-(1-Alkyl-4-aryl-4,5-dihydro-1H-imidazo)-3-substituted Urea Derivatives. Molecules 2015, 20, 3821-3840. https://doi.org/10.3390/molecules20033821
Szacoń E, Rządkowska M, Kaczor AA, Kędzierska E, Fidecka S, Matosiuk D. Synthesis, Central Nervous System Activity and Structure-Activity Relationships of Novel 1-(1-Alkyl-4-aryl-4,5-dihydro-1H-imidazo)-3-substituted Urea Derivatives. Molecules. 2015; 20(3):3821-3840. https://doi.org/10.3390/molecules20033821
Chicago/Turabian StyleSzacoń, Elżbieta, Marzena Rządkowska, Agnieszka A. Kaczor, Ewa Kędzierska, Sylwia Fidecka, and Dariusz Matosiuk. 2015. "Synthesis, Central Nervous System Activity and Structure-Activity Relationships of Novel 1-(1-Alkyl-4-aryl-4,5-dihydro-1H-imidazo)-3-substituted Urea Derivatives" Molecules 20, no. 3: 3821-3840. https://doi.org/10.3390/molecules20033821
APA StyleSzacoń, E., Rządkowska, M., Kaczor, A. A., Kędzierska, E., Fidecka, S., & Matosiuk, D. (2015). Synthesis, Central Nervous System Activity and Structure-Activity Relationships of Novel 1-(1-Alkyl-4-aryl-4,5-dihydro-1H-imidazo)-3-substituted Urea Derivatives. Molecules, 20(3), 3821-3840. https://doi.org/10.3390/molecules20033821