Simultaneous Quantification of Diazepam and Dexamethasone in Plasma by High-Performance Liquid Chromatography with Tandem Mass Spectrometry and Its Application to a Pharmacokinetic Comparison between Normoxic and Hypoxic Rats
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Development
2.2. Method Validation
2.2.1. Selectivity
2.2.2. Linearity and Lower Limit of Quantification
2.2.3. Precision and Accuracy
Compound | Spiked | Intra-day ( n = 6) | Inter-day ( n = 18) | ||||
---|---|---|---|---|---|---|---|
Measured (mean ± SD) (ng/mL) | Precision (RSD) % | Accuracy (%) | Measured (mean ± SD) (ng/mL) | Precision (RSD) % | Accuracy (%) | ||
Diazepam | 2.0 | 2.1 ± 0.20 | 9.5 | 5.9 | 2.0 ± 0.19 | 9.7 | 0.9 |
10 | 11.2 ± 0.33 | 2.9 | 11.5 | 11.0 ± 0.30 | 2.7 | 10.1 | |
50 | 55.6 ± 1.1 | 2.0 | 11.2 | 53.2 ± 4.0 | 7.6 | 6.5 | |
Dexamethasone | 4.0 | 4.1 ± 0.41 | 10.0 | 2.4 | 4.0 ± 0.39 | 10.0 | −0.85 |
20 | 19.3 ± 1.9 | 10.0 | −3.4 | 19.7 ± 1.8 | 9.0 | −1.7 | |
100 | 92.7 ± 3.0 | 3.3 | −7.3 | 92.1 ± 5.3 | 5.8 | −7.9 |
2.2.4. Recovery and Matrix Effect
Compound | Spiked Concentration (ng/mL) | Recovery (mean ± SD) % ( n = 6) | RSD (%) | Matrix Effect (mean ± SD) % ( n = 3) | RSD (%) |
---|---|---|---|---|---|
Diazepam | 2.0 | 98.4 ± 5.2 | 5.2 | 92 ± 9.6 | 10.4 |
10 | 102 ± 1.2 | 1.2 | 112 ± 1.3 | 1.2 | |
50 | 94.5 ± 1.8 | 2.0 | 109 ± 1.3 | 1.2 | |
Dexamethasone | 4.0 | 103 ± 9.0 | 8.7 | 113 ± 4.8 | 12.9 |
20 | 107 ± 10 | 9.4 | 109 ± 3.6 | 9.9 | |
100 | 99.2 ± 3.6 | 3.6 | 99 ± 2.2 | 6.7 |
2.2.5. Stability
Compound | Concentration Spiked (ng/mL) | Storage for 30 days at −80 °C | Post Treatment Storage for 24 h at RT * | Three Freeze-Thaw Cycles | |||
---|---|---|---|---|---|---|---|
Concentration Measured (ng/mL) ( n = 3) | RSD (%) | Concentration Measured (ng/mL) ( n = 3) | RSD (%) | Concentration Measured (ng/mL) ( n = 3) | RSD (%) | ||
Diazepam | 2.0 | 2.0 ± 0.24 | 11.9 | 2.02 ± 0.07 | 3.4 | 1.86 ± 0.20 | 10.6 |
10 | 11.1 ± 0.15 | 1.4 | 11.1 ± 0.26 | 2.4 | 11.0 ± 0.30 | 2.8 | |
50 | 56.1 ± 0.97 | 1.7 | 55.9 ± 0.55 | 1.0 | 56.3 ± 0.92 | 1.6 | |
Dexamethasone | 4.0 | 4.2 ± 0.25 | 5.9 | 4.13 ± 0.32 | 7.8 | 3.7 ± 0.30 | 8.1 |
20 | 21.5 ± 1.6 | 7.5 | 19.8 ± 2.4 | 12.3 | 20.2 ± 1.3 | 6.3 | |
100 | 91.2 ± 6.8 | 7.5 | 87.6 ± 2.6 | 2.9 | 91.0 ± 5.6 | 6.2 |
2.3. Pharmacokinetics Comparison
Parameter | Diazepam | Dexamethasone | ||
---|---|---|---|---|
Normoxia | Hypoxia | Normoxia | Hypoxia | |
Cmax (ng/mL) | 5.3 ± 1.6 | 39.2 ± 4.3 ** | 121 ± 31.1 | 65.7 ± 13.9 ** |
Tmax (h) | 0.30 ± 0.11 | 3.1 ± 2.6 * | 1.3 ± 0.57 | 2.17 ± 0.931 |
k | 0.38 ± 0.077 | 0.27 ± 0.18 | 0.21 ± 0.063 | 0.072 ± 0.027 ** |
MRT (h) | 2.3 ± 0.51 | 6.5 ± 2.2 ** | 4.3 ± 1.2 | 9.14 ± 3.44 * |
t1/2 (h) | 4.2 ± 3.7 | 3.3 ± 1.4 | 3.5 ± 0.94 | 11.5 ± 6.6 * |
AUC0→72 (ng/mL∙h) | 13.0 ± 4.3 | 326 ± 39.6 ** | 656 ± 141 | 750 ± 232 |
3. Experimental Section
3.1. Chemicals and Reagents
3.2. Animals
3.3. LC-MS/MS Conditions
3.4. Preparation of Calibration Standards and Quality Control Samples
3.5. Samples Preparation
3.6. Method Validation
3.6.1. Selectivity and Specificity
3.6.2. Linearity and Lower Limit of Quantification
3.6.3. Precision and Accuracy
3.6.4. Recovery and Matrix Effects
3.6.5. Stability
3.7. Pharmacokinetics Comparison
3.8. Data Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Beidleman, B.A.; Fulco, C.S.; Muza, S.R.; Rock, P.B.; Staab, J.E.; Forte, V.A.; Brothers, M.D.; Cymerman, A. Effect of six days of staging on physiologic adjustments and acute mountain sickness during ascent to 4300 meters. High Alt. Med. Biol. 2009, 10, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Hackett, P.H.; Roach, R.C. High-altitude illness. N. Engl. J. Med. 2001, 345, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Fradette, C.; Du Souich, P. Effect of hypoxia on cytochrome P450 activity and expression. Curr. Drug Metab. 2004, 5, 257–271. [Google Scholar] [CrossRef] [PubMed]
- Johmura, Y.; Takahashi, T.; Kuroiwa, Y. Acute mountain sickness with reversible vasospasm. J. Neurol. Sci. 2007, 263, 174–176. [Google Scholar] [CrossRef] [PubMed]
- Douglas, R.L.; Carter, K.A.; Ellsworth, A. Acetazolamide or dexamethasone for prevention of acute mountain sickness: A meta-analysis. J. Wilderness Med. 1994, 5, 34–48. [Google Scholar] [CrossRef]
- Richer, M.; Lam, Y.W. Hypoxia, arterial pH and theophylline disposition. Clin. Pharmacokinet. 1993, 25, 283–299. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.H.; Li, S.Z.; Zhou, X.B.; Li, S.S.; Yao, W.X.; Chen, K.; Wang, H.B. Preventive effect of Gaoyuankang Capsule on acute high altitude diseases in mass troops landed at high altitude areas rapidly. Acta Acad. Med. Mil. Tertiae 2005, 27, 166–169. [Google Scholar]
- Li, S.Z.; Zheng, B.H.; Wang, H.B.; Gao, Y.M.; Zhu, L.G.; Cai, Z.X.; Yang, N.; Chen, L. The anti-oxidation and anti-hypoxia effects of gaoyuankang on prevention of acute high altitude disease. J. High Alt. Med. 2005, 15, 6–9. [Google Scholar]
- Zhang, H.; Zhang, H.Y.; Pang, B.S.; Xia, C.Q.; Niu, S.J.; Ma, L.; Mao, Y.L.; Xin, P.; Huang, X.X.; Zhang, H.Y. Antagonistic effects of aminophylline on air way inflammation and oxidative lung tissue damage in chronic hypoxic rats. Chin. J. Pathophysiol. 2005, 21, 394–397. [Google Scholar]
- Yang, B.; Wang, G.Y.; Chen, B.; Qin, R.B.; Xi, S.L.; Chen, L. Anti-hypoxia and anti-oxidation effects of aminophylline on huaman with acute high-altitude exposure. Chin. Med. Sci. J. 2007, 22, 62–65. [Google Scholar] [PubMed]
- Damonte, G.; Salis, A.; Rossi, L.; Magnani, M.; Benatti, U. High throughput HPLC-ESI-MS method for the quantitation of dexamethasone in blood plasma. J. Pharm. Biomed. Anal. 2007, 43, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Croft, Q.P.; Kalidhar, S.; Brooks, J.T.; Herigstad, M.; Smith, T.G.; Dorrington, K.L.; Robbins, P.A. Dexamethasone mimics aspects of physiological acclimatization to 8 h of hypoxia but suppresses plasma erythropoietin. J. Appl. Physiol. 2013, 114, 948–956. [Google Scholar] [CrossRef] [PubMed]
- Markovic, B.D.; Vladimirov, S.M.; Cudina, O.A.; Odovic, J.V.; Rajic, K.D. A pampa assay as fast predictive model of passive human skin permeability of new synthesized corticosteroid c-21 esters. Molecules 2012, 17, 480–491. [Google Scholar] [CrossRef] [PubMed]
- Dordevic, S.; Kilibarda, V. Determination of diazepam and its metabolites in serum by the use of liquid chromatography—Mass spectrometry method. Vojnosanit. Pregl. 2007, 64, 659–662. [Google Scholar] [CrossRef] [PubMed]
- Umezawa, H.; Lee, X.P.; Arima, Y.; Hasegawa, C.; Marumo, A.; Kumazawa, T.; Sato, K. Determination of diazepam and its metabolites in human urine by liquid chromatography/tandem mass spectrometry using a hydrophilic polymer column. Rapid Commun. Mass Spectrom. 2008, 22, 2333–2341. [Google Scholar] [CrossRef] [PubMed]
- Samtani, M.N.; Jusko, W. Quantification of dexamethasone and corticosterone in rat biofluids and fetal tissue using highly sensitive analytical methods: assay validation and application to a pharmacokinetic study. Biomed. Chromatogr. 2007, 21, 585–597. [Google Scholar] [CrossRef] [PubMed]
- DiFrancesco, R.; Frerichs, V.; Donnelly, J.; Hagler, C.; Hochreiter, J.; Tornatore, K.M. Simultaneous determination of cortisol, dexamethasone, methylprednisolone, prednisone, prednisolone, mycophenolic acid and mycophenolic acid glucuronide in human plasma utilizing liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 2007, 859, 42–51. [Google Scholar] [CrossRef]
- Yang, Y.; Li, H.; Gao, K.; Liu, M.; Sun, Y.; Yan, T.; Fawcett, J.P.; Cui, Y. Simultaneous quantitation of dexamethasone palmitate and dexamethasone in human plasma by liquid chromatography/tandem mass spectrometry. J. Chromatogr. B 2008, 862, 119–124. [Google Scholar] [CrossRef]
- Zhang, M.F.; Zhao, Y.; Jiang, K.Y.; Han, L.; Lu, X.Y.; Wang, X.; Zuo, L.; Meng, S.N. Comparative pharmacokinetics study of sinomenine in rats after oral administration of sinomenine monomer and Sinomenium acutum extract. Molecules 2014, 19, 12065–12077. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the compounds, diazepam and dexamethasone are available from the authors.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, W.; Liu, S.; Xu, P.; Fan, M.; Xue, M. Simultaneous Quantification of Diazepam and Dexamethasone in Plasma by High-Performance Liquid Chromatography with Tandem Mass Spectrometry and Its Application to a Pharmacokinetic Comparison between Normoxic and Hypoxic Rats. Molecules 2015, 20, 6901-6912. https://doi.org/10.3390/molecules20046901
Gong W, Liu S, Xu P, Fan M, Xue M. Simultaneous Quantification of Diazepam and Dexamethasone in Plasma by High-Performance Liquid Chromatography with Tandem Mass Spectrometry and Its Application to a Pharmacokinetic Comparison between Normoxic and Hypoxic Rats. Molecules. 2015; 20(4):6901-6912. https://doi.org/10.3390/molecules20046901
Chicago/Turabian StyleGong, Wenwen, Shuhong Liu, Pingxiang Xu, Ming Fan, and Ming Xue. 2015. "Simultaneous Quantification of Diazepam and Dexamethasone in Plasma by High-Performance Liquid Chromatography with Tandem Mass Spectrometry and Its Application to a Pharmacokinetic Comparison between Normoxic and Hypoxic Rats" Molecules 20, no. 4: 6901-6912. https://doi.org/10.3390/molecules20046901
APA StyleGong, W., Liu, S., Xu, P., Fan, M., & Xue, M. (2015). Simultaneous Quantification of Diazepam and Dexamethasone in Plasma by High-Performance Liquid Chromatography with Tandem Mass Spectrometry and Its Application to a Pharmacokinetic Comparison between Normoxic and Hypoxic Rats. Molecules, 20(4), 6901-6912. https://doi.org/10.3390/molecules20046901