Xanthones from the Leaves of Garcinia cowa Induce Cell Cycle Arrest, Apoptosis, and Autophagy in Cancer Cells
Abstract
:1. Introduction
2. Results and Discussion
No | 1 a | 2 a | ||
---|---|---|---|---|
δC | δH (J in Hz) | δC | δH (J in Hz) | |
1 | 161.2 | 163.1 | ||
2 | 110.6 | 96.8 | 6.30, d (1.9) | |
3 | 158.1 | 165.7 | ||
4 | 132.9 | 96.8 | 6.51, d (1.9) | |
4a | 152.8 | 156.6 | ||
5 | 107.0 | 131.1 | ||
6 | 152.7 | 151.9 | ||
7 | 113.3 | 6.90, d (8.6) | 114.4 | 6.70, s |
8 | 116.3 | 7.49, d (8.6) | 134.7 | |
8a | 101.4 | 110.4 | ||
9 | 180.4 | 182.1 | ||
9a | 101.7 | - | ||
10a | 146.8 | 156.6 | ||
11 | 21.7 | 3.56, d (6.8) | 33.3 | 3.85, m |
12 | 122.8 | 5.23, t (6.8) | 123.4 | 5.30, t (6.6) |
13 | 131.0 | 131.7 | ||
14 | 18.1 | 1.81, s | 25.8 | 1.68, s |
15 | 25.7 | 1.62, s | 18.0 | 1.68, s |
16 | 21.5 | 3.31, d (6.8) | ||
17 | 123.0 | 5.16, t (6.8) | ||
18 | 130.0 | |||
19 | 18.0 | 1.74, s | ||
20 | 25.8 | 1.63, s | ||
1-OH | 13.46, s | 13.52, s | ||
3-OMe | 56.1 | 3.85, s |
Compounds | HeLa | A549 | PANC-1 | HL-7702 |
---|---|---|---|---|
1 | 8.09 ± 0.78 | 12.57 ± 4.30 | 14.80 ± 8.68 | 11.00 ± 4.36 |
5 | 7.06 ± 0.71 | 8.19 ± 0.99 | 9.32 ± 4.58 | 10.45 ± 4.122 |
8 | 17.61 ± 1.45 | 7.57 ± 0.57 | 17.73 ± 1.56 | 7.34 ± 0.65 |
15 | 9.83 ± 0.61 | 6.27 ± 0.71 | 11.24 ± 4.89 | 3.96 ± 2.38 |
16 | 1.09 ± 0.67 | 6.90 ± 2.23 | 10.12 ± 7.91 | 5.50 ± 1.79 |
17 | 4.71 ± 0.52 | 11.76 ± 6.29 | 6.56 ± 2.55 | 9.50 ± 3.74 |
Etoposide b | 2.91 ± 0.16 | 1.31 ± 0.09 | 22.76 ± 1.93 | 1.42 ± 0.13 |
3. Experimental Section
3.1. General
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Characterization
3.5. Cytotoxicity Assay
3.6. Flow Cytometry Analysis of Apoptosis and Cell Cycle Arrest
3.7. Western Blot Analysis
3.8. GFP-LC3 Imaging
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Llambi, F.; Green, D.R. Apoptosis and oncogenesis: Give and take in the bcl-2 family. Curr. Opin. Genet. Dev. 2011, 21, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Kimmelman, A.C. The dynamic nature of autophagy in cancer. Genes Dev. 2011, 25, 1999–2010. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Klionsky, D.J. Autophagosome formation: Core machinery and adaptations. Nat. Cell Biol. 2007, 9, 1102–1109. [Google Scholar] [CrossRef] [PubMed]
- Mizushima, N.; Klionsky, D.J. Protein turnover via autophagy: Implications for metabolism. Annu. Rev. Nutr. 2007, 27, 19–40. [Google Scholar] [CrossRef] [PubMed]
- Lao, Y.; Wan, G.; Liu, Z.; Wang, X.; Ruan, P.; Xu, W.; Xu, D.; Xie, W.; Zhang, Y.; Xu, H.; et al. The natural compound oblongifolin c inhibits autophagic flux and enhances antitumor efficacy of nutrient deprivation. Autophagy 2014, 10, 736–749. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.S.; Chand, M.; Sakhuja, R.; Jain, S.C. Xanthones as potential antioxidants. Curr. Med. Chem. 2013, 20, 4481–4507. [Google Scholar] [CrossRef] [PubMed]
- Han, A.R.; Kim, J.A.; Lantvit, D.D.; Kardono, L.B.; Riswan, S.; Chai, H.; Carcache de Blanco, E.J.; Farnsworth, N.R.; Swanson, S.M.; Kinghorn, A.D. Cytotoxic xanthone constituents of the stem bark of Garcinia mangostana (mangosteen). J. Nat. Prod. 2009, 72, 2028–2031. [Google Scholar] [CrossRef] [PubMed]
- Balunas, M.J.; Su, B.; Brueggemeier, R.W.; Kinghorn, A.D. Xanthones from the botanical dietary supplement mangosteen (Garcinia mangostana) with aromatase inhibitory activity. J. Nat. Prod. 2008, 71, 1161–1166. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.A.; Su, B.N.; Keller, W.J.; Mehta, R.G.; Kinghorn, A.D. Antioxidant xanthones from the pericarp of Garcinia mangostana (mangosteen). J. Agric. Food Chem. 2006, 54, 2077–2082. [Google Scholar] [CrossRef] [PubMed]
- Suksamrarn, S.; Suwannapoch, N.; Phakhodee, W.; Thanuhiranlert, J.; Ratananukul, P.; Chimnoi, N.; Suksamrarn, A. Antimycobacterial activity of prenylated xanthones from the fruits of Garcinia mangostana. Chem. Pharm Bull. (Tokyo) 2003, 51, 857–859. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, G.; Banumathi, B.; Suresh, G. Evaluation of the antifungal activity of natural xanthones from Garcinia mangostana and their synthetic derivatives. J. Nat. Prod. 1997, 60, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Pal, P.B.; Sinha, K.; Sil, P.C. Mangiferin, a natural xanthone, protects murine liver in Pb(II) induced hepatic damage and cell death MAP kinase, NF-κB and mitochondria dependent pathways. PLoS ONE 2013, 8, e56894. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.N.; Hsieh, H.K.; Liou, S.J.; Ko, H.H.; Lin, H.C.; Chung, M.I.; Ko, F.N.; Liu, H.W.; Teng, C.M. Synthesis and antithrombotic effect of xanthone derivatives. J. Pharm Pharmacol. 1996, 48, 887–890. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Orozco, F.; Chitchumroonchokchai, C.; Lesinski, G.B.; Suksamrarn, S.; Failla, M.L. Alpha-mangostin: Anti-inflammatory activity and metabolism by human cells. J. Agric. Food Chem. 2013, 61, 3891–3900. [Google Scholar] [CrossRef] [PubMed]
- Tantapakul, C.; Phakhodee, W.; Ritthiwigrom, T.; Cheenpracha, S.; Prawat, U.; Deachathai, S.; Laphookhieo, S. Rearranged benzophenones and prenylated xanthones from Garcinia propinqua twigs. J. Nat. Prod. 2012, 75, 1660–1664. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Koh, J.J.; Li, J.; Qiu, S.; Aung, T.T.; Lin, H.; Lakshminarayanan, R.; Dai, X.; Tang, C.; Lim, F.H.; et al. Design and synthesis of amphiphilic xanthone-based, membrane-targeting antimicrobials with improved membrane selectivity. J. Med. Chem. 2013, 56, 2359–2373. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Rao, H.; Hua, R.; Li, C.J. Rhodium-catalyzed xanthone formation from 2-aryloxybenzaldehydes via cross-dehydrogenative coupling (CDC). Org. Lett. 2012, 14, 902–905. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, X.; Sun, H.; Wang, X.; Zhao, L.; Gao, Y.; Liu, X.; Zhang, S.; Wang, Y.; Yang, Y.; et al. Garcinia xanthones as orally active antitumor agents. J. Med. Chem. 2013, 56, 276–292. [Google Scholar] [CrossRef] [PubMed]
- Qi, Q.; Lu, N.; Li, C.; Zhao, J.; Liu, W.; You, Q.; Guo, Q. Involvement of reck in gambogic acid induced anti-invasive effect in a549 human lung carcinoma cells. Mol. Carcinog. 2014. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.M.; Zhang, J.F.; Wang, H.; Tan, H.S.; Wang, W.M.; Chen, S.C.; Zhu, X.; Chan, T.M.; Tse, C.M.; Leung, K.S.; et al. Apoptosis induced by 1,3,6,7-tetrahydroxyxanthone in hepatocellular carcinoma and proteomic analysis. Apoptosis 2012, 17, 842–851. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.M.; Zhang, J.F.; Wang, H.; Xi, Z.C.; Wang, W.M.; Zhuang, P.; Zhu, X.; Chen, S.C.; Chan, T.M.; Leung, K.S.; et al. Heat shock protein 27 mediates the effect of 1,3,5-trihydroxy-13,13-dimethyl-2H-pyran[7,6-b]xanthone on mitochondrial apoptosis in hepatocellular carcinoma. J. Proteomics 2012, 75, 4833–4843. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.L.; Wang, S.P.; Du, L.J.; Yang, J.S.; Xiao, P.G. Xanthones from Hypericum japonicum and H. henryi. Phytochemistry 1998, 49, 1395–1402. [Google Scholar] [CrossRef]
- Shen, J.; Yang, J.S. Two new xanthones from the stems of Garcinia cowa. Chem. Pharm Bull. (Tokyo) 2006, 54, 126–128. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.Y.; Han, Q.B.; Cao, X.W.; Qiao, C.F.; Song, J.Z.; Chen, S.L.; Yang, D.J.; Yiu, H.; Xu, H.X. Two new xanthones isolated from the stem bark of Garcinia lancilimba. Chem. Pharm. Bull. 2007, 55, 950–952. [Google Scholar] [CrossRef] [PubMed]
- Ito, C.; Miyamoto, Y.; Nakayama, M.; Kawai, Y.; Rao, K.S.; Furukawa, H. A novel depsidone and some new xanthones from Garcinia species. Chem. Pharm. Bull. 1997, 45, 1403–1413. [Google Scholar] [CrossRef]
- Liu, X.; Yu, T.; Gao, X.M.; Zhou, Y.; Qiao, C.F.; Peng, Y.; Chen, S.L.; Luo, K.Q.; Xu, H.X. Apoptotic effects of polyprenylated benzoylphloroglucinol derivatives from the twigs of Garcinia multiflora. J. Nat. Prod. 2010, 73, 1355–1359. [Google Scholar] [CrossRef] [PubMed]
- Hamed, W.; Brajeul, S.; Mahuteau-Betzer, F.; Thoison, O.; Mons, S.; Delpech, B.; Nguyen, V.H.; Sevenet, T.; Marazano, C. Oblongifolins A–D, polyprenylated benzoylphloroglucinol derivatives from Garcinia oblongifolia. J. Nat. Prod. 2006, 69, 774–777. [Google Scholar] [CrossRef] [PubMed]
- Fuller, R.W.; Blunt, J.W.; Boswell, J.L.; Cardellina, J.H., II; Boyd, M.R. Guttiferone F, the first prenylated benzophenone from Allanblackia stuhlmannii. J. Nat. Prod. 1999, 62, 130–132. [Google Scholar] [CrossRef] [PubMed]
- Marti, G.; Eparvier, V.; Moretti, C.; Prado, S.; Grellier, P.; Hue, N.; Thoison, O.; Delpech, B.; Gueritte, F.; Litaudon, M. Antiplasmodial benzophenone derivatives from the root barks of Symphonia globulifera (Clusiaceae). Phytochemistry 2010, 71, 964–974. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Kan, W.L.; Zhou, Y.; Song, J.Z.; Han, Q.B.; Qiao, C.F.; Cho, C.H.; Rudd, J.A.; Lin, G.; Xu, H.X. Cytotoxic acylphloroglucinol derivatives from the twigs of Garcinia cowa. J. Nat. Prod. 2010, 73, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Botta, B.; Delle Monache, G.; Delle Monache, F.; Bettolo, G.B.M.; Menichini, F. Vismione H and prenylated xanthones from Vismia guineensis. Phytochemistry 1986, 25, 1217–1219. [Google Scholar] [CrossRef]
- Scheinmann, F.; Sripong, N.A. Xanthones from the heartwood of calophyllum neo-ebudicum: Comments, on the taxonomic value of jacareubin in Calophyllum species. Phytochemistry 1971, 10, 1331–1333. [Google Scholar] [CrossRef]
- Chen, Y.; Zhong, F.; He, H.; Hu, Y.; Zhu, D.; Yang, G. Structure elucidation and NMR spectral assignment of five new xanthones from the bark of Garcinia xanthochymus. Magn. Reson. Chem. 2008, 46, 1180–1184. [Google Scholar] [CrossRef] [PubMed]
- Louh, G.N.; Lannang, A.M.; Mbazoa, C.D.; Tangmouo, J.G.; Komguem, J.; Castilho, P.; Ngninzeko, F.N.; Qamar, N.; Lontsi, D.; Choudhary, M.I.; et al. Polyanxanthone A, B and C, three xanthones from the wood trunk of Garcinia polyantha oliv. Phytochemistry 2008, 69, 1013–1017. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.Z.; Quan, X.F.; Tian, W.X.; Hu, J.M.; Wang, P.C.; Huang, S.Z.; Cheng, Z.Q.; Liang, W.J.; Zhou, J.; Ma, X.F.; et al. Fatty acid synthase inhibitors of phenolic constituents isolated from Garcinia mangostana. Bioorg. Med. Chem. Lett 2010, 20, 6045–6047. [Google Scholar] [CrossRef] [PubMed]
- Ghosal, S.; Chaudhuri, R.K. New tetraoxygenated xanthones of Canscora decussata. Phytochemistry 1973, 12, 2035–2038. [Google Scholar] [CrossRef]
- Choudhary, M.I.; Azizuddin; Jalil, S.; Atta-ur-Rahman. Bioactive phenolic compounds from a medicinal lichen, Usnea longissima. Phytochemistry 2005, 66, 2346–2350. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Zeng, Y.; Mei, W.; Li, X.; Zhong, H.; Dai, H. Chemical constituents from the twigs of Calophyllum inophyllum linn. Redai Yaredai Zhiwu Xuebao 2011, 19, 355–359. [Google Scholar]
- Zhang, C.; Wu, X.; Zhang, M.; Zhu, L.; Zhao, R.; Xu, D.; Lin, Z.; Liang, C.; Chen, T.; Chen, L.; et al. Small molecule R1498 as a well-tolerated and orally active kinase inhibitor for hepatocellular carcinoma and gastric cancer treatment via targeting angiogenesis and mitosis pathways. PLoS ONE 2013, 8, e65264. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Cao, J.; Qian, S.; Li, L.; Hu, C.; Weng, Q.; Lou, J.; Zhu, D.; Zhu, H.; Hu, Y.; et al. 5k, a novel beta-o-demethyl-epipodophyllotoxin analogue, inhibits the proliferation of cancer cells in vitro and in vivo via the induction of g2 arrest and apoptosis. Investig. New Drug 2011, 29, 786–799. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the compounds oblongifolin C and cambogin. are available from the authors.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Z.; Zhang, H.; Xu, D.; Lao, Y.; Fu, W.; Tan, H.; Cao, P.; Yang, L.; Xu, H. Xanthones from the Leaves of Garcinia cowa Induce Cell Cycle Arrest, Apoptosis, and Autophagy in Cancer Cells. Molecules 2015, 20, 11387-11399. https://doi.org/10.3390/molecules200611387
Xia Z, Zhang H, Xu D, Lao Y, Fu W, Tan H, Cao P, Yang L, Xu H. Xanthones from the Leaves of Garcinia cowa Induce Cell Cycle Arrest, Apoptosis, and Autophagy in Cancer Cells. Molecules. 2015; 20(6):11387-11399. https://doi.org/10.3390/molecules200611387
Chicago/Turabian StyleXia, Zhengxiang, Hong Zhang, Danqing Xu, Yuanzhi Lao, Wenwei Fu, Hongsheng Tan, Peng Cao, Ling Yang, and Hongxi Xu. 2015. "Xanthones from the Leaves of Garcinia cowa Induce Cell Cycle Arrest, Apoptosis, and Autophagy in Cancer Cells" Molecules 20, no. 6: 11387-11399. https://doi.org/10.3390/molecules200611387
APA StyleXia, Z., Zhang, H., Xu, D., Lao, Y., Fu, W., Tan, H., Cao, P., Yang, L., & Xu, H. (2015). Xanthones from the Leaves of Garcinia cowa Induce Cell Cycle Arrest, Apoptosis, and Autophagy in Cancer Cells. Molecules, 20(6), 11387-11399. https://doi.org/10.3390/molecules200611387