Microwave-Assisted Resolution of α-Lipoic Acid Catalyzed by an Ionic Liquid Co-Lyophilized Lipase
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Lipase Source
Lipase | Reaction Time (h) | Conversion (%) | ees (%) | Enzyme Activity (μmol/h/mg) | Enantioselectivity ( E value) | Stereoselectivity |
---|---|---|---|---|---|---|
Candida cylindracea A.Y. lipase (AYL) | 12 | 19.8 | 8.4 | 3.3 | 2.2 | S |
Mucor miehei lipase (MML) | 20 | 24.0 | 6.3 | 2.4 | 1.6 | S |
Porcine pancreatic lipase (PPL) | 30 | 16.5 | 5.8 | 1.1 | 1.9 | S |
Candida lipolytic lipase (CLL) | 12 | 22.2 | 13.6 | 3.7 | 3.2 | S |
2.2. Effect of Organic Media
Solvent | Log P | Reaction Time (h) | Conversion (%) | ees (%) | Enzyme Activity (μmol/h/mg) | Enantioselectivity (E value) |
---|---|---|---|---|---|---|
Isooctane | 4.5 | 12 | 25.2 | 3.0 | 4.2 | 1.2 |
Heptane | 4.0 | 12 | 22.2 | 13.6 | 3.7 | 3.2 |
Cyclohexane | 3.2 | 12 | 21.6 | 17.5 | 3.6 | 5.3 |
Toluene | 2.5 | 15 | 15.8 | 8.5 | 2.1 | 2.9 |
Acetonitrile | −0.33 | 28 | 19.6 | 9.3 | 1.4 | 2.4 |
1,4-Dioxane | −1.1 | 60 | 26.8 | 4.2 | 0.9 | 1.3 |
2.3. Effect of ILs Used for the Ionic Liquid Co-Lyophilized Enzyme
Ionic Liquid | Reaction Time (h) | Conversion (%) | ees (%) | Enzyme Activity (μmol/h/mg) | Enantioselectivity (E value) |
---|---|---|---|---|---|
[Bmim] Cl | 48 | 16.8 | 7.4 | 0.7 | 2.3 |
[Bmim] Ac | 30 | 21.0 | 11.7 | 1.4 | 2.9 |
[Bmim] BF4 | 5 | 26.5 | 27.0 | 10.6 | 9.1 |
None | 12 | 21.6 | 17.5 | 3.6 | 5.3 |
2.4. Microwave Irradiation vs. Conventional Heating
Conventional Heating | Microwave | |||
---|---|---|---|---|
Enzyme Activity (μmol/h/mg) | Enantioselectivity (E value) | Enzyme Activity (μmol/h/mg) | Enantioselectivity (E value) | |
Free CLL | 3.6 | 5.3 | 5.1 | 6.7 |
Ionic liquid co-lyophilized CLL | 9.8 | 12.5 | 170.4 | 38.6 |
2.5. Effect of Microwave Power
2.6. Effect of Microwave Temperature
2.7. Reusability of the Ionic Liquid Co-Lyophilized Enzyme under Microwave Irradiation
Reaction Cycle | Relative Activity (%) | E value |
---|---|---|
1 | 100 | 41.2 |
2 | 99.2 | 40.9 |
3 | 98.5 | 40.6 |
4 | 97.7 | 40.3 |
5 | 96.4 | 39.5 |
6 | 95.2 | 38.9 |
3. Experimental Section
3.1. Materials
3.2. Microwave Equipment
3.3. Preparation of the Co-Lyophilized Lipase
3.4. Resolution of α-Lipoic Acid
3.5. Reusability of the Co-Lyophilized Lipase
3.6. High Performance Liquid Chromatography (HPLC) Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Reed, L.J.; Debusk, B.G.; Gunsalus, I.C.; Hornberger, C.S., Jr. Crystalline α-lipoic acid: A catalytic agent associated with pyruvate dehydrogenase. Science 1951, 114, 93–94. [Google Scholar] [CrossRef] [PubMed]
- Packer, L.; Witt, E.H.; Tritschler, H.J. Alpha-lipoic acid as a biological antioxidant. Free Radic. Biol. Med. 1995, 19, 227–250. [Google Scholar] [CrossRef]
- Cho, Y.S.; Lee, J.; Lee, T.H.; Lee, E.Y.; Lee, K.U.; Park, J.Y.; Moon, H.B.J. α-Lipoic acid inhibits airway inflammation and hyperresponsiveness in a mouse model of asthma. Allergy Clin. Immunol. 2004, 114, 429–435. [Google Scholar]
- Baur, A.; Harrer, T.; Peukert, M.; Jahn, G.; Kalden, J.R.; Fleckenstein, B. Alpha-lipoic acid is an effective inhibitor of human immuno-deficiency virus (HIV-1) replication. Wien. Klin. Wochenschr. 1991, 69, 722–724. [Google Scholar] [CrossRef]
- Brookes, M.H.; Golding, B.T.; Howes, D.A.; Hudson, A.T. Proof that the absolute configuration of natural α-lipoic acid is R by the synthesis of its enantiomer [(S)-(–)-α-lipoic acid] from (S)-malic acid. J. Chem. Soc. Chem. Commun. 1983, 19, 1051–1053. [Google Scholar] [CrossRef]
- Upadhya, T.T.; Nikalje, M.D.; Sudalai, A. Asymmetric dihydroxylation and hydrogenation approaches to the enantioselective synthesis of R-(+)-α-lipoic acid. Tetrahedron Lett. 2001, 42, 4891–4893. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, X.; Zhang, J.; Wang, W.; Duan, W. An enantioselective formal synthesis of (+)-(R)-α-lipoic acid by an l-proline-catalyzed aldol reaction. Synthesis 2008, 3, 383–386. [Google Scholar]
- Chavan, S.P.; Praveen, C.; Ramakrishna, G.; Kalkote, U.R. Enantioselective synthesis of R-(+)-α and S-(−)-α-lipoic acid. Tetrahedron Lett. 2004, 45, 6027–6028. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Zhang, W.X.; Zheng, G.W.; Xu, J.H. Identification of an ε-Keto ester reductase for the efficient synthesis of an (R)-α-lipoic acid precursor. Adv. Synth. Catal. 2015. [Google Scholar] [CrossRef]
- Olbrich, M.; Gewald, R. Process for the Enantioselective Reduction of 8-Chloro-6-oxo-octanoic Acid Alkyl Esters. U.S. Patent 7,135,328 [P], 14 November 2006. [Google Scholar]
- Müller, M.; Sauer, W.; Laban, G. From 8-Chloro-6-oxooctanoic Acid Alkyl Esters, Using Alcohol Dehydrogenases or Carbonyl Reductases in the Presence of NADH or NADPH as Cofactor; Intermediates to Alpha-Lipoic Acid. U.S. Patent 7,157,253[P], 2 January 2007. [Google Scholar]
- Adger, B.; Bes, M.T.; Grogan, G.; McCague, R.; Pedragosa-Moreau, S.; Roberts, S.M.; Villa, R.; Wan, P.W.H.; Willetts, A.J. The synthesis of (R)-(+)-lipoic acid using a monooxygenase-catalysed biotransformation as the key step. Bioorganic Med. Chem. 1997, 5, 253–261. [Google Scholar] [CrossRef]
- Gopalan, A.S.; Jacobs, H.K. Bakers’ yeast reduction of alkyl 6-chloro-3-oxohexanoates: Synthesis of (R)-(+)-α-lipoic acid. J. Chem. Soc. Perkin. Trans. 1990, 1, 1897–1900. [Google Scholar] [CrossRef]
- Fadnavis, N.W.; Koteshwar, K. Remote control of stereoselectivity: Lipase catalyzed enantioselective esterification of racemic α-lipoic acid. Tetrahedron Asymmetry 1997, 8, 337–339. [Google Scholar] [CrossRef]
- Yan, H.D.; Zhang, Y.J.; Shen, L.J.; Wang, Z. Lipase-catalysed sequential kinetic resolution of α-lipoic acid. Maejo Int. J. Sci. Technol. 2012, 6, 152–158. [Google Scholar]
- Yan, H.D.; Wang, Z.; Chen, L.J. Kinetic resolution of α-lipoic acid via enzymatic differentiation of a remote stereocenter. J. Ind. Microbiol. Biotechnol. 2009, 36, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.J.; Ni, Y.; Zheng, G.W.; Chen, H.H.; Zhu, Z.R.; Xu, J.H. Enzymatic resolution of a chiral chlorohydrin precursor for (R)-α-lipoic acid synthesis via lipase catalyzed enantioselective transacylation with vinyl acetate. J. Mol. Catal. B Enzym. 2014, 99, 102–107. [Google Scholar] [CrossRef]
- Motasemi, F.; Ani, F.N. A review on microwave-assisted production of biodiesel. Renew. Sustain. Energy Rev. 2012, 16, 4719–4733. [Google Scholar] [CrossRef]
- Oghbaei, M.; Mirzaee, O. Microwave versus conventional sintering: A review of fundamentals, advantages and applications. J. Alloys Compd. 2010, 494, 175–189. [Google Scholar] [CrossRef]
- Lidström, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted organic chemistry—A review. Tetrahedron 2001, 57, 9225–9283. [Google Scholar] [CrossRef]
- Strauss, C.R.; Rooney, D.W. Accounting for clean, fast and high yielding reactions under microwave conditions. Green Chem. 2010, 12, 1340–1344. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, S.; Deng, Y. Recent advances in ionic liquid catalysis. Green Chem. 2011, 13, 2619–2637. [Google Scholar] [CrossRef]
- Tian, R.; Yang, C.H.; Wei, X.F.; Xun, E.N.; Wang, R.; Cao, S.G.; Wang, Z.; Wang, L. Optimization of APE1547-catalyzed enantioselective transesterification of (R/S)-2-methyl-1-butanol in an ionic liquid. Biotechnol. Bioprocess Eng. 2011, 16, 337–342. [Google Scholar] [CrossRef]
- Sheldon, R.A. Green solvents for sustainable organic synthesis: State of the art. Green Chem. 2005, 7, 267–278. [Google Scholar] [CrossRef]
- Yang, Z.; Pan, W. Ionic liquids: Green solvents for nonaqueous biocatalysis. Enzym. Microb. Technol. 2005, 37, 19–28. [Google Scholar] [CrossRef]
- Martínez-Palou, R. Ionic liquid and microwave-assisted organic synthesis: A “green” and synergic couple. J. Mex. Chem. Soc. 2007, 51, 252–264. [Google Scholar]
- Yu, D.; Wang, Y.; Wang, C.; Ma, D.; Fang, X. Combination use of microwave irradiation and ionic liquid in enzymatic isomerization of xylose to xylulose. J. Mol. Catal. B Enzym. 2012, 79, 8–14. [Google Scholar] [CrossRef]
- Yu, D.; Ma, D.; Wang, Z.; Wang, Y.; Pan, Y.; Fang, X. Microwave-assisted enzymatic resolution of (R,S)-2-octanol in ionic liquid. Process Biochem. 2012, 47, 479–484. [Google Scholar] [CrossRef]
- Park, S.; Kazlauskas, R.J. Biocatalysis in ionic liquids-advantages beyond green technology. Curr. Opin. Biotechnol. 2003, 14, 432–437. [Google Scholar] [CrossRef]
- Kappe, C.O. Microwave dielectric heating in synthetic organic chemistry. Chem. Soc. Rev. 2008, 37, 1127–1139. [Google Scholar] [CrossRef] [PubMed]
- Mallakpour, S.; Rafiee, Z. New developments in polymer science and technology using combination of ionic liquids and microwave irradiation. Prog. Polym. Sci. 2011, 36, 1754–1765. [Google Scholar] [CrossRef]
- Itoh, T.; Matsushita, Y.; Abe, Y.; Han, S.H.; Wada, S.; Hayase, S.; Kawatsura, M.; Takai, S.; Morimoto, M.; Hirose, Y. Increased enantioselectivity and remarkable acceleration of lipase-catalyzed transesterification by using an imidazolium PEG-alkyl sulfate ionic liquid. Chem. Eur. J. 2006, 12, 9228–9237. [Google Scholar] [CrossRef] [PubMed]
- Abe, Y.; Hirakawa, T.; Nakajima, S.; Okano, N.; Hayase, S.; Kawatsura, M.; Hirose, Y.; Itoh, T. Remarkable activation of an enzyme by (R)-oyrrolidine-substituted imidazolium alkyl PEG sulfate. Adv. Synth. Catal. 2008, 350, 1954–1958. [Google Scholar] [CrossRef]
- Abe, Y.; Yoshiyama, K.; Yagi, Y.; Hayase, S.; Kawatsura, M.; Itoh, T. A rational design of phosphonium salt type ionic liquids for ionic liquid coated-lipase catalyzed reaction. Green Chem. 2010, 12, 1976–1980. [Google Scholar] [CrossRef]
- Abe, Y.; Yagi, Y.; Hayase, S.; Kawatsura, M.; Itoh, T. Ionic liquid engineering for lipase-mediated optical resolution of secondary alcohols: Design of ionic liquids applicable to ionic liquid coated-lipase catalyzed reaction. Ind. Eng. Chem. Res. 2012, 51, 9952–9958. [Google Scholar] [CrossRef]
- Lee, J.K.; Kim, M.J. Ionic liquid co-lyophilized enzyme for biocatalysis in organic solvent: Remarkably enhanced activity and enantioselectivity. J. Mol. Catal. B Enzym. 2011, 68, 275–278. [Google Scholar] [CrossRef]
- Yoshiyama, K.; Abe, Y.; Hayse, S.; Nokami, T.; Itoh, T. Synergetic activation of lipase by an amino acid with alkyl-PEG-sulfate ionic liquid. Chem. Lett. 2013, 42, 663–665. [Google Scholar] [CrossRef]
- Hudson, E.P.; Eppler, R.K.; Clark, D.S. Biocatalysis in semi-aqueous and nearly anhydrous conditions. Curr. Opin. Biotechnol. 2005, 16, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Carrea, G.; Otto, L.G.; Riva, S. Role of solvents in the control of enzyme selectivity in organic media. Trends Biotechnol. 1995, 13, 63–70. [Google Scholar] [CrossRef]
- Gorman, L.A.S.; Dordick, J.S. Organic solvents strip water off enzymes. Biotechnol. Bioeng. 1992, 39, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Tai, J.D.; Wang, R.; Xun, E.N.; Wei, X.F.; Wang, L.; Wang, Z. Enantioselective transesterification of glycidol catalysed by a novel lipase expressed from Bacillus subtilis. Biotechnol. Appl. Biochem. 2010, 56, 1–6. [Google Scholar] [PubMed]
- Chen, C.; Sun, L.D.; Li, Z.X.; Li, L.L.; Zhang, J.; Zhang, Y.W.; Yan, C.H. Ionic liquid-based route to spherical NaYF4 nanoclusters with the assistance of microwave radiation and their multicolor upconversion luminescence. Langmuir 2010, 26, 8797–8803. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.C.; Niu, X.D.; Fang, X.D.; Chen, G.; Zhang, H.; Yue, H.; Wang, L.; Zhao, D.T.; Wang, Z. Enantioselective esterification of ibuprofen under microwave irradiation. Molecules 2013, 18, 5472–5481. [Google Scholar] [CrossRef] [PubMed]
- Niebch, G.; Büchele, B.; Blome, J.; Grieb, S.; Brandt, G.; Kampa, P.; Raffel, H.H.; Locher, M.; Borbe, H.O.; Nubert, I.; et al. Enantioselective high-performance liquid chromatography assay of (+)R- and (−)S-α-lipoic acid in human plasma. Chirality 1997, 9, 32–36. [Google Scholar] [CrossRef]
- Chen, C.S.; Fujimoto, Y.; Girdaukas, G.; Sih, C.J. Quantitative analyses of biochemical kinetic resolutions of enantiomers. J. Am. Chem. Soc. 1982, 104, 7294–7299. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds ((R,S)-α-lipoic acid and (R)-α-lipoic acid) are available from the authors.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, N.; Wang, L.; Wang, Z.; Jiang, L.; Wu, Z.; Yue, H.; Xie, X. Microwave-Assisted Resolution of α-Lipoic Acid Catalyzed by an Ionic Liquid Co-Lyophilized Lipase. Molecules 2015, 20, 9949-9960. https://doi.org/10.3390/molecules20069949
Liu N, Wang L, Wang Z, Jiang L, Wu Z, Yue H, Xie X. Microwave-Assisted Resolution of α-Lipoic Acid Catalyzed by an Ionic Liquid Co-Lyophilized Lipase. Molecules. 2015; 20(6):9949-9960. https://doi.org/10.3390/molecules20069949
Chicago/Turabian StyleLiu, Ning, Lei Wang, Zhi Wang, Liyan Jiang, Zhuofu Wu, Hong Yue, and Xiaona Xie. 2015. "Microwave-Assisted Resolution of α-Lipoic Acid Catalyzed by an Ionic Liquid Co-Lyophilized Lipase" Molecules 20, no. 6: 9949-9960. https://doi.org/10.3390/molecules20069949
APA StyleLiu, N., Wang, L., Wang, Z., Jiang, L., Wu, Z., Yue, H., & Xie, X. (2015). Microwave-Assisted Resolution of α-Lipoic Acid Catalyzed by an Ionic Liquid Co-Lyophilized Lipase. Molecules, 20(6), 9949-9960. https://doi.org/10.3390/molecules20069949