Ultrasound-Assisted Extraction May Not Be a Better Alternative Approach than Conventional Boiling for Extracting Polysaccharides from Herbal Medicines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Sample Preparation
2.1.1. UAE
Statistical Analysis and Model Fitting
Verification of Predictive Model
2.1.2. BWE
2.2. Quantitative Comparison of Polysaccharides in Herbal Medicines by UAE and BWE
2.3. Qualitative Comparison of Polysaccharides in Herbal Medicines by UAE and BWE
2.4. Effects of Extraction Conditions on Polysaccharide Recovery by UAE
2.5. Effects of Structural Properties on Polysaccharide Recovery by UAE
3. Materials and Methods
3.1. Chemicals, Reagents and Herbal Materials
3.2. Sample Preparation
3.2.1. UAE
Box-Behnken Design and Statistical Analysis
Extraction Procedure
3.2.2. BWE
3.2.3. Preparation of Crude Polysaccharide
3.3. Phenol-Sulphuric Acid Analysis
3.4. HPGPC-CAD analysis
3.5. Spiked Recovery Testing on Standard Glucans
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zong, A.; Cao, H.; Wang, F. Anticancer polysaccharides from natural resources: A review of recent research. Carbohydr. Polym. 2012, 90, 1395–1410. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.H.; Zhu, L.; Jiang, J.G. Immunoregulatory actions of polysaccharides from Chinese herbal medicine. Expert Opin. Ther. Targets 2010, 14, 1367–1402. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.T.; Wu, J.A.; Mehendale, S.; Aung, H.H.; Yuan, C.S. Anti-hyperglycemic effect of the polysaccharides fraction from American ginseng berry extract in ob/ob mice. Phytomedicine 2004, 11, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Pang, W.; Chen, J.; Bai, S.; Zheng, Z.; Wu, X. Hypoglycemic effect of polysaccharides with different molecular weight of Pseudostellaria heterophylla. BMC Complement. Altern. Med. 2013, 13, 267. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.S.; Xu, J.; Zhu, H.; Wu, J.; Xu, J.; Yan, R.; Li, X.Y.; Liu, H.H.; Duan, S.M.; Wang, Z.; et al. Gut microbiota-involved mechanisms in enhancing systemic exposure of ginsenosides by coexisting polysaccharides in ginseng decoction. Sci. Rep. 2016, 6, 22474. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wu, D.; Lv, G.; Zhao, J. Carbohydrates analysis in herbal glycomics. TrAC Trends Anal. Chem. 2013, 52, 155–169. [Google Scholar] [CrossRef]
- Hu, D.; Cheong, K.; Zhao, J.; Li, S. Chromatography in characterization of polysaccharides from medicinal plants and fungi. J. Sep. Sci. 2013, 36, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Wang, Z.; Sun, G.; Shen, L.; Xu, D.; Feng, Y. A sensitive and specific HPGPC-FD method for the study of pharmacokinetics and tissue distribution of Radix Ophiopogonis polysaccharide in rats. Biomed. Chromatogr. 2010, 24, 820–825. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.C.; Kim, S.Y.; Kim, Y.T.; Kim, E.A.; Lee, S.H.; Ko, S.C.; Wijesinghe, W.A.J.P.; Samarakoon, K.W.; Kim, Y.S.; Cho, J.H.; et al. In vitro and in vivo antioxidant activities of polysaccharide purified from aloe vera (Aloe barbadensis) gel. Carbohydr. Polym. 2014, 99, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Joseph, M.M.; Aravind, S.R.; George, S.K.; Varghese, S.; Sreelekha, T.T. A galactOmannan polysaccharide from Punica granatum imparts in vitro and in vivo anticancer activity. Carbohydr. Polym. 2013, 98, 1466–1475. [Google Scholar] [CrossRef] [PubMed]
- Min, F.F.; Wan, Y.J.; Nie, S.P.; Xie, M.Y. Study on colon health benefit of polysaccharide from Cyclocarya paliurus leaves in vivo. J. Funct. Foods 2014, 11, 203–209. [Google Scholar] [CrossRef]
- Xu, J.; Yue, R.Q.; Liu, J.; Ho, H.M.; Yi, T.; Chen, H.B.; Han, Q.B. Structural diversity requires individual optimization of ethanol concentration in polysaccharide precipitation. Int. J. Biol. Macromol. 2014, 67, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, G.; Li, X.; Zhang, Y.; Yang, J.; Chang, J.; Sun, X.; Zhou, X.; Guo, Y.; Xu, Y.; et al. Traditional Chinese Medicine in cancer care: A review of controlled clinical studies published in Chinese. PLoS ONE 2013, 8, e60338. [Google Scholar]
- Li, S.L.; Lai, S.F.; Song, J.Z.; Qiao, C.F.; Liu, X.; Zhou, Y.; Cai, H.; Cai, B.C.; Xu, H.X. Decocting-induced chemical transformations and global quality of Du-Shen-Tang, the decoction of ginseng evaluated by UPLC-Q-TOF-MS/MS based chemical profiling approach. J. Pharm. Biomed. Anal. 2010, 53, 946–957. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Jia, X.; Fang, X.; Li, P.; He, C.; Chen, M. Ultrasonic extraction, antioxidant and anticancer activities of novel polysaccharides from Chuanxiong rhizome. Int. J. Biol. Macromol. 2016, 85, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Afshari, K.; Samavati, V.; Shahidi, S.A. Ultrasonic-assisted extraction and in vitro antioxidant activity of polysaccharide from Hibiscus leaf. Int. J. Biol. Macromol. 2015, 74, 558–567. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Li, Y.; Dong, H.; Liu, Z.; Li, S.; Yang, S.; Li, X. Optimization of ultrasonic extraction process of polysaccharides from Ornithogalum Caudatum Ait and evaluation of its biological activities. Ultrason. Sonochem. 2012, 19, 1160–1168. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Li, X.; Jiao, Y.; Jiang, D.; Zhang, L.; Fan, B.; Zhang, Q. Optimization for ultrasound-assisted extraction of polysaccharides with antioxidant activity in vitro from the aerial root of Ficus microcarpa. Carbohydr. Polym. 2014, 110, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gong, G.; Zhang, J.; Jia, S.; Li, F.; Wang, Y.; Wu, S. Response surface optimization of ultrasound-assisted enzymatic extraction polysaccharides from Lycium barbarum. Carbohydr. Polym. 2014, 110, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Kennedy, J.F.; Wang, X.; Yuan, X.; Zhao, B.; Peng, Y.; Huang, Y. Optimization of ultrasonic circulating extraction of polysaccharides from Asparagus officinalis using response surface methodology. Int. J. Biol. Macromol. 2011, 49, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Yu, C.; Chen, J.; Li, X.; Wang, W.; Li, S. Ultrasonic-assisted extraction optimized by response surface methodology, chemical composition and antioxidant activity of polysaccharides from Tremella mesenterica. Carbohydr. Polym. 2011, 83, 217–224. [Google Scholar] [CrossRef]
- Xie, J.H.; Shen, M.Y.; Xie, M.Y.; Nie, S.P.; Chen, Y.; Li, C.; Huang, D.F.; Wang, Y.X. Ultrasonic-assisted extraction, antimicrobial and antioxidant activities of Cyclocarya paliurus (Batal.) Iljinskaja polysaccharides. Carbohydr. Polym. 2012, 89, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano Tixier, A.S.; Abert Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Braga, M.E.M.; Seabra, I.J.; Dias, A.M.A.; de SoUSA, H.C. Recent trends and perspectives for the extraction of natural products. In Natural Product Extraction: Principles and Applications; Rostagno, M.A., Prado, J.M., Eds.; Royal Society of Chemistry: Cambridge, UK, 2013; pp. 231–284. [Google Scholar]
- Ogutu, F.O. Ultrasonic modification of selected polysaccharides—Review. J. Food Process. Technol. 2015, 6, 1000446. [Google Scholar] [CrossRef]
- Chandrapala, J.; Oliver, C.M.; Kentish, S.; Ashokkumar, M. Use of power ultrasound to improve extraction and modify phase transitions in food processing. Food Rev. Int. 2013, 29, 67–91. [Google Scholar] [CrossRef]
- Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and opportunities for ultrasound assisted extraction in the food industry-A review. Innov. Food Sci. Emerg. Technol. 2008, 9, 161–169. [Google Scholar] [CrossRef]
- Hromádková, Z.; Ebringerová, A.; Valachovič, P. Comparison of classical and ultrasound-assisted extraction of polysaccharides from Salvia officinalis L. Ultrason. Sonochem. 1999, 5, 163–168. [Google Scholar] [CrossRef]
- Hromádková, Z.; Ebringerová, A.; Valachovič, P. Ultrasound-assisted extraction of water-soluble polysaccharides from the roots of valerian (Valeriana officinalis L.). Ultrason. Sonochem. 2002, 9, 37–44. [Google Scholar] [CrossRef]
- Huang, S.; Ning, Z. Extraction of polysaccharide from Ganoderma lucidum and its immune enhancement activity. Int. J. Biol. Macromol. 2010, 47, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Z.; Wang, L.; Walid, E.; Zhang, H. Ultrasonic-assisted extraction of polysaccharides from Hohenbuehelia serotina by response surface methodology. Int. J. Biol. Macromol. 2012, 51, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.Y.; Fan, Y.; Yu, Q. T.; Ge, Y.Z.; Yan, C.P.; Alolga, R.N.; Li, P.; Ma, Z.H.; Qi, L.W. Integrated evaluation of malonyl ginsenosides, amino acids and polysaccharides in fresh and processed ginseng. J. Pharm. Biomed. Anal. 2015, 107, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.Q.; Shi, Q.; Duan, J.A.; Dong, T.T.X.; Tsim, K.W.K. Chemical analysis of Radix astragali (Huangqi) in China: A comparison with its adulterants and seasonal variations. J. Agric. Food Chem. 2002, 50, 4861–4866. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Li, S.L.; Yue, R.Q.; Ko, C.H.; Hu, J.M.; Liu, J.; Ho, H.M.; Yi, T.; Zhao, Z.Z.; Zhou, J.; et al. Bin A novel and rapid HPGPC-based strategy for quality control of saccharide-dominant herbal materials: Dendrobium officinale, a case study. Anal. Bioanal. Chem. 2014, 406, 6409–6417. [Google Scholar] [CrossRef] [PubMed]
- Box, G.E.P.; Behnken, D.W. Some new three level designs for the study of variables quantitative. Technometrics 1960, 2, 455–475. [Google Scholar] [CrossRef]
- Zhang, L.; Ye, X.; Ding, T.; Sun, X.; Xu, Y.; Liu, D. Ultrasound effects on the degradation kinetics, structure and rheological properties of apple pectin. Ultrason. Sonochem. 2013, 20, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Bao, J.; Du, Y.; Zhou, X.; Kennedy, J.F. Effect of ultrasonic treatment on the biochemphysical properties of chitosan. Carbohydr. Polym. 2006, 64, 553–559. [Google Scholar] [CrossRef]
- Luo, D.; Fang, B. Structural identification of ginseng polysaccharides and testing of their antioxidant activities. Carbohydr. Polym. 2008, 72, 376–381. [Google Scholar] [CrossRef]
- Chu, C.; Qi, L.-W.; Liu, E.-H.; Li, B.; Gao, W.; Li, P. Radix astragali (Astragalus): Latest advancements and trends in chemistry, analysis, pharmacology and pharmacokinetics. Curr. Org. Chem. 2010, 14, 1792–1807. [Google Scholar] [CrossRef]
- Xu, J.; Han, Q.B.; Li, S.L.; Chen, X.J.; Wang, X.N.; Zhao, Z.Z.; Chen, H.B. Chemistry, bioactivity and quality control of Dendrobium, a commonly used tonic herb in traditional Chinese medicine. Phytochem. Rev. 2013, 12, 341–367. [Google Scholar] [CrossRef]
- Villetti, M.A.; Crespo, J.S.; Soldi, M.S.; Pires, A.T.N.; Borsali, R.; Soldi, V. Thermal degradation of natural polymers. J. Therm. Anal. Calorim. 2002, 67, 295–303. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the d-glucose, dextrans (1, 5, 12, 25, 50, 80, 150, 270, 410 and 670 kDa) and pullulans (6, 10, 21.7, 48.8, 113, 210, 366 and 805 kDa) are available from the authors.
Run | X1 | X2 | X3 | Y | ||
---|---|---|---|---|---|---|
Level of Temperature | Level of Extraction Time | Level of Ultrasonic Power | Polysaccharide Yield (%) | |||
GR | AR | DO | ||||
1 | 1 | 0 | −1 | 28.60 | 4.51 | 38.83 |
2 | 0 | 0 | 0 | 46.26 | 3.89 | 41.03 |
3 | 0 | 1 | −1 | 43.56 | 4.04 | 36.93 |
4 | −1 | 0 | 1 | 31.67 | 0.72 | 36.61 |
5 | 0 | 0 | 0 | 44.28 | 3.93 | 44.21 |
6 | 0 | 1 | 1 | 42.05 | 4.80 | 38.75 |
7 | 0 | 0 | 0 | 48.84 | 4.27 | 38.76 |
8 | 1 | 1 | 0 | 29.89 | 5.33 | 35.63 |
9 | −1 | 1 | 0 | 37.17 | 0.90 | 30.55 |
10 | −1 | 0 | −1 | 33.77 | 0.61 | 24.63 |
11 | 1 | −1 | 0 | 31.42 | 3.75 | 36.64 |
12 | −1 | −1 | 0 | 35.89 | 0.53 | 31.41 |
13 | 0 | −1 | −1 | 38.47 | 3.40 | 37.97 |
14 | 0 | −1 | 1 | 45.22 | 3.86 | 42.69 |
15 | 1 | 0 | 1 | 27.04 | 4.24 | 35.45 |
Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
GR | |||||
Model | 681.96 | 9 | 75.77 | 17.73 | 0.0028 |
X1 | 58.02 | 1 | 58.02 | 13.58 | 0.0142 |
X2 | 0.34 | 1 | 0.34 | 0.081 | 0.7879 |
X3 | 0.32 | 1 | 0.32 | 0.074 | 0.7960 |
X1X2 | 1.98 | 1 | 1.98 | 0.46 | 0.5266 |
X1X3 | 0.074 | 1 | 0.074 | 0.017 | 0.9002 |
X2X3 | 17.05 | 1 | 17.05 | 3.99 | 0.1023 |
X12 | 573.59 | 1 | 573.59 | 134.21 | <0.0001 |
X22 | 0.61 | 1 | 0.61 | 0.14 | 0.7202 |
X32 | 51.31 | 1 | 51.31 | 12.01 | 0.0179 |
Residual | 21.37 | 5 | 4.27 | ||
Lack of Fit | 10.95 | 3 | 3.65 | 0.70 | 0.6330 |
Pure Error | 10.41 | 2 | 5.21 | ||
Cor Total | 703.32 | 14 | |||
R2 = 0.9696 | Adj R2 = 0.9149 | Pred R2 = 0.7175 | C.V. = 5.50% | ||
AR | |||||
Model | 38.47 | 9 | 4.27 | 62.77 | 0.0001 |
X1 | 28.42 | 1 | 28.42 | 417.28 | < 0.0001 |
X2 | 1.56 | 1 | 1.56 | 22.92 | 0.0049 |
X3 | 0.14 | 1 | 0.14 | 2.08 | 0.2084 |
X1X2 | 0.37 | 1 | 0.37 | 5.42 | 0.0673 |
X1X3 | 0.036 | 1 | 0.036 | 0.53 | 0.5004 |
X2X3 | 0.022 | 1 | 0.022 | 0.33 | 0.5913 |
X12 | 7.82 | 1 | 7.82 | 114.81 | 0.0001 |
X22 | 9.275 × 10−3 | 1 | 9.275 × 10−3 | 0.14 | 0.7272 |
X32 | 0.012 | 1 | 0.012 | 0.18 | 0.6911 |
Residual | 0.34 | 5 | 0.068 | ||
Lack of Fit | 0.25 | 3 | 0.085 | 1.97 | 0.3538 |
Pure Error | 0.086 | 2 | 0.043 | ||
Cor Total | 38.81 | 14 | |||
R2 = 0.9912 | Adj R2 = 0.9754 | Pred R2 = 0.8901 | C.V. = 8.03% | ||
DO | |||||
Model | 322.24 | 9 | 35.80 | 10.13 | 0.0101 |
X1 | 68.17 | 1 | 68.17 | 19.29 | 0.0071 |
X2 | 5.85 | 1 | 5.85 | 1.66 | 0.2545 |
X3 | 28.64 | 1 | 28.64 | 8.10 | 0.0360 |
X1X2 | 5.658 × 10−3 | 1 | 5.658 × 10−3 | 1.601 × 10−3 | 0.9696 |
X1X3 | 58.94 | 1 | 58.94 | 16.68 | 0.0095 |
X2X3 | 2.10 | 1 | 2.10 | 0.59 | 0.4761 |
X12 | 155.59 | 1 | 155.59 | 44.02 | 0.0012 |
X22 | 6.13 | 1 | 6.13 | 1.73 | 0.2451 |
X32 | 3.44 | 1 | 3.44 | 0.97 | 0.3694 |
Residual | 17.67 | 5 | 3.53 | ||
Lack of Fit | 2.69 | 3 | 0.90 | 0.12 | 0.9407 |
Pure Error | 14.99 | 2 | 7.49 | ||
Cor Total | 339.91 | 14 | |||
R2 = 0.9480 | Adj R2 = 0.8544 | Pred R2 = 0.7743 | C.V. = 5.13% |
Natural Samples | Condition | Temperature (°C) | Extraction Time (min) | Ultrasonic Power (W) | Polysaccharide Yield (%) |
---|---|---|---|---|---|
GR | Predicted | 78.62 | 95.99 | 212.26 | 46.73 |
Modified | 80 | 96 | 230 | 47.95 ± 0.30 | |
AR | Predicted | 82.19 | 72 | 300 | 5.43 |
Modified | 80 | 72 | 300 | 5.24 ± 0.06 | |
DO | Predicted | 69.31 | 43.89 | 300 | 42.78 |
Modified | 70 | 44 | 300 | 42.37 ± 0.83 |
Glucan standard | Molecular Weight (kDa) | Equation | R2 |
---|---|---|---|
Dextran | 1 | y = 0.8386x − 1.4103 | 0.9993 |
5 | y = 0.7752x − 1.1793 | 0.9994 | |
12 | y = 0.8546x − 1.3745 | 0.9995 | |
25 | y = 0.8748x − 1.4518 | 0.9997 | |
50 | y = 0.8496x − 1.4220 | 0.9990 | |
80 | y = 0.8648x − 1.4031 | 0.9999 | |
150 | y = 0.8727x − 1.3954 | 0.9998 | |
270 | y = 0.8829x − 1.6447 | 0.9992 | |
410 | y = 0.9081x − 1.6390 | 0.9997 | |
670 | y = 0.8660x − 1.4596 | 0.9990 | |
Pullulan | 6 | y = 0.7573x − 1.2547 | 0.9998 |
10 | y = 0.8543x − 1.4567 | 0.9990 | |
21.7 | y = 0.8066x − 1.4053 | 0.9994 | |
48.8 | y = 0.9954x − 1.9075 | 0.9994 | |
113 | y = 0.9061x − 1.7526 | 0.9994 | |
210 | y = 0.9544x − 1.6836 | 0.9991 | |
366 | y = 0.8757x − 1.5806 | 0.9991 | |
805 | y = 0.7647x − 1.5348 | 0.9991 |
Natural Samples | Independent Variables | Level | ||
---|---|---|---|---|
−1 | 0 | +1 | ||
GR | Temperature (X1) (°C) | 70 | 80 | 90 |
Extraction time (X2) (min) | 48 | 72 | 96 | |
Ultrasonic power (X3) (W) | 160 | 230 | 300 | |
AR | Temperature (X1) (°C) | 65 | 75 | 85 |
Extraction time (X2) (min) | 24 | 48 | 72 | |
Ultrasonic power (X3) (W) | 160 | 230 | 300 | |
DO | Temperature (X1) (°C) | 60 | 70 | 80 |
Extraction time (X2) (min) | 40 | 50 | 60 | |
Ultrasonic power (X3) (W) | 160 | 230 | 300 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yip, K.-M.; Xu, J.; Tong, W.-S.; Zhou, S.-S.; Yi, T.; Zhao, Z.-Z.; Chen, H.-B. Ultrasound-Assisted Extraction May Not Be a Better Alternative Approach than Conventional Boiling for Extracting Polysaccharides from Herbal Medicines. Molecules 2016, 21, 1569. https://doi.org/10.3390/molecules21111569
Yip K-M, Xu J, Tong W-S, Zhou S-S, Yi T, Zhao Z-Z, Chen H-B. Ultrasound-Assisted Extraction May Not Be a Better Alternative Approach than Conventional Boiling for Extracting Polysaccharides from Herbal Medicines. Molecules. 2016; 21(11):1569. https://doi.org/10.3390/molecules21111569
Chicago/Turabian StyleYip, Ka-Man, Jun Xu, Wing-Sum Tong, Shan-Shan Zhou, Tao Yi, Zhong-Zhen Zhao, and Hu-Biao Chen. 2016. "Ultrasound-Assisted Extraction May Not Be a Better Alternative Approach than Conventional Boiling for Extracting Polysaccharides from Herbal Medicines" Molecules 21, no. 11: 1569. https://doi.org/10.3390/molecules21111569
APA StyleYip, K. -M., Xu, J., Tong, W. -S., Zhou, S. -S., Yi, T., Zhao, Z. -Z., & Chen, H. -B. (2016). Ultrasound-Assisted Extraction May Not Be a Better Alternative Approach than Conventional Boiling for Extracting Polysaccharides from Herbal Medicines. Molecules, 21(11), 1569. https://doi.org/10.3390/molecules21111569