Methotrexate and Cytarabine—Loaded Nanocarriers for Multidrug Cancer Therapy. Spectroscopic Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Liposome Properties
2.2. Thermodynamic Properties of Phase Transition
2.3. DPPC Liposomes Containing Cytarabine and Methotrexate: Studies by FT-IR and NMR Spectroscopy
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Liposome Preparation
3.2.2. Solution and Sample Preparation
3.2.3. Transmission Electron Microscopy (TEM)
3.2.4. Differential Scanning Calorimetry (DSC)
3.2.5. Fourier Transform Infrared Spectroscopy
3.2.6. NMR Measurements of Liposomes
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhang, Y.; Chan, H.F.; Leong, K.W. Advanced materials and processing for drug delivery: The past and the future. Adv. Drug Deliv. Rev. 2013, 65, 104–120. [Google Scholar] [CrossRef] [PubMed]
- Nagayasua, A.; Uchiyama, K.; Kiwada, H. The size of liposomes: A factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. Adv. Drug Deliv. Rev. 1999, 40, 75–87. [Google Scholar] [CrossRef]
- Andresen, T.L.; Jensen, S.S. Advanced strategies in liposomal cancer therapy: Problems and prospects of active and tumor specific drug release. Prog. Lipid Res. 2005, 44, 68–97. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.K.; Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 2010, 7, 653–664. [Google Scholar] [CrossRef] [PubMed]
- Pentak, D.; Sułkowska, A.; Sułkowski, W.W. Application of NMR and UV spectroscopy in the study of interactions between anticancer drugs and their phospholipide carriers. J. Mol. Struct. 2008, 887, 187–193. [Google Scholar] [CrossRef]
- Pentak, D.; Sułkowski, W.W.; Sułkowska, A. Influence of some physical properties of 5-fluorouracil on encapsulation efficiency in liposomes. J. Therm. Anal. Calorim. 2012, 108, 67–71. [Google Scholar] [CrossRef]
- Pentak, D. Physicochemical properties of liposomes as potential anticancer drugs carriers. Interaction of etoposide and cytarabine with the membrane: Spectroscopic studies. Spectrochim. Acta A 2014, 122, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Pentak, D. Evaluation of the physicochemical properties of liposomes as potential carriers of anticancer drugs: Spectroscopic study. J. Nanopart. Res. 2016, 18, 1–10. [Google Scholar] [CrossRef]
- Chhikara, B.S.; Parang, K. Development of cytarabine prodrugs and delivery systems for leukemia treatment. Expert Opin. Drug Deliv. 2010, 7, 1399–1414. [Google Scholar] [CrossRef] [PubMed]
- Ruozi, B.; Belletti, D.; Tombesi, A.; Tosi, G.; Bondioli, L.; Forni, F.; Vandelli, M.A. AFM, ESEM, TEM, and CLSM in liposomal characterization: A comparative study. Int. J. Nanomed. 2011, 6, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, N.; Kimpfler, A.; Massing, U.; Burger, A.M.; Fiebig, H.H.; Brandl, M.; Schubert, R. 5-Fluorouracil in vesicular phospholipid gel for anticancer treatment: Entrapment and release properties. Int. J. Pharm. 2003, 256, 123–131. [Google Scholar] [CrossRef]
- Jin, Y.; Li, M.; Hou, X. Pyrocatechol violet as a marker to characterize liposomal membrane permeability using the chelation and the first-order derivative spectroscopy. J. Pharm. Biomed. Anal. 2005, 37, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Albon, N.; Sturtevant, J.M. Nature of the gel to liquid crystal transition of synthetic phosphatidylcholines. Proc. Natl. Acad. Sci. USA 1978, 75, 2258–2260. [Google Scholar] [CrossRef] [PubMed]
- Tristram-Nagle, S.; Zhang, R.; Suter, R.M.; Worthington, C.R.; Sun, W.J.; Nagle, J.F. Measurement of chain tilt angle in fully hydrated bilayers of gel phase lecithins. Biophys. J. 1993, 64, 1097–1109. [Google Scholar] [CrossRef]
- Maghraby, G.M.M.; Williams, A.C.; Barry, B.W. Drug interaction and location in liposomes: Correlation with polar surface areas. Int. J. Pharm. 2005, 292, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Levin, L.W.; Lewis, R.N. Fourier transform Raman spectroscopy of biological materials. Anal. Chem. 1990, 62, 1101A–1111A. [Google Scholar] [CrossRef] [PubMed]
- Potamitis, C.; Chatzigeorgiou, P.; Siapi, E.; Viras, K.; Mavromoustakos, T.; Hodzic, A.; Pabst, G.; Cacho-Nerin, F.; Laggner, P.; Rappolt, M. Interactions of the AT1 antagonist valsartan with dipalmitoyl-phosphatidylcholine bilayers. Biochim. Biophys. Acta 2011, 1808, 1753–1763. [Google Scholar] [CrossRef] [PubMed]
- Sułkowski, W.W.; Pentak, D.; Korus, W.; Sułkowska, A. Effect of temperature on liposome structures studied using EPR spectroscopy. Spectrosc. Int. J. 2005, 19, 37–42. [Google Scholar] [CrossRef]
- Sułkowski, W.W.; Pentak, D.; Nowak, K.; Sułkowska, A. The influence of temperature and pH on the structure of liposomes formed from DMPC. J. Mol. Struct. 2006, 792–793C, 257–264. [Google Scholar] [CrossRef]
- Gagoś, M.; Arczewska, M. Spectroscopic studies of molecular organization of antibiotic amphotericin B in monolayers and dipalmitoylphosphatidylcholine lipid multibilayers. Biochim. Biophys. Acta 2010, 1798, 2124–2130. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the compounds are available from the authors.
Liposomes | Phase Transition Temperature (°C) | |||
---|---|---|---|---|
DSC | FT-IR | |||
Tp | TC | Tp | TC | |
LDPPC | 34.64 ± 0.14 * | 41.30 ± 0.08 * | nd | 41.28 ± 0.06 * |
LDPPC/AraC/MTX | 36.39 ± 0.12 * | 41.81 ± 0.09 * | 36.02 ± 0.11 * | 41.95 ± 0.08 * |
Assignment * | Wavenumber (cm−1) | |||
---|---|---|---|---|
LDPPC | LDPPC/AraC | LDPPC/MTX | LDPPC/AraC/MTX | |
νas (CH3) | 2955.5 | 2956.0 | 2956.0 | 2956.0 |
νas (CH2) | 2919.0 | 2918.5 | 2918.5 | 2919.0 |
νs (CH2) | 2850.0 | 2850.5 | 2850.5 | 2850.5 |
νas (C=O) for ester | 1734.5 | 1732.0 | 1738.0 | 1738.0 |
νas (PO2−) | 1214.5 | 1215.0 | 1222.0 | 1219.5 |
νs (PO2−) | 1085.0 | 1087.0 | 1088.5 | 1089.0 |
νas (N+-CH3) | 970.0 | 970.0 | 971.5 | 972.0 |
γr (CH2) | nd | nd | 721.5 | 721.5 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pentak, D.; Kozik, V.; Bąk, A.; Dybał, P.; Sochanik, A.; Jampilek, J. Methotrexate and Cytarabine—Loaded Nanocarriers for Multidrug Cancer Therapy. Spectroscopic Study. Molecules 2016, 21, 1689. https://doi.org/10.3390/molecules21121689
Pentak D, Kozik V, Bąk A, Dybał P, Sochanik A, Jampilek J. Methotrexate and Cytarabine—Loaded Nanocarriers for Multidrug Cancer Therapy. Spectroscopic Study. Molecules. 2016; 21(12):1689. https://doi.org/10.3390/molecules21121689
Chicago/Turabian StylePentak, Danuta, Violetta Kozik, Andrzej Bąk, Paulina Dybał, Aleksander Sochanik, and Josef Jampilek. 2016. "Methotrexate and Cytarabine—Loaded Nanocarriers for Multidrug Cancer Therapy. Spectroscopic Study" Molecules 21, no. 12: 1689. https://doi.org/10.3390/molecules21121689
APA StylePentak, D., Kozik, V., Bąk, A., Dybał, P., Sochanik, A., & Jampilek, J. (2016). Methotrexate and Cytarabine—Loaded Nanocarriers for Multidrug Cancer Therapy. Spectroscopic Study. Molecules, 21(12), 1689. https://doi.org/10.3390/molecules21121689