Volatile and Nonvolatile Constituents and Antioxidant Capacity of Oleoresins in Three Taiwan Citrus Varieties as Determined by Supercritical Fluid Extraction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of Volatile Essential Oils
2.2. Analysis of Non-Volatile Resins
2.3. Antioxidant Properties
3. Materials and Methods
3.1. Plant Materials and Sample Preparation
3.2. Samples and Reagents
3.3. SFE Using Carbon Dioxide and Ethanol
3.4. GC/MS Spectrometry Analysis
3.5. Analysis of Flavonoid and Limonoid by HPLC
3.6. Analysis of Phytosterol Composition by GC
3.7. Antioxidant Capacity Assay
3.8. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ledesma-Escobar, C.A.; de Castro, M.D.L. Towards a comprehensive exploitation of citrus. Crit. Rev. Food Sci. Nutr. 2014, 39, 63–75. [Google Scholar] [CrossRef]
- AREMOS. Available online: agrstat.coa.gov.tw (accessed on 18 October 2016).
- Russo, M.; Bonaccorsi, I.; Torre, G.; Sarò, M.; Dugo, P.; Mondello, L. Underestimated sources of flavonoids, limonoids and dietary fibre: Availability in lemon’s by-products. J. Funct. Foods 2014, 9, 18–26. [Google Scholar] [CrossRef]
- García, B.F.; Torres, A.; Macías, F.A. Synergy and other interactions between polymethoxyflavones from Citrus byproducts. Molecules 2015, 20, 20079–20106. [Google Scholar] [CrossRef] [PubMed]
- Nogata, Y.; Sakamoto, K.; Shiratsuchi, H.; Ishii, T.; Yano, M.; Ohta, H. Flavonoid composition of fruit tissues of citrus species. Biosci. Biotechnol. Biochem. 2006, 70, 178–192. [Google Scholar] [CrossRef] [PubMed]
- Baser, K.H.C.; Buchbauer, G. Handbook of Essential Oils: Science, Technology, and Applications; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Gamarra, F.M.C.; Sakanaka, L.S.; Tambourgi, E.B.; Cabral, F.A. Influence on the quality of essential lemon (Citrus aurantifolia) oil by distillation process. Braz. J. Chem. Eng. 2006, 23, 147–151. [Google Scholar] [CrossRef]
- López-Cervantes, J.; Sánchez-Machado, D.I.; Valenzuela-Sánchez, K.P.; Núñez-Gastélum, J.A.; Escárcega-Galaz, A.A.; Rodríguez-Ramírez, R. Effect of solvents and methods of stirring in extraction of lycopene, oleoresin and fatty acids from over-ripe tomato. Int. J. Food Sci. Nutr. 2014, 65, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Bhattacharjee, P. Enzyme-assisted supercritical carbon dioxide extraction of black pepper oleoresin for enhanced yield of piperine-rich extract. J. Biosci. Bioeng. 2015, 120, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Varakumar, S.; Umesh, K.V.; Singhal, R.S. Enhanced extraction of oleoresin from ginger (Zingiber officinale) rhizome powder using enzyme-assisted three phase partitioning. Food Chem. 2017, 216, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, D.; Jadhav, N.T.; Bhattacharjee, P. Solvent and supercritical carbon dioxide extraction of color from eggplants: Characterization and food applications. LWT-Food Sci. Technol. 2013, 51, 319–324. [Google Scholar] [CrossRef]
- Shen, Z.; Mishra, V.; Imison, B.; Palmer, M.; Fairclough, R. Use of adsorbent and supercritical carbon dioxide to concentrate flavor compounds from orange oil. J. Agric. Food Chem. 2002, 50, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Machado, B.A.S.; de Abreu Barreto, G.; Costa, A.S.; Costa, S.S.; Silva, R.P.D.; da Silva, D.F.; Padilha, F.F. Determination of parameters for the supercritical extraction of antioxidant compounds from green propolis using carbon dioxide and ethanol as co-solvent. PLoS ONE 2015, 10, e0134489. [Google Scholar] [CrossRef] [PubMed]
- He, J.Z.; Shao, P.; Liu, J.H.; Ru, Q.M. Supercritical carbon dioxide extraction of flavonoids from pomelo (citrus grandis (L.) osbeck) peel and their antioxidant activity. Int. J. Mol. Sci. 2012, 13, 13065–13078. [Google Scholar] [CrossRef] [PubMed]
- De Zordi, N.; Cortesi, A.; Kikic, I.; Moneghini, M.; Solinas, D.; Innocenti, G.; Dall’Acqua, S. The supercritical carbon dioxide extraction of polyphenols from propolis: A central composite design approach. J. Supercrit. Fluids 2014, 95, 491–498. [Google Scholar] [CrossRef]
- Raeissi, S.; Peters, C.J. Liquid–vapor and liquid–liquid–vapor equilibria in the ternary system ethane + limonene + linalool. J. Supercrit. Fluids 2005, 33, 201–208. [Google Scholar] [CrossRef]
- Fan, H.; Wu, Q.; Simon, J.E.; Lou, S.N.; Ho, C.T. Authenticity analysis of citrus essential oils by HPLC-UV-MS on oxygenated heterocyclic components. J. Food Drug Anal. 2015, 23, 30–39. [Google Scholar] [CrossRef]
- Masson, J.; Liberto, E.; Beolor, J.C.; Brevard, H.; Bicchi, C.; Rubiolo, P. Oxygenated heterocyclic compounds to differentiate Citrus spp. essential oils through metabolomic strategies. Food Chem. 2016, 206, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Mehl, F.; Marti, G.; Boccard, J.; Debrus, B.; Merle, P.; Delort, E.; Wolfender, J.L. Differentiation of lemon essential oil based on volatile and non-volatile fractions with various analytical techniques: A metabolomic approach. Food Chem. 2014, 143, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Bonaccorsi, I.; Dugo, P.; Trozzi, A.; Cotroneo, A.; Dugo, G. Characterization of mandarin (Citrus deliciosa Ten.) essential oil. Determination of volatiles, non-volatiles, physico-chemical indices and enantiomeric ratios. Nat. Prod. Commun. 2009, 4, 1595–1600. [Google Scholar] [PubMed]
- Degenhardt, J.; Köllner, T.G.; Gershenzon, J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 2009, 70, 1621–1637. [Google Scholar] [CrossRef] [PubMed]
- Carter, O.A.; Peters, R.J.; Croteau, R. Monoterpene biosynthesis pathway construction in Escherichia coli. Phytochemistry 2003, 64, 425–433. [Google Scholar] [CrossRef]
- Muñoz-Bertomeu, J.; Ros, R.; Arrillaga, I.; Segura, J. Expression of spearmint limonene synthase in transgenic spike lavender results in an altered monoterpene composition in developing leaves. Metab. Eng. 2008, 10, 166–177. [Google Scholar] [CrossRef] [PubMed]
- Haypek, E.; Silva, L.H.M.; Batista, E.; Marques, D.S.; Meireles, M.A.A.; Meirelles, A.J.A. Recovery of aroma compounds from orange essential oil. Braz. J. Chem. Eng. 2000, 17, 705–712. [Google Scholar] [CrossRef]
- Njoroge, S.M.; Koaze, H.; Karanja, P.N.; Sawamura, M. Essential oil constituents of three varieties of Kenyan sweet oranges (Citrus sinensis). Flavour Fragr. J. 2005, 20, 80–85. [Google Scholar] [CrossRef]
- Silvestre, W.P.; Agostini, F.; Muniz, L.A.R.; Pauletti, G.F. Fractionating of green mandarin (Citrus deliciosa Tenore) essential oil by vacuum fractional distillation. J. Food Eng. 2016, 178, 90–94. [Google Scholar] [CrossRef]
- Arctander, S. Perfume and Flavor Chemicals: Aroma Chemicals; Allured Pub. Corp.: Carol Stream, IL, USA, 1994. [Google Scholar]
- Rouseff, R.L.; Ruiz Perez-Cacho, P.; Jabalpurwala, F. Historical review of citrus flavor research during the past 100 years. J. Agric. Food. Chem. 2009, 57, 8115–8124. [Google Scholar] [CrossRef] [PubMed]
- Lan-Phi, N.T.; Shimamura, T.; Ukeda, H.; Sawamura, M. Chemical and aroma profiles of yuzu (Citrus junos) peel oils of different cultivars. Food Chem. 2009, 115, 1042–1047. [Google Scholar] [CrossRef]
- Gattuso, G.; Barreca, D.; Gargiulli, C.; Leuzzi, U.; Caristi, C. Flavonoid composition of citrus juices. Molecules 2007, 12, 1641–1673. [Google Scholar] [CrossRef] [PubMed]
- Stremple, P. GC/MS analysis of polymethoxyflavones in citrus oils. J. High Resolut. Chromatogr. 1998, 21, 587–591. [Google Scholar] [CrossRef]
- Wang, Y.C.; Chuang, Y.C.; Hsu, H.W. The flavonoid, carotenoid and pectin content in peels of citrus cultivated in Taiwan. Food Chem. 2008, 106, 277–284. [Google Scholar] [CrossRef]
- Walle, T. Methoxylated flavones, a superior cancer chemopreventive flavonoid subclass? Semin. Cancer Biol. 2007, 17, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Tripoli, E.; La Guardia, M.; Giammanco, S.; di Majo, D.; Giammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 2007, 104, 466–479. [Google Scholar] [CrossRef]
- Koirala, N.; Thuan, N.H.; Ghimire, G.P.; Van Thang, D.; Sohng, J.K. Methylation of flavonoids: Chemical structures, bioactivities, progress and perspectives for biotechnological production. Enzyme Microb. Technol. 2016, 86, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Manners, G.D. Citrus limonoids: Analysis, bioactivity, and biomedical prospects. J. Agric. Food Chem. 2007, 55, 8285–8294. [Google Scholar] [CrossRef] [PubMed]
- Tapiero, H.; Townsend, D.M.; Tew, K.D. Phytosterols in the prevention of human pathologies. Biomed. Pharmacother. 2003, 57, 321–325. [Google Scholar] [CrossRef]
- Han, J.H.; Yang, Y.X.; Feng, M.Y. Contents of phytosterols in vegetables and fruits commonly consumed in China. Biomed. Environ. Sci. 2008, 21, 449–453. [Google Scholar] [CrossRef]
- Juliano, C.; Cossu, M.; Alamanni, M.C.; Piu, L. Antioxidant activity of gamma-oryzanol: Mechanism of action and its effect on oxidative stability of pharmaceutical oils. Int. J. Pharm. 2005, 299, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Csepregi, K.; Neugart, S.; Schreiner, M.; Hideg, É. Comparative evaluation of total antioxidant capacities of plant polyphenols. Molecules 2016, 21, E208. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Wang, L.; Walzem, R.L.; Miller, E.G.; Pike, L.M.; Patil, B.S. Antioxidant activity of citrus limonoids, flavonoids, and coumarins. J. Agric. Food Chem. 2005, 53, 2009–2014. [Google Scholar] [CrossRef] [PubMed]
- Kmiecik, D.; Korczak, J.; Rudzińska, M.; Gramza-Michałowska, A.; Hęś, M.; Kobus-Cisowska, J. Stabilisation of phytosterols by natural and synthetic antioxidants in high temperature conditions. Food Chem. 2015, 173, 966–971. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.Y.; Peng, C.C.; Liang, Y.J.; Yeh, W.T.; Wang, H.E.; Yu, T.H.; Peng, R.Y. Alpinia zerumbet potentially elevates high-density lipoprotein cholesterol level in hamsters. J. Agric. Food Chem. 2008, 56, 4435–4443. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Chen, K.; Chen, Y.; Chen, Q. Contents and antioxidant capacity of limonin and nomilin in different tissues of citrus fruit of four cultivars during fruit growth and maturation. Food Chem. 2005, 93, 599–605. [Google Scholar] [CrossRef]
- Braca, A.; De Tommasi, N.; Di Bari, L.; Pizza, C.; Politi, M.; Morelli, I. Antioxidant principles from bauhinia tarapotensis. J. Nat. Prod. 2001, 64, 892–895. [Google Scholar] [CrossRef] [PubMed]
- Pellegrin, N.; Re, R.; Yang, M.; Rice-Evans, C. Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radical cation decolorization assay. Methods Enzymol. 1998, 299, 379–389. [Google Scholar]
- Sample Availability: Not Available.
Compounds | RI a | Tankan b | Ponkan b | Murcott b |
---|---|---|---|---|
Monoterpenes | ||||
α-thujene | 933 | N.D c | 0.74 | 0.43 |
α-pinene | 937 | 2.13 | 2.60 | 2.39 |
sabinene | 968 | 0.60 | 1.12 | 0.93 |
β-pinene | 979 | 0.07 | 1.21 | 0.72 |
β-myrcene | 980 | 5.81 | 4.86 | 5.68 |
1-phellandrene | 1002 | 0.21 | 0.23 | 0.20 |
p-cymene | 1004 | N.D | 1.69 | 0.84 |
limonene | 1037 | 86.13 | 72.72 | 76.34 |
β-ocimene | 1052 | 0.43 | 0.24 | 0.20 |
γ-terpinene | 1063 | 0.17 | 8.77 | 6.01 |
α-terpinolene | 1085 | 0.10 | 0.50 | 0.10 |
Sesquiterpenes | ||||
α-copaene | 1353 | 0.06 | N.D | 0.12 |
γ-elemene | 1380 | 0.21 | N.D | N.D |
γ-cadinene | 1389 | 0.11 | N.D | N.D |
β-caryophyllene | 1428 | 0.37 | 0.16 | 0.49 |
γ-muurolene | 1481 | 0.08 | N.D | 0.14 |
germacrene D | 1478 | 0.09 | 0.26 | 0.18 |
δ-cadinene | 1497 | 0.18 | N.D | 0.15 |
Aldehydes | ||||
nonanal | 900 | 0.06 | 1.52 | 0.79 |
decanal | 1000 | 0.07 | 0.78 | 1.14 |
2-decenal | 1021 | 0.07 | N.D | N.D |
perillaldehyde | 1042 | 0.05 | 0.10 | 0.12 |
undecanal | 1100 | N.D | 0.21 | 0.17 |
citronellal | 1132 | N.D | 0.36 | 0.50 |
neral | 1210 | N.D | 0.21 | 0.31 |
β-sinensal | 1673 | 0.18 | 0.20 | N.D |
α-sinensal | 1689 | 0.38 | N.D | 0.18 |
Alcohols | ||||
linalool | 1098 | 1.40 | 0.81 | 1.05 |
α-terpineol | 1177 | 0.44 | 0.11 | 0.22 |
Esters | ||||
geranyl acetate | 1362 | 0.16 | N.D | N.D |
citronellyl acetate | 1382 | 0.21 | N.D | 0.20 |
neryl acetate | 1434 | 0.18 | N.D | 0.20 |
Ketone | ||||
carvone | 1217 | N.D | 0.32 | 0.18 |
d Total terpene compound | 96.75 | 95.11 | 94.92 | |
e Total oxygenated compound | 3.25 | 4.89 | 5.08 |
Compounds | Tankan | Ponkan | Murcott |
---|---|---|---|
Polymethoxyflavones (mg/g) | |||
nobilentin | 62.23 ± 4.62 a | 195.45 ± 5.42 c | 99.31 ± 3.44 b |
tangeritin | 24.05 ± 1.44 a | 64.12 ± 3.11 c | 54.19 ± 2.17 b |
Limonoids (mg/g) | |||
limonin | 71.17 ± 2.45 a | 316.02 ± 17.39 c | 117.83 ± 6.34 b |
nomilin | 41.53 ± 1.62 a | 90.24 ± 5.32 b | 130.47 ± 4.25 c |
Phytosterols (μg/g) | |||
campesterol | 211.62 ± 8.94 a | 304.77 ± 24.38 b | 455.54 ± 25.83 c |
stigmasterol | 131.85 ± 5.52 a | 680.67 ± 42.15 c | 374.17 ± 31.59 b |
lanosterol | 189.34 ± 7.63 a | N.D | 486.71 ± 32.54 b |
fucosterol | 153.33 ± 9.28 a | N.D | N.D |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.-H.; Huang, T.-C. Volatile and Nonvolatile Constituents and Antioxidant Capacity of Oleoresins in Three Taiwan Citrus Varieties as Determined by Supercritical Fluid Extraction. Molecules 2016, 21, 1735. https://doi.org/10.3390/molecules21121735
Chen M-H, Huang T-C. Volatile and Nonvolatile Constituents and Antioxidant Capacity of Oleoresins in Three Taiwan Citrus Varieties as Determined by Supercritical Fluid Extraction. Molecules. 2016; 21(12):1735. https://doi.org/10.3390/molecules21121735
Chicago/Turabian StyleChen, Min-Hung, and Tzou-Chi Huang. 2016. "Volatile and Nonvolatile Constituents and Antioxidant Capacity of Oleoresins in Three Taiwan Citrus Varieties as Determined by Supercritical Fluid Extraction" Molecules 21, no. 12: 1735. https://doi.org/10.3390/molecules21121735
APA StyleChen, M. -H., & Huang, T. -C. (2016). Volatile and Nonvolatile Constituents and Antioxidant Capacity of Oleoresins in Three Taiwan Citrus Varieties as Determined by Supercritical Fluid Extraction. Molecules, 21(12), 1735. https://doi.org/10.3390/molecules21121735