Au-Based Catalysts: Electrochemical Characterization for Structural Insights
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Monometallic Nanoparticles
4.1.1. Au nanoparticles Preparation.
4.1.2. Pd nanoparticles Preparation.
4.2. Bimetallic AuPd Nanoparticles
4.3. Electrochemical Characterization
4.4. Catalytic Tests
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Prati, L.; Villa, A. Gold Catalysis: Preparation, Characterization, and Applications; Pan Stanford Publishing Pte. Ltd.: Singapore City, Singapore, 2015. [Google Scholar]
- Edwards, J.K.; Ntainjua, N.; Carley, A.F.; Herzing, A.A.; Kiely, C.J.; Hutchings, G.J. Direct synthesis of H2O2 from H2 and O2 over gold, palladium, and gold—Palladium catalysts supported on acid-pretreated TiO2. Angew. Chem. Int. Ed. 2009, 48, 8512–8515. [Google Scholar] [CrossRef] [PubMed]
- Villa, A.; Campione, C.; Prati, L. Bimetallic gold/palladium catalysts for the selective liquid phase oxidation of glycerol. Catal. lett. 2007, 115, 133–136. [Google Scholar] [CrossRef]
- Hashmi, A.S.K.; Lothschütz, C.; Döpp, R.; Rudolph, M.; Ramamurthi, T.D.; Rominger, F. Gold and palladium combined for cross-coupling. Angew. Chem. Int. Ed. 2009, 48, 8243–8246. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, A.S.K.; Döpp, R.; Lothschütz, C.; Rudolph, M.; Riedel, D.; Rominger, F. Scope and limitations of palladium-catalyzed cross-coupling reactions with organogold compounds. Adv. Synth. Catal. 2010, 352, 1307–1314. [Google Scholar] [CrossRef]
- Hashmi, A.S.K.; Lothschütz, C.; Döpp, R.; Ackermann, M.; de Buck Becker, J.; Rudolph, M.; Scholz, C.; Rominger, F. On homogeneous gold/palladium catalytic systems. Adv. Synth. Catal. 2012, 354, 133–147. [Google Scholar] [CrossRef]
- Hansmann, M.M.; Pernpointner, M.; Döpp, R.; Hashmi, A.S.K. A theoretical DFT-based and experimental study of the transmetalation step in Au/Pd-mediated cross-coupling Reactions. Chem. Eur. J. 2013, 19, 15290–15303. [Google Scholar] [CrossRef] [PubMed]
- Villa, A.; Veith, G.M.; Prati, L. Selective oxidation of glycerol under acidic conditions using gold catalysts. Angew. Chem. Int. Ed. 2010, 122, 4601–4604. [Google Scholar] [CrossRef]
- Luo, J.; Maye, M.M.; Petkov, V.; Kariuki, N.N.; Wang, L.; Njoki, P.; Mott, D.; Lin, Y.; Zhong, C.J. Phase properties of carbon-supported gold-platinum nanoparticles with different bimetallic compositions. Chem. Mater. 2005, 17, 3086–3091. [Google Scholar] [CrossRef]
- Bassi, I.W.; Garbassi, F.; Vlaic, G.; Marzi, A.; Tauszik, G.R.; Cocco, G.; Galvagno, S.; Parravano, G. Bimetallic ruthenium-gold-on-magnesia catalysts: Chemicophysical properties and catalytic activity. J. Catal. 1980, 64, 405–416. [Google Scholar] [CrossRef]
- Villa, A.; Chan-Thaw, C.E.; Campisi, S.; Bianchi, C.L.; Wang, D.; Kotula, P.G.; Kübel, C.; Prati, L. AuRu/AC as an effective catalyst for hydrogenation reactions. Phys. Chem. Chem. Phys. 2015, 17, 28171–28176. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, A.S.K.; Molinari, L. Effective transmetalation from gold to iron or ruthenium. Organometallics 2011, 30, 3457–3460. [Google Scholar] [CrossRef]
- Kariuki, N.N.; Luo, J.; Maye, M.M.; Hassan, S.A.; Menard, T.; Naslund, H.R.; Lin, Y.; Wang, C.; Engelhard, M.H.; Zhong, C.J. Composition-controlled synthesis of bimetallic gold-silver nanoparticles. Langmuir 2004, 20, 11240–11246. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. Synergistic catalysis of Au@Ag core—Shell nanoparticles stabilized on metal—Organic framework. J. Am. Chem. Soc. 2011, 133, 1304–1306. [Google Scholar] [CrossRef] [PubMed]
- Bracey, C.L.; Ellis, P.R.; Hutchings, G.J. Application of copper–gold alloys in catalysis: Current status and future perspectives. Chem. Soc. Rev. 2009, 38, 2231–2243. [Google Scholar] [CrossRef] [PubMed]
- Dimitratos, N.; Villa, A.; Wang, D.; Porta, F.; Su, D.; Prati, L. Pd and Pt catalysts modified by alloying with Au in the selective oxidation of alcohols. J. Catal. 2006, 244, 113–121. [Google Scholar] [CrossRef]
- Wang, D.; Villa, A.; Porta, F.; Prati, L.; Su, D. Bimetallic gold/palladium catalysts: Correlation between nanostructure and synergistic effects. J. Phys. Chem. C 2008, 112, 8617–8622. [Google Scholar] [CrossRef]
- Prati, L.; Villa, A.; Porta, F.; Wang, D.; Su, D. Single-phase gold/palladium catalyst: The nature of synergistic effect. Catal. Today 2007, 122, 386–390. [Google Scholar] [CrossRef]
- Sankar, M.; Dimitratos, N.; Miedziak, P.J.; Wells, P.P.; Kiely, C.J.; Hutchings, G.J. Designing bimetallic catalysts for a green and sustainable future. Chem. Soc. Rev. 2012, 41, 8099–8139. [Google Scholar]
- Villa, A.; Wang, D.; Su, D.S.; Prati, L. New challenges in gold catalysis: Bimetallic systems. Catal. Sci. Technol. 2015, 5, 55–68. [Google Scholar] [CrossRef]
- Dash, P.; Bond, T.; Fowler, C.; Hou, W.; Coombs, N.; Scott, R.W. Rational design of supported PdAu nanoparticle catalysts from structured nanoparticle precursors. J. Phys. Chem. C 2009, 113, 12719–12730. [Google Scholar] [CrossRef]
- Heggen, M.; Oezaslan, M.; Houben, L.; Strasser, P. Formation and analysis of core–shell fine structures in Pt bimetallic nanoparticle fuel cell electrocatalysts. J. Phys. Chem. C 2012, 116, 19073–19083. [Google Scholar] [CrossRef]
- Holt, L.R.; Plowman, B.J.; Young, N.P.; Tschulik, K.; Compton, R.G. The electrochemical characterization of single core-shell nanoparticles. Angew. Chem. Int. Ed. 2016, 55, 397–400. [Google Scholar] [CrossRef] [PubMed]
- Jirkovsky, J.S.; Panas, I.; Ahlberg, E.; Halasa, M.; Romani, S.; Schiffrin, D.J. Single atom Hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production. J. Am. Chem. Soc. 2011, 133, 19432–19441. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, C.L.; Canton, P.; Dimitratos, N.; Porta, F.; Prati, L. Selective oxidation of glycerol with oxygen using mono and bimetallic catalysts based on Au, Pd and Pt metals. Catal. Today 2005, 102, 203–212. [Google Scholar] [CrossRef]
- Davis, S.E.; Ide, M.S.; Davis, R.J. Selective oxidation of alcohols and aldehydes over supported metal nanoparticles. Green Chem. 2013, 15, 17–45. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Mizuno, N. Supported ruthenium catalyst for the heterogeneous oxidation of alcohols with molecular oxygen. Angew. Chem. Int. Ed. 2002, 41, 4538–4541. [Google Scholar] [CrossRef]
- Beltrame, P.; Comotti, M.; Della Pina, C.; Rossi, M. Aerobic oxidation of glucose: II. Catalysis by colloidal gold. Appl. Catal. A: General 2006, 297, 1–7. [Google Scholar]
- Savara, A.; Chan-Thaw, C.E.; Rossetti, I.; Villa, A.; Prati, L. Benzyl alcohol oxidation on carbon-supported Pd nanoparticles: Elucidating the reaction mechanism. ChemCatChem 2014, 6, 3464–3473. [Google Scholar] [CrossRef]
- Besson, M.; Gallezot, P. Selective oxidation of alcohols and aldehydes on metal catalysts. Catal. Today 2000, 57, 127–141. [Google Scholar] [CrossRef]
- Conte, M.; Miyamura, H.; Kobayashi, S.; Chechik, V. Spin trapping of Au−H intermediate in the alcohol oxidation by supported and unsupported gold catalysts. J. Am. Chem. Soc. 2009, 131, 7189–7196. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Kumar, D.; Yi, C.W.; Goodman, D.W. The promotional effect of gold in catalysis by palladium-gold. Science 2005, 310, 291–293. [Google Scholar] [CrossRef] [PubMed]
- Baker, T.A.; Liu, X.; Friend, C.M. The mystery of gold’s chemical activity: local bonding, morphology and reactivity of atomic oxygen. Phys. Chem. Chem. Phys. 2011, 13, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Villa, A.; Wang, D.; Su, D.S.; Prati, L. Gold sols as catalysts for glycerol oxidation: The role of stabilizer. ChemCatChem 2009, 1, 510–514. [Google Scholar] [CrossRef]
- Hu, J.-W.; Li, J.-F.; Ren, B.; Wu, D.-Y.; Sun, S.-G.; Tian, Z.-Q. Palladium-coated gold nanoparticles with a controlled shell thickness used as surface-enhanced raman scattering substrate. J. Phys. Chem. C 2007, 111, 1105–1112. [Google Scholar]
- Feliciano-Ramos, I.; Casañas-Montes, B.; García-Maldonado, M.M.; Menéndez, C.L.; Mayol, A.R.; Díaz-Vázquez, L.M.; Cabrera, C.R. Assembly of a Cost-Effective Anode Using Palladium Nanoparticles for Alkaline Fuel Cell Applications. J. Chem. Educ. 2015, 92, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lai, L.; Jiang, S.; Liu, Y.; Fu, C.; Li, A.; Chen, Y.; Lai, X.; Hu, J. Synthesis and enhanced electrocatalytic properties of Au/Pd/Pt nanohollows. Mater. Lett. 2015, 157, 15–18. [Google Scholar] [CrossRef]
- Corma, A.; Garcia, H. Supported Gold Nanoparticles as Oxidation Catalysts. In Nanoparticles and Catalysis, 1st ed.; Astruc, D., Ed.; Wiley VCH: Weinheim, Germany, 2008; pp. 389–426. [Google Scholar]
- Villa, A.; Dimitratos, N.; Chan-Thaw, C.E.; Hammond, C.; Prati, L.; Hutchings, G.J. Glycerol oxidation using gold-containing catalysts. Acc. Chem. Res. 2015, 48, 1403–1412. [Google Scholar] [CrossRef] [PubMed]
- Ketchie, W.C.; Murayama, M.; Davis, R.J. Selective oxidation of glycerol over carbon-supported AuPd catalysts. J. Catal. 2007, 250, 264–273. [Google Scholar] [CrossRef]
- Zope, B.N.; Hibbitts, D.D.; Neurock, M.; Davis, R.J. Reactivity of the gold/water interface during selective oxidation catalysis. Science 2010, 330, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the metallic sol are available from the authors under request.
Catalyst a | Mean Particle Size (nm) | Activity b | Selectivity (%) c | |||||
---|---|---|---|---|---|---|---|---|
Glyceric Acid | Glycolic Acid | Tartronic Acid | Formic Acid | Lactic Acid | Oxalic Acid | |||
AuPVA | 2.6 | 1065 | 64 | 23 | 1 | 5 | 3 | 4 |
PdPVA | 2.8 | 299 | 85 d | 2 d | 4 d | 3 d | 4 d | 2 d |
AuPdPVA | 3.4 | 4264 | 83 | 3 | 7 | 4 | 1 | 2 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pifferi, V.; Chan-Thaw, C.E.; Campisi, S.; Testolin, A.; Villa, A.; Falciola, L.; Prati, L. Au-Based Catalysts: Electrochemical Characterization for Structural Insights. Molecules 2016, 21, 261. https://doi.org/10.3390/molecules21030261
Pifferi V, Chan-Thaw CE, Campisi S, Testolin A, Villa A, Falciola L, Prati L. Au-Based Catalysts: Electrochemical Characterization for Structural Insights. Molecules. 2016; 21(3):261. https://doi.org/10.3390/molecules21030261
Chicago/Turabian StylePifferi, Valentina, Carine E. Chan-Thaw, Sebastiano Campisi, Anna Testolin, Alberto Villa, Luigi Falciola, and Laura Prati. 2016. "Au-Based Catalysts: Electrochemical Characterization for Structural Insights" Molecules 21, no. 3: 261. https://doi.org/10.3390/molecules21030261
APA StylePifferi, V., Chan-Thaw, C. E., Campisi, S., Testolin, A., Villa, A., Falciola, L., & Prati, L. (2016). Au-Based Catalysts: Electrochemical Characterization for Structural Insights. Molecules, 21(3), 261. https://doi.org/10.3390/molecules21030261