Screening of Satureja subspicata Vis. Honey by HPLC-DAD, GC-FID/MS and UV/VIS: Prephenate Derivatives as Biomarkers
Abstract
:1. Introduction
2. Results and Discussion
2.1. HPLC-DAD Analysis of Native Honey Samples
2.2. GC-FID/MS Analysis of the Ultrasonic Solvent Extracts
2.3. Color, Total Phenolic Content and Antioxidant Properties
3. Experimental Section
3.1. HPLC–DAD Analysis
3.2. Ultrasonic Solvent Extraction and GC-FID/MS Analysis of the Extracts
3.3. UV/VIS Analyses
3.3.1. CIE L*a*b*C*abh°ab Chromatic Coordinates Determination
3.3.2. Determination of Total Phenolic Content (Folin-Ciocalteu Assay)
3.3.3. Honey: Total Antioxidant (FRAP Assay) and Antiradical Activity (DPPH Assay)
3.3.4. Honey Extracts: Total Antioxidant (FRAP Assay) and Antiradical Activity (DPPH Assay)
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kaškonienė, V.; Venskutonis, P.R. Floral markers in honey of various botanical and geographic origins: A review. Compr. Rev. Food Sci. Food Saf. 2010, 9, 620–634. [Google Scholar] [CrossRef]
- Cuevas-Glory, L.F.; Pino, J.A.; Santiago, L.S.; Sauri-Duch, E. A review of volatile analytical methods for determining the botanical origin of honey. Food Chem. 2007, 103, 1032–1043. [Google Scholar] [CrossRef]
- Jerković, I. Terpenes in honey: Occurrence, origin and their role as chemical biomarkers. RSC Adv. 2014, 4, 31710–31728. [Google Scholar] [CrossRef]
- Jerković, I.; Tuberoso, C.I.G.; Kuś, P.M.; Marijanović, Z.; Kranjac, M. Screening of Coffea spp. honey by different methodologies: Theobromine and caffeine as chemical markers. RSC Adv. 2014, 4, 60557–60562. [Google Scholar] [CrossRef]
- Kuś, P.M.; Marijanović, Z.; Jerković, I. Headspace compounds from Centaurea cyanus L. honey: The occurrence of 3,4-dihydro-3-oxoedulan. Chem. Nat. Compd. 2013, 49, 961–964. [Google Scholar] [CrossRef]
- Jerković, I.; Kranjac, M.; Šuste, M.; Kuś, P.M.; Svečnjak, L. Rhamnus frangula honey: Screening of volatile organic compounds and their composition after short-term heating. Chem. Nat. Compd. 2015, 51, 1174–1177. [Google Scholar] [CrossRef]
- Šilić, Č. Monographie der Gattungen Satureja L., Calamimtha Miller, Micromeria Bentham, Acinos Miller und Clinopodium L. In Der Flora Jugoslawiens; Zemaljski muzej BiH: Sarajevo, Yugoslavia, 1979; pp. 24–117. [Google Scholar]
- Pedersen, J. Distribution and taxonomic implications of some phenolics in the family Lamiaceae determined by ESR spectroscopy. Biochem. Syst. Ecol. 2000, 28, 229–253. [Google Scholar] [CrossRef]
- Bezić, N.; Šamanić, I.; Dunkić, V.; Besendorfer, V.; Puizina, J. Essential oil composition and internal transcribed spacer (ITS) sequence variability of four south-Croatian Satureja species (Lamiaceae). Molecules 2009, 14, 925–938. [Google Scholar] [CrossRef] [PubMed]
- Cetojević-Simin, D.; Canadanović-Brunet, J.; Bogdanović, G.; Cetković, G.; Tumbas, V.; Djilas, S. Antioxidative and antiproliferative effects of Satureja montana L. extracts. J. BUON 2004, 9, 443–449. [Google Scholar] [PubMed]
- Amanlou, M.; Dadkhah, F.; Salehnia, A.; Farsam, H.; Dehpour, A. An anti-inflammatory and anti-nociceptive effects of hydroalcoholic extract of Satureja khuzistanica Jamzad extract. J. Pharm. Sci. 2005, 8, 102–106. [Google Scholar]
- Kremer, D.; Košir, I.J.; Končić, M.Z.; Čerenak, A.; Potočnik, T.; Srečec, S.; Randić, M.; Kosalec, I. Antimicrobial and antioxidant properties of Satureja montana L. and S. subspicata Vis. (Lamiaceae). Curr. Drug Targets 2015, 16, 1623–1633. [Google Scholar] [CrossRef] [PubMed]
- Jerković, I.; Tuberoso, C.I.G.; Marijanović, Z.; Kranjac, M.; Malenica-Staver, M. Antioxidant capacity and chemical profiles of Satureja montana L. honey: Hotrienol and syringyl derivatives as biomarkers. Chem. Biodivers. 2015, 12, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Jerković, I.; Tuberoso, C.I.G.; Baranović, G.; Marijanović, Z.; Kranjac, M.; Svečnjak, L.; Kuś, P.M. Characterization of summer savory (Satureja hortensis L.) honey by physico-chemical parameters and chromatographic/spectroscopic techniques (GC-FID/MS, HPLC-DAD, UV/VIS and FTIR-ATR). Croat. Chem. Acta 2015, 88, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Tuberoso, C.I.G.; Bifulco, E.; Jerković, I.; Caboni, P.; Cabras, P.; Floris, I. Methyl syringate: A chemical marker of asphodel (Asphodelus microcarpus Salzm. et Viv.) monofloral honey. J. Agric. Food Chem. 2009, 57, 3895–3900. [Google Scholar] [CrossRef] [PubMed]
- Stephens, J.M.; Schlothauer, R.C.; Morris, B.D.; Yang, D.; Fearnley, L.; Greenwood, D.R.; Loomes, K.M. Phenolic composition and methylglyoxal in some New Zealand manuka and kanuka honeys. Food Chem. 2010, 120, 78–86. [Google Scholar] [CrossRef]
- Jerković, I.; Kuś, P.M.; Tuberoso, C.I.G.; Šarolić, M. Phytochemical and physical-chemical analysis of Polish willow (Salix spp.) honey: Identification of the marker compounds. Food Chem. 2014, 145, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Kuś, P.M.; Jerković, I.; Tuberoso, C.I.G.; Marijanović, Z.; Congiu, F. Cornflower (Centaurea cyanus L.) honey quality parameters: Chromatographic fingerprints, chemical biomarkers, antioxidant capacity and others. Food Chem. 2014, 142, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Joerg, E.; Sontag, G. Multichannel coulometric detection coupled with liquid chromatography for determination of phenolic esters in honey. J. Chromatogr. 1993, 635, 137–142. [Google Scholar] [CrossRef]
- Alvarez-Suarez, J.M.; Gasparrini, M.; Forbes-Hernández, T.Y.; Mazzoni, L.; Giampieri, F. The composition and biological activity of honey: A focus on manuka honey. Foods 2014, 3, 420–432. [Google Scholar] [CrossRef]
- Inoue, K.; Murayama, S.; Seshimo, F.; Takeba, K.; Yoshimura, Y.; Nakazawa, H. Identification of phenolic compound in manuka honey as specific superoxide anion radical scavenger using electron spin resonance (ESR) and liquid chromatography with coulometric array detection. J. Sci. Food Agric. 2005, 85, 872–878. [Google Scholar] [CrossRef]
- Jermnak, U.; Yoshinari, T.; Sugiyama, Y.; Tsuyuki, R.; Nagasawa, H.; Sakuda, S. Isolation of methyl syringate as a specific aflatoxin production inhibitor from the essential oil of Betula alba and aflatoxin production inhibitory activities of its related compounds. Int. J. Food Microbiol. 2012, 153, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Son, H.J.; Song, S.H.; Jung, M.; Kim, Y.; Rhyu, M.R. The TRPA1 agonist, methyl syringate suppresses food intake and gastric emptying. PLoS ONE 2013, 8, e71603. [Google Scholar] [CrossRef] [PubMed]
- Son, H.J.; Kim, M.J.; Park, J.H.; Ishii, S.; Misaka, T.; Rhyu, M.R. Methyl syringate, a low-molecular-weight phenolic ester, as an activator of the chemosensory ion channel TRPA1. Arch. Pharm. Res. 2012, 35, 2211–2218. [Google Scholar] [CrossRef] [PubMed]
- Rosado, T.; Bernardo, P.; Koci, K.; Coelho, A.V.; Robalo, M.P.; Martins, L.O. Methyl syringate: An efficient phenolic mediator for bacterial and fungal laccases. Bioresour. Technol. 2012, 124, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Mani, A.R.; Pannala, A.S.; Orie, N.N.; Ollosson, R.; Harry, D.; Rice-Evans, C.A.; Moore, K.P. Nitration of endogenous para-hydroxyphenylacetic acid and the metabolism of nitrotyrosine. Biochem. J. 2003, 374, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Takahama, U.; Oniki, T.; Murata, H. The presence of 4-hydroxyphenylacetic acid in human saliva and the possibility of its nitration by salivary nitrite in the stomach. FEBS Lett. 2002, 518, 116–118. [Google Scholar] [CrossRef]
- Cabanes, J.; Chazarra, S.; Garcia-Carmona, F. Kojic acid, a cosmetic skin whitening agent, is a slow-binding inhibitor of catecholase activity of tyrosinase. J. Pharm. Pharmacol. 1994, 46, 982–985. [Google Scholar] [CrossRef] [PubMed]
- Hermosí, I.; Chicón, R.M.; Dolores Cabezudo, M. Free amino acid composition and botanical origin of honey. Food Chem. 2003, 83, 263–268. [Google Scholar] [CrossRef]
- Jerković, I.; Marijanović, Z.; Ljubičić, I.; Gugić, M. Contribution of the bees and combs to honey volatiles: Blank-trial probe for chemical profiling of honey biodiversity. Chem. Biodivers. 2010, 7, 1217–1230. [Google Scholar] [CrossRef] [PubMed]
- Tuberoso, C.I.G.; Jerković, I.; Sarais, G.; Congiu, F.; Marijanović, Z.; Kuś, P.M. Color evaluation of seventeen European unifloral honey types by means of spectrophotometrically determined CIE L*Cab*h(ab)° chromaticity coordinates. Food Chem. 2014, 145, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Gheldof, N.; Engeseth, N.J. Antioxidant capacity of honeys from various floral sources based on the determination of oxygen radical absorbance capacity and inhibition of in vitro lipoprotein oxidation in human serum samples. J. Agric. Food Chem. 2002, 50, 3050–3055. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.C.F.R.; Aires, E.; Barreira, J.C.M.; Estevinho, L.M. Antioxidant activity of Portuguese honey samples: Different contributions of the entire honey and phenolic extract. Food Chem. 2009, 114, 1438–1443. [Google Scholar] [CrossRef]
- Kuś, P.M.; Congiu, F.; Teper, D.; Sroka, Z.; Jerković, I.; Tuberoso, C.I.G. Antioxidant activity, color characteristics, total phenol content and general HPLC fingerprints of six Polish unifloral honey types. LWT Food Sci. Technol. 2014, 55, 124–130. [Google Scholar] [CrossRef]
- Jerković, I.; Marijanović, Z.; Kezić, J.; Gugić, M. Headspace, volatile and semi-volatile organic compounds diversity and radical scavenging activity of ultrasonic solvent extracts from Amorpha fruticosa honey samples. Molecules 2009, 14, 2717–2728. [Google Scholar] [CrossRef] [PubMed]
- Jerković, I.; Marijanović, Z. Oak (Quercus frainetto Ten.) honeydew honey—Approach to screening of volatile organic composition and antioxidant capacity (DPPH and FRAP assay). Molecules 2010, 15, 3744–3756. [Google Scholar] [CrossRef] [PubMed]
- Von der Ohe, W.; Persano Oddo, L.; Piana, M.L.; Morlot, M.; Martin, P. Harmonized methods of melissopalynology. Apidologie 2004, 35, 18–25. [Google Scholar] [CrossRef]
- Jerković, I.; Tuberoso, C.I.G.; Kasum, A.; Marijanović, Z. Volatile compounds of Asphodelus microcarpus Salzm. et Viv. honey obtained by HS-SPME and USE analyzed by GC/MS. Chem. Biodivers. 2011, 8, 587–598. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.M. The Pherobase: Database of Insect Pheromones and Semiochemicals. Available online: http://www.pherobase.com (accessed on 10 February 2016).
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Kulisic, T.; Radonic, A.; Katalinic, V.; Milos, M. Use of different methods for testing antioxidative activity of oregano essential oil. Food Chem. 2004, 85, 633–640. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the compounds are available from the authors for limited time.
No. | Compound | Content (mg/kg) | |||
---|---|---|---|---|---|
Min. a | Max. b | Av. c | SD. d | ||
1 | Kojic acid | 11.7 | 15.4 | 13.7 | 1.2 |
2 | Tyrosine | 17.2 | 59.0 | 35.6 | 14.8 |
3 | Phenylalanine | 330.3 | 52.6 | 167.8 | 80.8 |
4 | 4-Hydroxyphenylacetic acid | Nd e | 36.1 | 21.3 | 8.1 |
5 | Benzoic acid | 14.7 | 48.7 | 36.4 | 10.5 |
6 | Methyl syringate | 92.1 | 144.4 | 114.1 | 17.8 |
Compound | RI a | I b | II c | ||||||
---|---|---|---|---|---|---|---|---|---|
Min. d | Max. e | Av. f | SD. g | Min. d | Max. e | Av. f | SD. g | ||
1,4-Dimethylbenzene ** | < 900 | 0.0 | 0.3 | 0.14 | 0.11 | 0.0 | 0.1 | 0.06 | 0.06 |
1,3-Dimethylbenzene ** | < 900 | 0.0 | 0.2 | 0.08 | 0.08 | - | - | - | - |
Decane | 1000 | 0.0 | 0.1 | 0.04 | 0.06 | - | - | - | - |
Benzoic acid | 1162 | 0.5 | 4.7 | 2.22 | 2.21 | 0.5 | 4.3 | 1.76 | 1.40 |
2,4-Dimethylbenzaldehyde ** | 1178 | - | - | - | - | 0.0 | 0.1 | 0.04 | 0.05 |
3,7-Dimethylocta-1,5-dien-3,7-diol | 1191 | - | - | - | - | 0.0 | 0.1 | 0.06 | 0.06 |
3,4,5-Trimethylphenol ** | 1331 | 0.0 | 0.1 | 0.06 | 0.06 | - | - | - | - |
Eugenol | 1360 | 0.0 | 0.1 | 0.06 | 0.06 | 0.0 | 0.9 | 0.34 | 0.34 |
Tetradecane | 1400 | 0.0 | 0.1 | 0.06 | 0.06 | 0.0 | 0.5 | 0.13 | 0.17 |
β-Caryophyllene | 1425 | - | - | - | - | 0.0 | 0.1 | 0.04 | 0.05 |
4-Methyl-2,6-bis(1,1-dimethylethyl)-phenol | 1520 | 0.2 | 0.5 | 0.31 | 0.13 | 0.0 | 0.6 | 0.16 | 0.24 |
Methyl 4-methoxybenzoate | 1527 | 0.0 | 1.1 | 0.43 | 0.60 | - | - | - | - |
Hexadecane | 1600 | 0.0 | 0.6 | 0.18 | 0.27 | 0.0 | 1.3 | 0.42 | 0.48 |
3,4,5-Trimethoxybenzaldehyde | 1608 | 000 | 0.4 | 0.14 | 0.19 | 0.0 | 0.7 | 0.20 | 0.31 |
Syringaldehyde | 1662 | 2.1 | 11.1 | 7.30 | 3.96 | 4.0 | 14.1 | 8.80 | 3.27 |
Methyl 3,4,5-trimethoxybenzoate * | 1675 | 0.0 | 4.1 | 0.94 | 1.78 | 0.0 | 0.5 | 0.22 | 0.24 |
3,5-Dimethoxy-4-hydroxybenzyl alcohol * | 1721 | - | - | - | - | 0.0 | 1.8 | 0.73 | 0.88 |
Methyl syringate | 1744 | 32.3 | 56.1 | 46.68 | 10.82 | 41.7 | 60.1 | 52.98 | 7.66 |
3,4,5-Trimethoxybenzoic acid ** | 1775 | 0.0 | 1.2 | 0.34 | 0.53 | 0.0 | 2.9 | 0.88 | 1.18 |
Syringic acid | 1840 | 0.0 | 1.4 | 0.72 | 1.02 | 0.0 | 4.1 | 1.15 | 1.63 |
Hexadecan-1-ol | 1882 | 2.8 | 9.4 | 5.86 | 2.70 | 0.6 | 5.6 | 3.28 | 1.66 |
Hexadecanoic acid | 1963 | 1.0 | 9.4 | 3.94 | 3.35 | 1.0 | 12.7 | 3.69 | 4.14 |
Eicosane | 2000 | - | - | - | - | 0.0 | 1.3 | 0.32 | 0.54 |
Octadecanal | 2024 | - | - | - | - | 0.0 | 1.0 | 0.35 | 0.43 |
(Z)-Octadec-9-en-1-ol | 2073 | 6.7 | 27.7 | 14.27 | 9.33 | 5.9 | 18.6 | 10.82 | 4.41 |
Octadecan-1-ol | 2084 | 2.4 | 10.4 | 5.92 | 2.97 | 2.1 | 6.9 | 4.42 | 1.57 |
Heneicosane | 2100 | 0.0 | 4.0 | 0.12 | 0.18 | 0.0 | 5.5 | 1.40 | 2.11 |
Octadecanoic acid | 2178 | 0.0 | 0.9 | 0.22 | 0.36 | 0.0 | 1.0 | 0.23 | 0.41 |
(Z)-Octadec-9-enoic acid | 2181 | - | - | - | - | 0.0 | 0.9 | 0.22 | 0.36 |
Docosane | 2200 | - | - | - | - | 0.0 | 0.7 | 0.23 | 0.29 |
Tricosane | 2300 | - | - | - | - | 0.0 | 0.9 | 0.27 | 0.36 |
CIE Lab Colour Coordinates | TP f (mg GAE/kg) | FRAP g (mmol Fe2+/kg) | DPPH h (mmol TEAC/kg) | |||||
---|---|---|---|---|---|---|---|---|
L* a | a* b | b* c | C* ab d | h°ab e | ||||
Min. i | 67.0 | 10.7 | 65.7 | 66.6 | 79.0 | 347.14 | 2.93 | 0.57 |
Max. j | 76.2 | 14.5 | 74.8 | 76.2 | 81.2 | 490.04 | 6.01 | 1.18 |
Av. k | 71.8 | 12.5 | 71.6 | 72.6 | 80.1 | 425.38 | 4.26 | 0.80 |
SD. l | 3.1 | 1.4 | 2.9 | 3.0 | 0.8 | 44.20 | 0.90 | 0.19 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jerković, I.; Kranjac, M.; Marijanović, Z.; Zekić, M.; Radonić, A.; Tuberoso, C.I.G. Screening of Satureja subspicata Vis. Honey by HPLC-DAD, GC-FID/MS and UV/VIS: Prephenate Derivatives as Biomarkers. Molecules 2016, 21, 377. https://doi.org/10.3390/molecules21030377
Jerković I, Kranjac M, Marijanović Z, Zekić M, Radonić A, Tuberoso CIG. Screening of Satureja subspicata Vis. Honey by HPLC-DAD, GC-FID/MS and UV/VIS: Prephenate Derivatives as Biomarkers. Molecules. 2016; 21(3):377. https://doi.org/10.3390/molecules21030377
Chicago/Turabian StyleJerković, Igor, Marina Kranjac, Zvonimir Marijanović, Marina Zekić, Ani Radonić, and Carlo Ignazio Giovanni Tuberoso. 2016. "Screening of Satureja subspicata Vis. Honey by HPLC-DAD, GC-FID/MS and UV/VIS: Prephenate Derivatives as Biomarkers" Molecules 21, no. 3: 377. https://doi.org/10.3390/molecules21030377
APA StyleJerković, I., Kranjac, M., Marijanović, Z., Zekić, M., Radonić, A., & Tuberoso, C. I. G. (2016). Screening of Satureja subspicata Vis. Honey by HPLC-DAD, GC-FID/MS and UV/VIS: Prephenate Derivatives as Biomarkers. Molecules, 21(3), 377. https://doi.org/10.3390/molecules21030377