Quality Control of Gamma Irradiated Dwarf Mallow (Malva neglecta Wallr.) Based on Color, Organic Acids, Total Phenolics and Antioxidant Parameters
Abstract
:1. Introduction
2. Results
2.1. Effects on Color Parameters
2.2. Effects on Organic Acids
2.3. Effects on Total Phenolics, Total Flavonoids and Antioxidant Activity
3. Materials and Methods
3.1. Dosimeters, Standards and Reagents
3.2. Sample Collectionand Irradiation Experiments
3.3. Color Measurement
3.4. Preparation of Decoctions and Hydromethanolic Extracts
3.5. Analysis of Organic Acids
3.6. Evaluation of the Total Phenolic and Flavonoid Content
3.7. Evaluation of the Antioxidant Activity
3.8. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Andrés, V.; Tenorio, M.D.; Villanueva, M.J. Sensory profile, soluble sugars, organic acids, and mineral content in milk- and soy-juice based beverages. Food Chem. 2015, 173, 1100–1106. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.M.; Andrade, P.B.; Mendes, G.C.; Seabra, R.M.; Ferreira, M.A. Study of the organic acids composition of quince (Cydonia oblonga Miller) fruit and jam. J. Agric. Food Chem. 2002, 50, 2313–2317. [Google Scholar] [CrossRef] [PubMed]
- Ehling, S.; Cole, S. Analysis of organic acids in fruit juices by liquid chromatography-mass spectrometry: An enhanced tool for authenticity testing. J. Agric. Food Chem. 2014, 59, 2229–2234. [Google Scholar] [CrossRef] [PubMed]
- Nawirska-Olszańska, A.; Biesiada, A.; Sokół-Łętowska, A.; Kucharska, A.Z. Characteristics of organic acids in the fruit of different pumpkin species. Food Chem. 2014, 148, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Darfour, B.; Agbenyegah, S.; Ofosu, D.O.; Okyere, A.A.; Asare, I.K. Gamma irradiation of Tetrapleura tetraptera fruit as a post-harvest technique and its subsequent effect on some phytochemicals, free scavenging activity and physicochemical properties. Radiat. Phys. Chem. 2014, 102, 153–158. [Google Scholar] [CrossRef]
- Aouidi, F.; Ayari, S.; Ferhi, H.; Roussos, S.; Hamdi, M. Gamma irradiation of air-dried olive leaves: Effective decontamination and impact on the antioxidative properties and on phenolic compounds. Food Chem. 2011, 127, 1105–1113. [Google Scholar] [CrossRef] [PubMed]
- WHO. High-Dose Irradiation: Wholesomeness of Food Irradiated with Doses above 10 kGy, Report of a Joint FAO/IAEA/WHO Study Group. WHO technical Report Series 890; World Health Organization: Geneva, Switzerland, 1999. [Google Scholar]
- Fernandes, A.; Antonio, A.L.; Oliveira, M.B.P.P.; Martins, A.; Ferreira, I.C.F.R. Effect of gamma and electron beam irradiation on the physico-chemical and nutritional properties of mushrooms: A review. Food Chem. 2014, 135, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Pinela, J.; Antonio, A.L.; Barros, L.; Barreira, J.C.M.; Carvalho, A.M.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Combined effects of gamma-irradiation and preparation method on antioxidant activity and phenolic composition of Tuberaria lignosa. RSC Adv. 2015, 5, 14756–14769. [Google Scholar] [CrossRef]
- Guimarães, R.; Barros, L.; Duenas, M.; Calhelha, R.C.; Carvalho, A.M.; Santos-Buelga, C.; Queiroz, M.J.R.P.; Ferreira, I.C.F.R. Infusion and decoction of wild German chamomile: Bioactivity and characterization of organic acids and phenolic compounds. Food Chem. 2013, 136, 947–954. [Google Scholar] [CrossRef] [PubMed]
- Dalar, A.; Türker, M.; Konczak, I. Antioxidant capacity and phenolic constituents of Malva neglecta Wallr. and Plantago lanceolata L. from Eastern Anatolia Region of Turkey. J. Herb. Med. 2012, 2, 42–51. [Google Scholar] [CrossRef]
- Martins, N.; Barros, L.; Santos-Buelga, C.; Silva, S.; Henriques, M.; Ferreira, I.C.F.R. Decoction, infusion and hydroalcoholic extract of cultivated thyme: Antioxidant and antibacterial activities, and phenolic characterisation. Food Chem. 2015, 167, 131–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carocho, M.; Ferreira, I.C.F.R. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol. 2013, 51, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Harder, M.N.C.; Arthur, V.; Arthur, P.B. Irradiation of foods: Processing technology and effects on nutrients: Effect of ionizing radiation on food components. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Oxford, UK, 2016; pp. 476–481. [Google Scholar]
- Alothman, M.; Bhat, R.; Karim, A.A. Effects of radiation processing on phytochemicals and antioxidants in plant produce. Trends Food Sci. Technol. 2009, 20, 201–212. [Google Scholar] [CrossRef]
- Śledź, M.; Nowacka, M.; Wiktor, A.; Witrowa-Rajchert, D. Selected chemical and physico-chemical properties of microwave-convective dried herb. Food Bioprod. Process. 2013, 91, 421–428. [Google Scholar] [CrossRef]
- Sturm, B.; Vega, A.-M.N.; Hofacker, W.C. Influence of process control strategies on drying kinetics, colour and shrinkage of air dried apples. Appl. Therm. Eng. 2014, 62, 455–460. [Google Scholar] [CrossRef]
- Jo, C.; Son, J.H.; Lee, H.J.; Byun, M.-W. Irradiation application of color removal and purification of green tea leave extract. Radiat. Phys. Chem. 2003, 66, 179–184. [Google Scholar] [CrossRef]
- Carvalho, A.M.; Morales, R. Persistence of wild food and wild medicinal plant knowledge in a north-eastern region of Portugal. In Ethnobotany in the New Europe: People, Health and Wild Plant Resources; Pardo de Santayana, M., Pieroni, A., Puri, R., Eds.; Berghahn Books: Oxford, UK, 2013; pp. 147–171. [Google Scholar]
- Türker, M.; Dalar, A. In vitro antioxidant and enzyme inhibitory properties and phenolic composition of M. neglecta Wallr. (Malvaceae) fruit: A traditional medicinal fruit from Eastern Anatolia. Ind. Crop Prod. 2013, 51, 376–380. [Google Scholar] [CrossRef]
- Seyyednejad, S.M.; Koochak, H.; Darabpour, E.; Motamedi, H. A survey on Hibiscus rosa-sinensis, Alcea rosea L. and Malva neglecta Wallr as antibacterial agents. Asian Pac. J. Trop Med. 2010, 3, 351–355. [Google Scholar] [CrossRef]
- Gürbüz, I.; Ozkan, A.M.; Yesilada, E.; Kutsal, O. Anti-ulcerogenic activity of some plants used in folk medicine of Pinarbasi (Kayseri, Turkey). J. Ethnopharmacol. 2005, 101, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.D.; Mujumdar, A.S. Drying Technologies in Food Processing; Blackwell Publishing Ltd.: Oxford, UK, 2008. [Google Scholar]
- Kirkin, C.; Mitrevski, B.; Gunes, G.; Marriott, P.J. Combined effects of gamma-irradiation and modified atmosphere packaging on quality of some spices. Food Chem. 2014, 154, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.; Barros, L.; Antonio, L.; Bento, A.; Ferreira, I.C.F.R. Analytical methods applied to assess the effects of gamma irradiation on color, chemical composition and antioxidant activity of Ginkgo biloba L. Food Anal. Method 2015, 8, 154–163. [Google Scholar] [CrossRef]
- Rahimmalek, M.; Goli, S.A.H. Evaluation of six drying treatments with respect to essential oil yield, composition and color characteristics of Thymys daenensis subsp. daenensis. Celak leaves. Ind. Crop. Prod. 2013, 42, 613–619. [Google Scholar] [CrossRef]
- Reda, S.Y. Evaluation of antioxidants stability by thermal analysis and its protective effect in heated edible vegetable oil. Ciên. Tecnol. Aliment. 2011, 31, 475–480. [Google Scholar] [CrossRef]
- Pereira, C.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Use of UFLC-PDA for the analysis of organic acids in thirty five species of food and medicinal plants. Food Anal. Method 2013, 6, 1337–1344. [Google Scholar] [CrossRef]
- Lian, H.Z.; Mao, L.; Ye, X.L.; Miao, J. Simultaneous determination of oxalic, fumaric, maleic and succinic acids in tartaric and malic acids for pharmaceutical use by ion-suppression reversed-phase high performance liquid chromatography. J. Pharm. Biomed. 1999, 19, 621–625. [Google Scholar] [CrossRef]
- Robitaille, L.; Mamer, O.A.; Miller, W.H., Jr.; Levine, M.; Assouline, S.; Melnychuk, D.; Rousseau, C.; Hoffer, L.J. Oxalic acid excretion after intravenous ascorbic acid administration. Metabolism 2009, 58, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Sauer, M.; Porro, D.; Mattanovich, D.; Branduardi, P. Microbial production of organic acids: Expanding the markets. Trends Biotechnol. 2008, 26, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Carocho, M.; Barreiro, M.F.; Morales, P.; Ferreira, I.C.F.R. Adding molecules to food, pros and cons: A review on synthetic and natural food additives. Compr. Rev. Food Sci. F 2014, 13, 377–399. [Google Scholar] [CrossRef]
- Liu, F.-J.; Ding, G.-S.; Tang, A.-N. Simultaneous separation and determination of five organic acids in beverages and fruits by capillary electrophoresis using diamino moiety functionalized silica nanoparticles as pseudostationary phase. Food Chem. 2014, 145, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Baati, T.; Horcajada, P.; Gref, R.; Couvreur, P.; Serre, C. Quantification of fumaric acid in liver, spleen and unrine by high-performance liquid chromatography coupled to photodiode-array detection. J. Pharm. Biomed. Anal. 2011, 56, 758–762. [Google Scholar] [CrossRef] [PubMed]
- Raybaudi-Massilia, R.M.; Mosqueda-Melgar, J.; Martín-Belloso, O. Antimicrobial activity of malic acid against Listeria monocytogenes, Salmonella Enteritidis and Escherichia coli O157:H7 in apple, pear and melon juices. Food Control. 2009, 20, 105–112. [Google Scholar] [CrossRef]
- Dias, M.I.; Barros, L.; Dueñas, M.; Pereira, E.; Carvalho, A.M.; Alves, R.C.; Oliveira, M.B.; Santos-Buelga, C.; Ferreira, I.C.F.R. Chemical composition of wild and commercial Achillea millefolium L. and bioactivity of the methanolic extract, infusion and decoction. Food Chem. 2013, 141, 4152–4160. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.M.; Andrade, P.B.; Valentão, P.; Ferreres, F.; Seabra, R.M.; Ferreira, M.A. Quince (Cydonia oblonga Miller) fruit (pulp, peel, and seed) and jam: Antioxidant activity. J. Agric. Food Chem. 2004, 52, 4705–4712. [Google Scholar] [CrossRef] [PubMed]
- Nikolopoulou, D.; Grigorakis, K.; Stasini, M.; Alexis, M.N.; Iliadis, K. Differences in chemical composition of field pea (Pisum sativum) cultivars: Effects of cultivation area and year. Food Chem. 2007, 103, 847–852. [Google Scholar] [CrossRef]
- Pereira, C.; Calhelha, R.C.; Antonio, A.L.; Queiroz, M.J.R.P.; Barros, L.; Ferreira, I.C.F.R. Effects of gamma radiation on chemical and antioxidant properties, anti-hepatocellular carcinoma activity and hepatotoxicity of borututu. Innov. Food Sci.Emerg. 2014, 26, 271–277. [Google Scholar] [CrossRef]
- Pereira, E.; Barros, L.; Dueñas, M.; Antonio, A.L.; Santos-Buelga, C.; Ferreira, I.C.F.R. Gamma irradiation improves the extractability of phenolic compounds in Ginkgo biloba L. Ind. Crops Prod. 2015, 74, 144–149. [Google Scholar] [CrossRef]
- Harrison, K.; Were, L.M. Effect of gamma irradiation on total phenolic content yield and antioxidant capacity of Almond skin extracts. Food Chem. 2007, 102, 932–937. [Google Scholar] [CrossRef]
- Carvalho, A.M. Plantas y Sabiduría Popular del Parque. Natural de Montesinho Un estudio etnobotánico en Portugal; Biblioteca de Ciencias no. 35. Consejo Superior de Investigaciones Científicas: Madrid, Spain, 2010. [Google Scholar]
- Fernandes, A.; Antonio, A.L.; Barreira, J.C.M.; Botelho, M.L.; Oliveira, M.B.P.P.; Martins, A.; Ferreira, I.C.F.R. Effects of gamma irradiation on the chemical composition and antioxidant activity of Lactarius deliciosus L. wild edible mushroom. Food Bioprocess. Technol. 2013, 6, 2895–2903. [Google Scholar] [CrossRef]
- ISO/CIE 11664-6:2014(E). Joint ISO/CIE Standard: Colorimetry—Part. 6: CIEDE2000 Colour-Difference Formula; International Organization for Standardization (ISO)/Commission Internationale de l’Éclairage (CIE): Geneva, Switzerland, 2014. [Google Scholar]
- Singleton, V.L.; Rossi, J.A., Jr. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Impei, S.; Gismondi, A.; Canuti, L.; Canini, A. Metabolic and biological profile of autochthonous Vitis vinifera L. ecotypes. Food Funct. 2015, 6, 1526–1538. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Nutritional composition and bioactive properties of commonly consumed wild greens: Potential sources for new trends in modern diets. Food Res. Int. 2011, 44, 2634–2640. [Google Scholar] [CrossRef]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar]
- Barros, L.; Carvalho, A.M.; Sá Morais, J.; Ferreira, I.C.F.R. Strawberry-tree, blackthorn and rose fruits: Detailed characterisation in nutrients and phytochemicals with antioxidant properties. Food Chem. 2010, 120, 247–254. [Google Scholar] [CrossRef]
- Sample Availability: A plant voucher specimen is available from the authors.
Dose | Oxalic Acid | Quinic Acid | Malic Acid | Citric Acid | Succinic Acid | Fumaric Acid | Total |
---|---|---|---|---|---|---|---|
Dry material (mg/g dw) | |||||||
0 kGy | 67.50 ± 0.16 b | 6.63 ± 0.21 b | 3.16 ± 0.28 b | 21.56 ± 0.41 b | 7.50 ± 0.13 a | 15.07 ± 0.03 c | 121.43 ± 1.17 b |
1 kGy | 67.29 ± 0.05 b | 7.50 ± 0.42 a | 3.09 ± 0.16 b | 19.84 ± 0.14 c | 7.30 ± 0.41 a | 18.04 ± 0.05 a | 123.07 ± 0.02 a |
5 kGy | 65.30 ± 0.17 c | 6.34 ± 0.28 b | 3.42 ± 0.33 ab | 22.28 ± 0.31 a | 7.29 ± 0.12 a | 13.59 ± 0.07 d | 118.22 ± 1.15 c |
8 kGy | 71.75 ± 0.10 a | 6.45 ± 0.08 b | 3.64 ± 0.05 a | 19.02 ± 0.08 d | 6.23 ± 0.13 b | 15.85 ± 0.05 b | 122.94 ± 0.30 ab |
Decocted extracts (mg/g dw) | |||||||
0 kGy | 106.71 ± 0.50 a | 3.59 ± 0.25 d | 9.78 ± 0.67 b | 7.92 ± 0.09 d | 47.43 ± 0.67 b | 20.61 ± 0.14 c | 196.03 ± 0.80 b |
1 kGy | 79.80 ± 0.05 c | 6.96 ± 0.20 c | 10.52 ± 0.08 a | 9.80 ± 0.15 b | 47.36 ± 0.38 b | 21.54 ± 0.19 b | 175.99 ± 0.89 c |
5 kGy | 88.72 ± 0.03 b | 8.90 ± 0.09 a | 9.72 ± 0.19 b | 12.76 ± 0.07 a | 54.17 ± 0.06 a | 20.81 ± 0.08 c | 195.09 ± 0.01 b |
8 kGy | 106.33 ± 0.10 a | 8.37 ± 0.39 b | 7.89 ± 0.29 c | 8.58 ± 0.35 c | 41.42 ± 0.50 c | 25.17 ± 0.09 a | 197.76 ± 0.95 a |
Dose | DPPH• Scavenging Activity (EC50 values, mg/mL) | Reducing Power (EC50 values, mg/mL) | β-Carotene Bleaching Inhibition (EC50 values, mg/mL) | TBARS Formation Inhibition (EC50 values, mg/mL) | Total Phenolics (mg GAE/g Extract) | Total Flavonoids (mg CE/g Extract) |
---|---|---|---|---|---|---|
Hydromethanolic extracts | ||||||
0 kGy | 1.15 ± 0.02 c | 0.52 ± 0.01 c | 0.46 ± 0.01 a | 0.56 ± 0.05 b | 69.54 ± 0.21 b | 22.85 ± 0.52 b |
1 kGy | 1.57 ± 0.02 b | 0.69 ± 0.01 a | 0.41 ± 0.03 b | 0.58 ± 0.03 a | 55.04 ± 0.36 d | 19.56 ± 0.08 c |
5 kGy | 1.06 ± 0.07 d | 0.57 ± 0.02 b | 0.41 ± 0.01 b | 0.11 ± 0.03 d | 78.55 ± 0.67 a | 27.30 ± 0.20 a |
8 kGy | 1.75 ± 0.04 a | 0.56 ± 0.01 b | 0.40 ± 0.01 b | 0.22 ± 0.01 c | 64.78 ± 1.51 c | 22.70 ± 0.51 b |
Decocted extracts | ||||||
0 kGy | 0.37 ± 0.01 c | 0.268 ± 0.002 b | 0.16 ± 0.01 c | 0.403 ± 0.004 b | 91.05 ± 1.14 b | 25.14 ± 0.53 b |
1 kGy | 0.40 ± 0.01 b | 0.264 ± 0.003 c | 0.17 ± 0.02 c | 0.35 ± 0.01 c | 96.92 ± 3.73 a | 28.03 ± 0.07 a |
5 kGy | 0.36 ± 0.01 c | 0.253 ± 0.003 d | 0.41 ± 0.01 b | 0.32 ± 0.01 d | 96.76 ± 0.60 a | 27.63 ± 0.35 a |
8 kGy | 0.46 ± 0.02 a | 0.326 ± 0.001 a | 0.46 ± 0.01 a | 0.69 ± 0.02 a | 78.99 ± 0.30 c | 21.98 ± 0.47 c |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinela, J.; Barros, L.; Antonio, A.L.; Carvalho, A.M.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. Quality Control of Gamma Irradiated Dwarf Mallow (Malva neglecta Wallr.) Based on Color, Organic Acids, Total Phenolics and Antioxidant Parameters. Molecules 2016, 21, 467. https://doi.org/10.3390/molecules21040467
Pinela J, Barros L, Antonio AL, Carvalho AM, Oliveira MBPP, Ferreira ICFR. Quality Control of Gamma Irradiated Dwarf Mallow (Malva neglecta Wallr.) Based on Color, Organic Acids, Total Phenolics and Antioxidant Parameters. Molecules. 2016; 21(4):467. https://doi.org/10.3390/molecules21040467
Chicago/Turabian StylePinela, José, Lillian Barros, Amilcar L. Antonio, Ana Maria Carvalho, M. Beatriz P. P. Oliveira, and Isabel C. F. R. Ferreira. 2016. "Quality Control of Gamma Irradiated Dwarf Mallow (Malva neglecta Wallr.) Based on Color, Organic Acids, Total Phenolics and Antioxidant Parameters" Molecules 21, no. 4: 467. https://doi.org/10.3390/molecules21040467
APA StylePinela, J., Barros, L., Antonio, A. L., Carvalho, A. M., Oliveira, M. B. P. P., & Ferreira, I. C. F. R. (2016). Quality Control of Gamma Irradiated Dwarf Mallow (Malva neglecta Wallr.) Based on Color, Organic Acids, Total Phenolics and Antioxidant Parameters. Molecules, 21(4), 467. https://doi.org/10.3390/molecules21040467