Comparison of Antioxidant Activities of Melanin Fractions from Chestnut Shell
Abstract
:1. Introduction
2. Results and Discussion
2.1. Inhibition of Lipid Peroxidation
2.2. Hydroxyl Radical Scavenging Activity
2.3. Superoxide Anion Radical Scavenging Activity
2.4. DPPH· Scavenging Activity
2.5. Reducing Power
2.6. Iron Chelating Ability
2.7. Phenolic Concentration
3. Materials and Methods
3.1. Chemicals
3.2. Preparation of Melanin Fractions
3.3. Ferric Thiocyanate (FTC) Assay
3.4. Thiobarbituric Acid (TBA) Assay
3.5. Hydroxyl Radical Scavenging Assay
3.6. Superoxide Radical-Scavenging Assay
3.7. DPPH Radical Scavenging Assay
3.8. Reducing Power Assay
3.9. Ferrous Ion-Chelating Assay
3.10. Determination of Total Phenol Groups
3.11. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002, 82, 47–95. [Google Scholar] [CrossRef] [PubMed]
- Pryor, W.A. Cigarette smoke radicals and the role of free radicals in chemical carcinogenicity. Environ. Health Persp. 1997, 105, 875–882. [Google Scholar] [CrossRef]
- Butterfield, D.A.; Lauderback, C.M. Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: Potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radic. Biol. Med. 2002, 32, 1050–1060. [Google Scholar] [CrossRef]
- Pan, Y.J.; Gu, Y.J.; Gu, X.S. Protection of acanthopanax senticosus saponin on free radical injury induced aging of nerve cell. Chin. J. Integr. Med. 2002, 8, 200–203. [Google Scholar]
- Taiwo, F.A.; Powers, H.J.; Nakano, E.; Griffiths, H.R.; Nugent, D.F.; Taiwo, F.A.; Powers, H.J.; Nakano, E.; Griffiths, H.R.; Nugent, D.F. Free radical reactions in atherosclerosis; an EPR spectrometry study. Spectroscopy 2006, 20, 67–80. [Google Scholar] [CrossRef]
- Record, I.R.; Dreosti, I.E.; McInerney, J.K. Changes in plasma antioxidant status following consumption of diets high or low in fruit and vegetables or following dietary supplementation with an antioxidant mixture. Brit. J. Nutr. 2001, 85, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.J.; Day, A.W. Fungal melanins: A review. Can. J. Microbiol. 1998, 44, 1115–1136. [Google Scholar] [CrossRef]
- Hill, H.Z. The function of melanin or six blind people examine an elephant. Bioessays 1992, 14, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Henson, J. Melanin. In Biopolymers; Hofrichter, M., Steinbuechel, A., Eds.; Wiley-VCH: Weinheim, Germany, 2001; Volume 1, pp. 229–246. [Google Scholar]
- Tu, Y.G.; Sun, Y.Z.; Tian, Y.G.; Xie, M.Y.; Chen, J. Physicochemical characterisation and antioxidant activity of melanin from the muscles of taihe black-bone silky fowl (Gallus gallus domesticus Brisson). Food Chem. 2009, 114, 1345–1350. [Google Scholar] [CrossRef]
- Hung, Y.C.; Sava, V.M.; Makan, S.Y.; Chen, T.H.J.; Hong, M.Y.; Huang, G.S. Antioxidant activity of melanins derived from tea: Comparison between different oxidative states. Food Chem. 2002, 78, 233–240. [Google Scholar] [CrossRef]
- Hill, H.Z.; Huselton, C.; Pilas, B.; Hill, G.J. Ability of melanins to protect against the radiolysis of thymine and thymidine. Pigment Cell Res. 1987, 1, 81–86. [Google Scholar] [CrossRef]
- Kamei, H.; Koide, T.; Kojima, T.; Hasegawa, M.; Umeda, T. Suppression of growth of cultured malignant cells by allomelanins, plant-produced melanins. Cancer Biother. Radiopharm. 1997, 12, 47–49. [Google Scholar] [CrossRef] [PubMed]
- Montefiori, D.C.; Zhou, J.Y. Selective antiviral activity of synthetic soluble l-tyrosine and l-DOPA melanins against human immunodeficiency virus in vitro. Antivir. Res. 1991, 15, 11–25. [Google Scholar] [CrossRef]
- Sava, V.M.; Galkin, B.N.; Hong, M.Y.; Yang, P.C.; Huang, G.S. A novel melanin-like pigment derived from black tea leaves with immune-stimulating activity. Food Res. Int. 2001, 34, 337–343. [Google Scholar] [CrossRef]
- Hung, Y.C.; Sava, V.; Hong, M.Y.; Huang, G.S. Inhibitory effects on phospholipase A2 and antivenin activity of melanin extracted from Thea sinensis Linn. Life Sci. 2004, 74, 2037–2047. [Google Scholar] [CrossRef] [PubMed]
- Mimura, T.; Itoh, S.; Tsujikawa, K.; Nakajima, H.; Satake, M.; Kohama, Y.; Okabe, M. Studies on biological activities of melanin from marine animals. V. Anti-inflammatory activity of low-molecular-weight melanoprotein from squid (Fr. SM II). Chem. Pharm. Bull. 1987, 35, 1144–1150. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. FAOSTAT. Available online: http://FAOSTAT3.fao.org/browse/Q/QC/E (accessed on 19 January 2016).
- Qi, J.H.; Yao, Z.Y.; Wang, L.H. Comparison of antioxidant activities of crude pigments extracted from chestnut shell by ethanol and alkali. Sci. Technol. Food Ind. 2012, 33, 104–107. [Google Scholar]
- Yu, X.; Huang, K.; Zou, J. Studies on characteristics and application of the pigment from chestnut shell. Chem. Ind. Forest Prod. 1997, 17, 67–72. [Google Scholar]
- Yao, Z.; Qi, J.; Wang, L. Isolation, fractionation and characterization of melanin-like pigments from chestnut (Castanea mollissima) shells. J. Food Sci. 2012, 77, C671–C676. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.H.; Yao, Z.Y.; Wang, L.H. Fractionation and stability of chestnut shell pigments. Food Ferment. Ind. 2011, 37, 90–95. [Google Scholar]
- Lee, J.; Koo, N.; Min, D.B. Reactive oxygen species, aging, and antioxidative nutraceuticals. Compr. Rev. Food Sci. Food safety 2004, 3, 21–33. [Google Scholar] [CrossRef]
- Rekka, E.; Kourounakis, P.N. Effect of hydroxyethyl rutosides and related compounds on lipid peroxidation and free radical scavenging activity. Some structural aspects. J. Pharm. Pharmacol. 1991, 43, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Ling, G.T. Antioxidant Food and Health; Chemical Industry Press: Beijing, China, 2004. [Google Scholar]
- Sendra, J.M.; Sentandreu, E.; Navarro, J.L. Reduction kinetics of the free stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH·) for determination of the antiradical activity of citrus juices. Eur. Food Res. Technol. 2006, 223, 615–624. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Kehrer, J.P. The Haber-weiss reaction and mechanisms of toxicity. Toxicology 2000, 149, 43–50. [Google Scholar] [CrossRef]
- Dinis, T.C.P.; Madeira, V.M.C.; Almeida, L.M. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid-peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 1994, 315, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.Z.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004, 74, 2157–2184. [Google Scholar] [CrossRef] [PubMed]
- Olennikov, D.N.; Tankhaeva, L.M.; Rokhin, A.V.; Agafonova, S.V. Physicochemical properties and antioxidant activity of melanin fractions from Inonotus obliquus sclerotia. Chem. Nat. Compd. 2012, 48, 396–403. [Google Scholar] [CrossRef]
- Qi, J.-H. Utilization of Chestnut Shell Residue from Food Processing: Cu(II)- Biosorption, and Extraction, Fractionation and Characterization of Nature Pigment. Ph. D Thesis, Northwest A&F University, Yangling, China, 2010. [Google Scholar]
- Hong, L.; Liu, Y.; Simon, J.D. Binding of metal ions to melanin and their effects on the aerobic reactivity. Photochem. Photobiol. 2004, 80, 477–481. [Google Scholar] [CrossRef]
- Meredith, P.; Sarna, T. The physical and chemical properties of eumelanin. Pigm. Cell. Res. 2006, 19, 572–594. [Google Scholar] [CrossRef] [PubMed]
- Fogarty, R.V.; Tobin, J.M. Fungal melanins and their interactions with metals. Enzyme Microb. Technol. 1996, 19, 311–317. [Google Scholar] [CrossRef]
- Kikuzaki, H.; Nakatani, N. Antioxidant effects of some ginger constituents. J. Food Sci. 1993, 58, 1407–1410. [Google Scholar] [CrossRef]
- Marklund, S.; Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 1974, 47, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.; Rossi, J., Jr. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Sample Availability: Samples of the compounds are not available from the authors.
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Z.-Y.; Qi, J.-H. Comparison of Antioxidant Activities of Melanin Fractions from Chestnut Shell. Molecules 2016, 21, 487. https://doi.org/10.3390/molecules21040487
Yao Z-Y, Qi J-H. Comparison of Antioxidant Activities of Melanin Fractions from Chestnut Shell. Molecules. 2016; 21(4):487. https://doi.org/10.3390/molecules21040487
Chicago/Turabian StyleYao, Zeng-Yu, and Jian-Hua Qi. 2016. "Comparison of Antioxidant Activities of Melanin Fractions from Chestnut Shell" Molecules 21, no. 4: 487. https://doi.org/10.3390/molecules21040487
APA StyleYao, Z. -Y., & Qi, J. -H. (2016). Comparison of Antioxidant Activities of Melanin Fractions from Chestnut Shell. Molecules, 21(4), 487. https://doi.org/10.3390/molecules21040487