Regioselective Palmitoylation of 9-(2,3-Dihydroxy- propyl)adenine Catalyzed by a Glycopolymer-enzyme Conjugate
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Enzyme Activity Assay
3.3. Lipase Immobilisation
3.4. Chemical Modification of Immobilised Lewatit-CAL-B Preparation
3.5. Transesterification Reactions
3.6. Analytical Methods
Preparative TLC
3.7. 3-(6-Amino-9H-purin-9-yl)-2-hydroxypropyl palmitate (2)
3.8. Circular Dichroism and Fluorescence Spectroscopy
3.9. Docking Experiments
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kasthuri, M.; El Amri, C.; Lefort, V.; Perigaud, C.; Peyrottes, S. Synthesis and study of (R)- and (S)-β-hydroxyphosphonate acyclonucleosides as structural analogues of (S)-HPMPC (cidofovir). New J. Chem. 2014, 38, 4736–4742. [Google Scholar] [CrossRef]
- Głowacka, I.E.; Balzarini, J.; Andrei, G.; Snoeck, R.; Schols, D.; Piotrowska, D.G. Design, synthesis, antiviral and cytostatic activity of ω-(1H-1,2,3-triazol-1-yl)(polyhydroxy)alkylphosphonates as acyclic nucleotide analogues. Bioorg. Med. Chem. 2014, 22, 3629–3641. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, M.M.; Jansa, P.; Dračínský, M.; Janeba, Z. A novel type of acyclic nucleoside phosphonates derived from 2-(phosphonomethoxy)propanoic acid. Tetrahedron 2012, 68, 4003–4012. [Google Scholar] [CrossRef]
- Xie, M.-S.; Niu, H.-Y.; Qu, G.-R.; Guo, H.-M. The development for the synthesis of chiral acyclic nucleosides and their phosphonates Review. Tetrahedron Lett. 2014, 55, 7156–7166. [Google Scholar] [CrossRef]
- Pohl, R.; Postova Slavetinska, L.; Eng, W.S.; Keough, D.T.; Guddat, L.W.; Rejman, D. Synthesis, conformational studies, and biological properties of phosphonomethoxyethyl derivatives of nucleobases with a locked conformation via a pyrrolidine ring. Org. Biomol. Chem. 2015, 13, 4693–4705. [Google Scholar] [CrossRef] [PubMed]
- Krečmerová, M.; George, D.; Magel, S. Herpesviridae—A Look into This Unique Family of Viruses; InTech: Rijeka, Croatia, 2012; pp. 245–270. [Google Scholar]
- De Clercq, E.; Descamps, J.; De Somer, P.; Holý, A. (S)-9-(2,3-Dihydroxypropyl)adenine: An Aliphatic Nucleoside Analog with Broad-Spectrum Antiviral Activity. Science 1978, 200, 563–565. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Lim, S.M.; Westover, K.D.; Dodge, M.E.; Ercan, D.; Ficarro, S.B.; Udayakumar, D.; Gurbani, D.; Tae, H.S.; Riddle, S.M.; et al. Pharmacological targeting of the pseudokinase Her3. Nat. Chem. Biol. 2014, 10, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Krečmerová, M.; Pohl, R.; Masojídková, M.; Balzarini, J.; Snoeck, R.; Andrei, G. N4-Acyl derivatives as lipophilic prodrugs of cidofovir and its 5-azacytosine analogue,(S)-HPMP-5-azaC: Chemistry and antiviral activity. Bioorg. Med. Chem. 2014, 22, 2896–2906. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.-L.; Li, N.; Zong, M.-H. Enzymatic regioselective acylation of nucleosides in biomass-derived 2-methyltetrahydrofuran: Kinetic study and enzyme substrate recognition. J. Biotechnol. 2013, 164, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Ravalico, F.; James, S.L.; Vyle, J.S. Synthesis of nucleoside analogues in a ball mill: Fast, chemoselective and high yielding acylation without undesirable solvents. Green Chem. 2011, 13, 1778–1783. [Google Scholar] [CrossRef]
- Li, N.; Zong, M.-H.; Ma, D. Regioselective acylation of nucleosides and their analogs catalyzed by Pseudomonas cepacia lipase: Enzyme substrate recognition. Tetrahedron 2009, 65, 1063–1068. [Google Scholar] [CrossRef]
- Yuan, L.; Wang, J.; Shen, W.-C. Lipidization of human interferon-alpha: A new approach toward improving the delivery of protein drugs. J. Controll. Release 2008, 129, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Draper, J.M.; Xia, Z.; Smith, C.D. Cellular palmitoylation and trafficking of lipidated peptides. J. Lipid Res. 2007, 48, 1873–1884. [Google Scholar] [CrossRef] [PubMed]
- Reetz, M.T. Biocatalysis in Organic Chemistry and Biotechnology: Past, Present, and Future. J. Am. Chem. Soc. 2013, 135, 12480–12496. [Google Scholar] [CrossRef] [PubMed]
- Wallace, S.; Balskus, E.P. Opportunities for merging chemical and biological synthesis. Curr. Opin. Biotechnol. 2014, 30. [Google Scholar] [CrossRef] [PubMed]
- Busto, E.; Gotor-Fernandez, V.; Gotor, V. Hydrolases: Catalytically promiscuous enzymes for non-conventional reactions in organic synthesis. Chem. Soc. Rev. 2010, 39, 4504–4523. [Google Scholar] [CrossRef] [PubMed]
- Mateo, C.; Palomo, J.M.; Fernandez-Lorente, G.; Guisan, J.M.; Fernandez-Lafuente, R. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 2007, 40, 1451–1463. [Google Scholar] [CrossRef]
- Adlercreutz, P. Immobilisation and application of lipases in organic media. Chem. Soc. Rev. 2013, 42, 6406–6436. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, R.A. Enzyme Immobilization: The Quest for Optimum Performance. Adv. Synth. Catal. 2007, 349, 1289–1307. [Google Scholar] [CrossRef]
- Palomo, J.M.; Filice, M. New emerging bio-catalysts design in biotransformations. Biotechnol. Adv. 2015, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Romero, O.; Rivero, C.W.; Guisan, J.M.; Palomo, J.M. Novel enzyme-polymer conjugates for biotechnological applications. Peer J. 2013, 1. [Google Scholar] [CrossRef] [PubMed]
- Payne, R.J.; Wong, C.-H. Advances in chemical ligation strategies for the synthesis of glycopeptides and glycoproteins. Chem. Commun. 2010, 46, 21–43. [Google Scholar] [CrossRef] [PubMed]
- Gutarra, M.L.E.; Romero, O.; Abian, O.; Torres, F.A.G.; Freire, D.M.G.; Castro, A.M.; Guisan, J.M.; Palomo, J.M. Enzyme Surface Glycosylation in the Solid Phase: Improved Activity and Selectivity of Candida Antarctica Lipase B. Chem. Cat. Chem. 2011, 3, 1902–1910. [Google Scholar] [CrossRef]
- Díaz-Rodríguez, A.; Davis, B.G. Chemical modification in the creation of novel biocatalysts. Opin. Chem. Biol. 2011, 15, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Filice, M.; Romero, O.; Guisan, J.M.; Palomo, J.M. Trans,trans-2,4-Hexadiene incorporation on enzymes for site-specific immobilization and fluorescent labeling. Org. Biomol.Chem. 2011, 9, 5535–5540. [Google Scholar] [CrossRef] [PubMed]
- Romero, O.; Filice, M.; Rivas, B.D.L.; Carrasco-Lopez, C.; Klett, J.; Morreale, A.; Hermoso, J.A.; Guisan, J.M.; Abian, O.; Palomo, J.M. Semisynthetic peptide-lipase conjugates for improved biotransformations. Chem. Commun. 2012, 48, 9053–9055. [Google Scholar] [CrossRef] [PubMed]
- Filice, M.; Guisan, J.M.; Terreni, M.; Palomo, J.M. Regioselective monodeprotection of peracetylated carbohydrates. Nat. Prot. 2012, 7, 1783–1796. [Google Scholar] [CrossRef] [PubMed]
- Quintana, P.G.; Guillén, M.; Marciello, M.; Valero, F.; Palomo, J.M.; Baldessari, A. Immobilized Heterologous Rhizopus Oryzae Lipase as an Efficient Catalyst in the Acetylation of Cortexolone. Eur. J. Org. Chem. 2012, 2012, 4306–4312. [Google Scholar] [CrossRef]
- Palomo, J.M.; Cabrera, Z. Enzymatic Desymmetrization of Prochiral Molecules. Curr. Org. Synth. 2012, 9, 791–805. [Google Scholar] [CrossRef]
- Brabcová, J.; Blažek, J.; Janská, L.; Krečmerová, M.; Zarevúcka, M. Lipases as Tools in the Synthesis of Prodrugs from Racemic 9-(2, 3-Dihydroxypropyl) adenine. Molecules 2012, 17, 13813–13824. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the compounds (S)-9-(2,3-dihydroxypropyl)adenine (DHPA) and palmitoylated DHPA are available from the authors.
Entry | Solvent | Conversion 2 (%) a |
---|---|---|
1 | DMF | 2 |
2 | DMF: Hexane (4:1) | 6.4 |
3 | DMF: Hexane (3:2) | 5.9 |
4 | DMF: Ionic liquid b (4:1) | 0.6 |
5 | DMF: 2-methyl-2-butanol (4:1) | 6.2 |
6 | DMF:Pyridine (4:1) | 1.1 |
Entry | Modified Biocatalysts | Conversion 2 (%) |
---|---|---|
1 | - | 6.2 |
2 | Lew-CAL-B-EDA | 3.5 |
3 | Lew-CAL-B-PEI | 16.2 |
4 | Lew-CAL-B-mc-PEG | 19.4 |
5 | Lew-CAL-B-D1500 | 49.9 (>99) b |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brabcová, J.; Blažek, J.; Krečmerová, M.; Vondrášek, J.; Palomo, J.M.; Zarevúcka, M. Regioselective Palmitoylation of 9-(2,3-Dihydroxy- propyl)adenine Catalyzed by a Glycopolymer-enzyme Conjugate. Molecules 2016, 21, 648. https://doi.org/10.3390/molecules21050648
Brabcová J, Blažek J, Krečmerová M, Vondrášek J, Palomo JM, Zarevúcka M. Regioselective Palmitoylation of 9-(2,3-Dihydroxy- propyl)adenine Catalyzed by a Glycopolymer-enzyme Conjugate. Molecules. 2016; 21(5):648. https://doi.org/10.3390/molecules21050648
Chicago/Turabian StyleBrabcová, Jana, Jiří Blažek, Marcela Krečmerová, Jiří Vondrášek, Jose M. Palomo, and Marie Zarevúcka. 2016. "Regioselective Palmitoylation of 9-(2,3-Dihydroxy- propyl)adenine Catalyzed by a Glycopolymer-enzyme Conjugate" Molecules 21, no. 5: 648. https://doi.org/10.3390/molecules21050648
APA StyleBrabcová, J., Blažek, J., Krečmerová, M., Vondrášek, J., Palomo, J. M., & Zarevúcka, M. (2016). Regioselective Palmitoylation of 9-(2,3-Dihydroxy- propyl)adenine Catalyzed by a Glycopolymer-enzyme Conjugate. Molecules, 21(5), 648. https://doi.org/10.3390/molecules21050648