Inhibitory Activities of Phenolic Compounds Isolated from Adina rubella Leaves Against 5α-Reductase Associated with Benign Prostatic Hypertrophy
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Procedures
3.2. Plant Material
3.3. Cell Culture
3.4. Extraction and Isolation
3.5. Antioxidative Activity
3.5.1. Measurement of DPPH Radical Scavenging Activity
3.5.2. Measurement of NBT/Superoxide Scavenging Activity
3.6. Measurement of Inhibition of NO Production
3.7. Measurement of Inhibitory Activity on Cytokine Production
3.8. Preparation of Liver Microsomes
3.9. Measurement of Inhibitory Activity Against 5α-reductase
3.10. Macrophage Differentiation and Stimulation
3.11. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lin, S.; Jiang, X.M.; Sakurai, S. Studies on chemical constituents of Adina rubella Hance (I). J. Chin. Tradit. Herb Drug 1994, 25, 499. [Google Scholar]
- Fan, G.J.; He, Z.S.; Wu, H.M.; Xu, J.F. 27-Ald-triterpenoid saponins from Adina rubella. Chin. J. Chem. 2010, 15, 431–437. [Google Scholar] [CrossRef]
- Fang, S.Y.; He, Z.S.; Fan, G.J.; Wu, H.M.; Xu, J.F. Triterpenoids from Adina rubella. J. Nat. Prod. 1996, 59, 304–307. [Google Scholar] [CrossRef]
- Fan, G.J.; He, Z.S. Triterpenoid glycosides from Adina rubella. Phytochemistry 1995, 39, 1241–1243. [Google Scholar]
- Bai, X.; Lin, C.; Li, Y.L. Antibacterial activity experiments of Adina pilulifera (Lam.) Franch, ex Drake Extract and Adina Rubella Hance Extract in vitro. Chin. Tradit. Herb Drug 2008, 39, 1532–1535. [Google Scholar]
- Liao, J.H.; Lin, K.H.; Ho, H.Y.; Peng, W.H.; Yao, X.S.; Kitanaka, S.; Wu, J.B. Inhibitory Effects 87 Species of Traditional Chinese Herbs on Nitric Oxide Production in RAW264.7 Macrophages, Activated with Lipopolysaccharide and Interferon-γ. Pharm. Biol. 2005, 43, 158–163. [Google Scholar] [CrossRef]
- Ye, Y.; Tu, X.Q.; Song, X.W.; Shi, M.R.; Jiang, H. Anticancer Effects of Root of Adina Rubella Hance Extract in vitro. J. Zhejiang Univ. Tradit. Chin. Med. 2007, 31, 372–373. [Google Scholar]
- Untergasser, G.; Madersbacher, S.; Berger, P. Benign prostatic hyperplasia: Age-related tissue-remodeling. Exp. Gerontol. 2005, 40, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Khandrika, L.; Kumar, B.; Koul, S.; Maroni, P.; Koul, H.K. Oxidative stress in prostate cancer. Cancer Lett. 2009, 282, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Pagano, E.; Laudato, M.; Griffo, M.; Capasso, R. Phytotherapy of benign prostatic hyperplasia. A minireview. Phytother. Res. 2014, 28, 949–955. [Google Scholar] [CrossRef] [PubMed]
- Gades, N.M.; Jacobson, D.J.; Girman, C.J.; Roberts, R.O.; Lieber, M.M.; Jacobsen, S.J. Prevalence of conditions potentially associated with lower urinary tract symptoms in men. BJU Int. 2005, 95, 549–553. [Google Scholar] [CrossRef] [PubMed]
- Bruchovsky, N.; Wilson, J.D. The intranuclear binding of testosterone and 5α-androstan-17β-ol-3-one by rat prostate. J. Biol. Chem. 1968, 243, 5953–5960. [Google Scholar] [PubMed]
- Carson, C.; Rittmaster, R. The role of dihydrotestosterone in benign prostatic hyperplasia. Urology 2003, 61, 2–7. [Google Scholar] [CrossRef]
- Andriole, G.; Bruchovsky, N.; Chung, L.W.; Matsumoto, A.M.; Rittmaster, R.; Roehrborn, C.; Russell, D.; Tindall, D. Dihydrotestosterone and the prostate: the scientific rationale for 5α-reductase inhibitors in the treatment of benign prostatic hyperplasia. J. Urol. 2004, 172, 1399–1403. [Google Scholar] [CrossRef] [PubMed]
- Marcelli, M.; Cunningham, G.R. Hormonal signaling in prostatic hyperplasia and neoplasia. J. Clin. Endocrinol. Metab. 1999, 84, 3463–3468. [Google Scholar] [CrossRef] [PubMed]
- Son, D.H.; Nam, M.H.; Hong, C.O.; Seol, H.M.; Yang, J.E.; Kim, Y.B.; Kim, C.T.; Lee, K.W. 5-α Reductase inhibitory effect and astringent activity of green apple rind extract on human keratinocytes and fibroblast cells. Biosci. Biotechnol. Biochem. 2013, 77, 714–721. [Google Scholar] [CrossRef] [PubMed]
- Juman, S.; Yasui, N.; Ikeda, K.; Ueda, A.; Sakanaka, M.; Negishi, H.; Miki, T. Caffeic acid phenethyl ester suppresses the production of pro-inflammatory cytokines in hypertrophic adipocytes through lipopolysaccharide-stimulated macrophages. Biol. Pharm. Bull. 2012, 35, 1941–1946. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.R.; Lee, D.M.; Lee, S.H.; Seong, A.R.; Gin, D.W.; Hwang, J.A.; Park, J.H. Chlorogenic acid suppresses pulmonary eosinophilia, IgE production, and Th2-type cytokine production in an ovalbumin-induced allergic asthma: activation of STAT-6 and JNK is inhibited by chlorogenic acid. Int. Immunopharmacol. 2010, 10, 1242–1248. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, M.; Takagi, Y.; Higashi, N.; Suzuki, T. Orally administered rutin inhibits the gene expression of Th2 cytokines in the gut and lung in aged mice. J. Vet. Med. Sci. 2011, 73, 1257–1263. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.N.; Yan, E.Z.; Wang, H.M.; Sui, H.J.; Liu, Z.; Gao, W.; Jin, Y. Hyperoside exerts anti-inflammatory and anti-arthritic effects in LPS-stimulated human fibroblast-like synoviocytes in vitro and in mice with collagen-induced arthritis. Acta. Pharmacol. Sin. 2016, 37, 674–686. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, J.M. Iridoid glycosides fraction of Folium Syringae leaves modulate NF-κB signal pathyway and intestinal epithelial cells apoptosis in experimental colitis. PLoS ONE. 2011, 6, e24740. [Google Scholar]
- Nagels, L.; van Dongen, W.; Parmentier, F. Cestric acid, a caffeic acid ester from Cestrum euanthes. Phytochemistry 1982, 21, 743–746. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Lim, Y.Y.; Ling, S.K.; Tan, S.P.; Lim, K.K.; Khoo, M.G.H. Caffeoylquinic acids from leaves of Etlingera species (Zingiberaceae). LWT-Food SCI Technol 2009, 42, 1026–1030. [Google Scholar] [CrossRef]
- Lee, E.J.; Kim, J.S.; Kim, H.P.; Lee, J.H.; Kang, S.S. Phenolic constituents from the flower buds of Lonicera japonica and their 5-lipoxygenase inhibitory activities. Food Chemistry 2010, 120, 134–139. [Google Scholar] [CrossRef]
- Gohari, A.R.; Saeidnia, S.; Shahverdi, A.R.; Yassa, N.; Malmir, M.; Mollazade, K.; Naghinejad, A.R. Phytochemistry and antimicrobial compounds of Hymenocrater calycinus. J. BioSci. 2009, 3, 64–68. [Google Scholar] [CrossRef]
- Al-Musayeib, N.; Perveen, S.; Fatima, I.; Nasir, M.; Hussain, A. Anti-glycation and anti-inflammatory activities of phenolic constituents from Cordia sinensis. Molecules 2011, 16, 10214–10226. [Google Scholar] [CrossRef] [PubMed]
- Amal, M.Y.M.; Ahmed, I.K.; Mahmoud, A.S. Isolation, structural elucidation of flavonoid constituents from Leptadenia pyrotechnica and evaluation of their toxicity and antitumor activity. Pharm. Biol. 2009, 47, 539–552. [Google Scholar]
- Itoh, A.; Fujii, K.; Tomatsu, S.; Takao, C.; Tanahashi, T.; Nagakura, N.; Chen, C.C. Six secoiridoid glucosides from Adina racemosa. J. Nat. Prod. 2003, 66, 1212–1216. [Google Scholar] [CrossRef] [PubMed]
- Alessandra, R.; Venera, C.; Laura, L.; Luca, V.; Angelo, V.; Juan, A.G. Antioxidant activity and antiproliferative action of methanolic extract of Geum quellyon Sweet roots in human tumor cell lines. J. Ethnopharmacol. 2005, 100, 323–332. [Google Scholar]
- Pace, G.; di Massimo, C.; de Amicis, D.; Corbacelli, C.; di Renzo, L.; Vicentini, C.; Miano, L.; Ciancarelli, M.G.T. Oxidative stress in benign prostatic hyperplasia and prostate cancer. Urol. Int. 2010, 85, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Rayburn, E.R.; Ezell, S.J.; Zhang, R.W. Anti-inflammatory agents for cancer therapy. Mol. Cell. Pharmacol. 2009, 1, 29–43. [Google Scholar] [CrossRef] [PubMed]
- Gradini, R.; Realacci, M.; Ginepri, A.; Ginepri, G.; Santangelo, O.; Naso, C.; Cela1, P.; Sale1, A.; Realacci1, A.; Berardi1, E. Nitric oxide synthases in normal and benign hyperplastic human prostate: immunohistochemistry and molecular biology. J. Pathol. 1999, 189, 224–229. [Google Scholar] [CrossRef]
- Penna, G.; Mondaini, N.; Amuchastegui, S.; Deqli Innocenti, S.; Carini, M.; Giubilei; Fibbi, B.; Colli, E.; Maggi, N.; Adorini, L. Seminal plasma cytokines and chemokines in prostate inflammation: interleukin 8 as a predictive biomarker in chronic prostatitis/chronic pelvic pain syndrome and benign prostatic hyperplasia. Eur. Urol. 2007, 51, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Kramer, G.; Marberger, M. Could inflammation be a key component in the progression of benign prostatic hyperplasia? Curr. Opin. Uro. 2006, 16, 25–29. [Google Scholar]
- Siegall, C.B.; Schwab, G.; Nordan, R.P.; FitzGerald, D.J.; Pastan, I. Expression of the interleukin 6 receptor and interleukin 6 in prostate carcinoma cells. Cancer Res. 1990, 50, 7786–7788. [Google Scholar] [PubMed]
- Siegsmund, M.J.; Yamazaki, H.; Pastan, I. Interleukin 6 receptor mRNA in prostate carcinomas and benign prostate hyperplasia. J. Urol. 1994, 151, 1396–1399. [Google Scholar] [PubMed]
- Twillie, D.A.; Eisenberger, M.A.; Carducci, M.A.; Hseih, W.S.; Kim, W.Y.; Simons, J.W. Interleukin-6: A candidate mediator of human prostate cancer morbidity. Urology 1995, 45, 542–549. [Google Scholar] [CrossRef]
- Giri, D.; Ozen, M.; Ittmann, M. Interleukin-6 is an autocrine growth factor in human prostate cancer. Am. J. Pathol. 2001, 159, 2159–2165. [Google Scholar] [CrossRef]
- Hobisch, A.; Eder, I.E.; Putz, T.; Horninger, W.; Bartsch, G.; Klocker, H.; Culig, Z. Interleukin-6 regulates prostate specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res. 1998, 58, 4640–4645. [Google Scholar] [PubMed]
- Dinarello, C.A. The interleukin-1 family: 10 years of discovery. FASEB J. 1994, 8, 1314–1325. [Google Scholar] [PubMed]
- Ricote, M.; Garcia-Tuñon, I.; Bethencourt, F.R.; Fraile, B.; Paniagua, R.; Royuela, M. Interleukin-1(IL-1α and IL-1β) and its receptors (IL-1RI, IL-1RII, and IL-1Ra) in prostate carcinoma. Cancer 2004, 100, 1388–1396. [Google Scholar] [CrossRef] [PubMed]
- Nadler, R.B.; Koch, A.E.; Calhoun, E.A.; Campbell, P.L.; Pruden, D.L.; Bennett, C.L.; Yarnold, P.R.; Schaeffer, A.J. IL-1β and TNF-α in prostatic secretions are indicators in the evaluation of men with chronic prostatitis. J. Urol. 2000, 164, 214–218. [Google Scholar] [CrossRef]
- Claudio, E.; Segade, F.; Wrobel, K.; Ramos, S.; Bravo, R. Molecular mechanisms of TNF-α cytotoxicity: Activation of NF-κB and nuclear translocation. Exp. Cell Res. 1996, 224, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Laster, S.M.; Wood, J.G.; Gooding, C.R. Target-induced changes in macrophage migration may explain differences in lytic sensitivity among simian virus 40-transformed fibroblasts. J. Immunol. 1988, 141, 2629–2635. [Google Scholar] [PubMed]
- Hiipakka, R.A.; Zhang, H.Z.; Dai, W.; Dai, Q.; Liao, S. Structure-activity relationships for inhibition of human 5α-reductases by polyphenols. Biochem. Pharmacol. 2002, 63, 1165–1176. [Google Scholar] [CrossRef]
- Acquaviva, R.; Giacomo, C.; Sorrenti, V.; Galvano, F.; Santangelo, R.; Cardile, V.; Gangia, S.; D’Orazio, N.; Abraham, N.G.; Vanella, L. Antiproliferative effect of oleuropein in prostate cell lines. Inter. J. Oncolo. 41, 31–38.
- Mosmann, T. Rapid colorimetric assay for the cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Feelisch, M.; Stamler, J. Methods in Nitric Oxide Research; John Wiley & Sons: New York, NY, USA, 1996; pp. 492–497. [Google Scholar]
- Sample Availability: Samples of the compounds are available from the authors.
Compounds | IC50 (μM) | ||
---|---|---|---|
DPPH Scavenging Radical Activity | NBT Superoxide Scavenging Activity | NO Inhibitory Production Activity | |
1 | 33.97 ± 1.60 c | 8.52 ± 1.08 b | 23.98 ± 1.52 a |
2 | 40.30 ± 2.22 d | 9.75 ± 1.44 b | 57.01 ±1.76 d |
3 | 24.39 ± 1.80 a | 7.08 ± 0.91 b | 91.77 ± 2.01 e |
4 | 29.62± 0.22 b | 15.05 ± 1.31 c | 48.63 ± 2.01 c |
5 | 34.31 ± 1.50 c | 42.83 ± 1.81 d | 46.69 ± 1.15 c |
6 | > 100 e | >100 e | 45.35 ± 2.32 c |
7 | 27.06 ± 0.24 a | 9.24 ± 0.43 b | 30.12 ±1.02 b |
Ascorbic Acid | 23.88 ± 0.76 a | - | - |
Allopurinol | - | 4.57 ± 0.73 a | - |
l-NMMA | - | - | 29.12 ± 1.98 b |
Fractions | IC50 (μg/mL) | ||
---|---|---|---|
DPPH Scavenging Radical Activity | NBT Superoxide Scavenging Activity | NO Inhibitory Production Activity | |
Extract | 56.40 ± 2.78 f | 85.39 ± 1.44 b | 18.01 ± 1.21 b |
Fr.1 | > 100 h | >100 c | > 100 e |
Fr.2 | > 100 h | >100 c | > 100 e |
Fr.3 | > 100 h | >100 c | > 100 e |
Fr.4 | 73.37 ± 0.59 g | 83.70 ± 1.77 a | 77.32 ± 1.07 d |
Fr.5 | 15.20 ± 1.15 a | >100 c | 17.34 ± 0.82 b |
Fr.6 | 58.26 ± 2.96 e | 87.64 ± 1.09 b | 21.63 ± 0.30 c |
Fr.7 | 19.59 ± 2.56 b | >100 c | 16.38 ± 2.86 b |
Fr.8 | 31.92 ± 3.03 d | >100 c | > 100 e |
Fr.9 | 23.26 ± 3.49 c | >100 c | > 100 e |
Fr.10 | 35.04 ± 1.29 d | - | > 100 e |
Ascorbic Acid | 23.40 ± 0.49 c | - | - |
Allopurinol | - | 89.44 ± 0.74 b | - |
l-NMMA | - | - | 12.5< a |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, J.; Heo, J.H.; Hwang, Y.J.; Le, T.T.; Lee, M.W. Inhibitory Activities of Phenolic Compounds Isolated from Adina rubella Leaves Against 5α-Reductase Associated with Benign Prostatic Hypertrophy. Molecules 2016, 21, 887. https://doi.org/10.3390/molecules21070887
Yin J, Heo JH, Hwang YJ, Le TT, Lee MW. Inhibitory Activities of Phenolic Compounds Isolated from Adina rubella Leaves Against 5α-Reductase Associated with Benign Prostatic Hypertrophy. Molecules. 2016; 21(7):887. https://doi.org/10.3390/molecules21070887
Chicago/Turabian StyleYin, Jun, Jun Hyeok Heo, Yoon Jeong Hwang, Thi Tam Le, and Min Won Lee. 2016. "Inhibitory Activities of Phenolic Compounds Isolated from Adina rubella Leaves Against 5α-Reductase Associated with Benign Prostatic Hypertrophy" Molecules 21, no. 7: 887. https://doi.org/10.3390/molecules21070887
APA StyleYin, J., Heo, J. H., Hwang, Y. J., Le, T. T., & Lee, M. W. (2016). Inhibitory Activities of Phenolic Compounds Isolated from Adina rubella Leaves Against 5α-Reductase Associated with Benign Prostatic Hypertrophy. Molecules, 21(7), 887. https://doi.org/10.3390/molecules21070887