The Impact of Efflux Pump Inhibitors on the Activity of Selected Non-Antibiotic Medicinal Products against Gram-Negative Bacteria
Abstract
:1. Introduction
2. Results
2.1. Susceptibility of Bacteria to Non-Antibiotic Active Substances and Medicinal Products
2.2. The Effect of EPIs on the Susceptibility of Bacteria to Drug Active Substances and Medicinal Products
2.3. The Effect of Non-Antibiotics on the Susceptibility of Clinical Strains to Quinolones with and without PAβN
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Growth Conditions
4.2. Quinolones, Efflux Pump Inhibitors, Active Substances, and Medicinal Products of Drugs
4.3. Determination of the MICs of Quinolones, Medicinal Products/Active Substances of Drugs with and without an Efflux Pump Inhibitor
4.4. Determination of Quinolone Activity in the Presence of Medicinal Products with and without PAβN
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Nikaido, H.; Pages, J.M. Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiol. Rev. 2012, 36, 340–363. [Google Scholar] [CrossRef] [PubMed]
- Blair, J.M.A.; Richmond, G.E.; Piddock, L.J.V. Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Future Microbiol. 2014, 9, 1165–1177. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Z.; Plesiat, P.; Nikaido, H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin. Microbiol. Rev. 2015, 28, 337–418. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.; Dastidar, S.G.; Fanning, S.; Kristiansen, J.E.; Molnar, J.; Pages, J.M.; Schelz, Z.; Spengler, G.; Viveros, M.; Amaral, L. Potential role of non-antibiotics (helper compounds) in the treatment of multidrug-resistant Gram-negative infections: Mechanisms for their direct and indirect activities. Int. J. Antimicrob. Agents 2008, 31, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Kristiansen, J.E.; Thomsen, V.F.; Martines, A.; Viveiros, M.; Amaral, L. Non-antibiotics reverse resistance of bacteria to antibiotics. In Vivo 2010, 24, 751–754. [Google Scholar] [PubMed]
- Laudy, A.E.; Mrówka, A.; Krajewska, J.; Tyski, S. The influence of efflux pump inhibitors on the activity of non-antibiotic NSAIDs against Gram-negative rods. PLoS ONE 2016, 11, e0147131. [Google Scholar] [CrossRef]
- Dutta, N.K.; Annadurai, S.; Mazumdar, K.; Dastidar, S.G.; Kristiansen, J.E.; Molnar, J.; Martins, M.; Amaral, L. Potential management of resistant microbial infections with a novel non-antibiotic: The anti-inflammatory drug diclofenac sodium. Int. J. Antimicrob. Agents 2007, 30, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Mazumdar, K.; Dutta, N.K.; Dastidar, S.G.; Motohashi, N.; Shirataki, Y. Diclofenac in the management of E. coli urinary tract infections. In Vivo 2006, 20, 613–620. [Google Scholar] [PubMed]
- Mazumdar, K.; Asok Kumar, K.; Dutta, N.K. Potential role of the cardiovascular non-antibiotic (helper compound) amlodipine in the treatment of microbial infections: Scope and hope for the future. Int. J. Antimicrob. Agents 2010, 36, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Gocmen, S.J.; Buyukkocak, U.; Caglayan, O.; Aksoy, A. In vitro antibacterial effects of topical local anesthetics. J. Dermatol. Treat. 2008, 19, 351–353. [Google Scholar] [CrossRef] [PubMed]
- Tamanai-Shacoori, Z.; Shacoori, V.; Vo Van, J.M.; Robert, J.C.; Bonnaure-Mallet, M. Sufentanil modifies the antibacterial activity of bupivacaine and ropivacaine. Can. J. Anaesth. 2004, 51, 911–914. [Google Scholar] [CrossRef] [PubMed]
- Tamanai-Shacoori, Z.; Shacoori, V.; Jolivet-Gougeon, A.; Vo Van, J.M.; Repere, M.; Donnio, P.Y.; Bonnaure-Mallet, M. The antibacterial activity of tramadol against bacteria associated with infectious complications after local or regional anesthesia. Anesth. Analg. 2007, 105, 524–527. [Google Scholar] [CrossRef] [PubMed]
- Kruszewska, H.; Zaręba, T.; Tyski, S. Search of antimicrobial activity of selected non-antibiotics drugs. Acta Pol. Pharm. Drug Res. 2002, 59, 436–439. [Google Scholar]
- Tsutsui, N.; Taneike, I.; Ohara, T.; Goshi, S.; Kojio, S.; Iwakura, N.; Matsumaru, H.; Wakisa-Saito, N.; Zhang, H.-M.; Yamamoto, T. A novel action of the proton pump inhibitor rabeprazole and its thioether derivative against the motility of Helicobacter pylori. Antimicrob. Agents Chemother. 2000, 44, 3069–3073. [Google Scholar]
- Bown, R.L. An overview of the pharmacology, efficacy, safety and cost-effectiveness of lansoprazole. Int. J. Clin. Pract. 2002, 56, 132–139. [Google Scholar] [PubMed]
- Ribera, A.; Ruiz, J.; Jiminez de Anta, M.T.; Vila, J. Effect of an efflux pump inhibitor on the MIC of nalidixic acid for Acinetobacter baumannii and Stenotrophomonas maltophilia clinical isolates. J. Antimicrob. Chemother. 2002, 49, 697–698. [Google Scholar] [CrossRef] [PubMed]
- Nair, B.M.; Cheung, K.J., Jr.; Griffith, A.; Burns, J.L. Salicylate induces an antibiotic efflux pump in Burkholderia cepacia complex genomovar III (B. cenocepacia). J. Clin. Investig. 2004, 113, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.P.; Levy, S.B.; Foulds, J.; Rosner, J.L. Salicylate induction of antibiotic resistance in Escherichia coli: Activation of the mar operon and a mar-independent pathway. J. Bacteriol. 1993, 175, 7856–7862. [Google Scholar] [CrossRef] [PubMed]
- Hartog, E.; Menashe, O.; Kler, E.; Yaron, S. Salicylate reduces the antimicrobial activity of ciprofloxacin against extracellular Salmonella enterica serovar Typhimurium, but not against Salmonella in macrophages. J. Antimicrob. Chemother. 2010, 65, 888–896. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Pu, X.Y.; Zhang, Q. Salicylate functions as an efflux pump inducer and promotes the emergence of fluoroquinolone-resistant Campylobacter jejuni mutants. Appl. Environ. Microbiol. 2011, 77, 7128–7133. [Google Scholar] [CrossRef] [PubMed]
- Kruszewska, H.; Zaręba, T.; Tyski, S. Examination of antimicrobial activity of selected non-antibiotics drugs. Acta Pol. Pharm. Drug Res. 2004, 61 (Suppl. 5), 18–21. [Google Scholar]
- Kruszewska, H.; Zaręba, T.; Tyski, S. Examination of antibacterial and antifungal activity of selected non-antibiotic products. Acta Pol. Pharm. Drug Res. 2008, 65, 779–782. [Google Scholar]
- Kruszewska, H.; Zaręba, T.; Tyski, S. Examination of antimicrobial activity of selected non-antibiotic products. Acta Pol. Pharm. Drug Res. 2010, 67, 733–736. [Google Scholar]
- Kruszewska, H.; Zaręba, T.; Tyski, S. Examination of antimicrobial activity of selected non-antibiotic medicinal preparations. Acta Pol. Pharm. Drug Res. 2012, 69, 1368–1371. [Google Scholar]
- Kristiansen, J.E.; Hendricks, O.; Delvin, T.; Butterworth, T.S.; Aagaard, L.; Christensen, J.B.; Flores, V.C.; Keyzer, H. Reversal of resistance in microorganisms by help of non-antibiotics. J. Antimicrob. Chemother. 2007, 59, 1271–1279. [Google Scholar] [CrossRef] [PubMed]
- Kubo, I.; Fujita, K.; Nihei, K.; Masuoka, N. Non-antibiotic antibacterial activity of dodecyl gallate. Bioorg. Med. Chem. 2003, 11, 573–580. [Google Scholar] [CrossRef]
- Hendricks, O.; Butterworth, T.S.; Kristiansen, J.E. The in vitro antimicrobial effect of non-antibiotics and putative inhibitors of efflux pumps on Pseudomonas aeruginosa and Staphylococcus aureus. Int. J. Antimicrob. Agents 2003, 22, 262–264. [Google Scholar] [CrossRef]
- Laudy, A.E.; Osińska, P.; Namysłowska, A.; Zając, O.; Tyski, S. Modification of the susceptibility of Gram-negative rods producing ESβLs to β-lactams by the efflux phenomenon. PLoS ONE 2015, 10, e0119997. [Google Scholar] [CrossRef] [PubMed]
- Lomovskaya, O.; Warren, M.S.; Lee, A.; Galazzo, J.; Fronko, R.; Lee, M.; Blais, J.; Cho, D.; Chamberland, S.; Renau, T.; et al. Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: Novel agents for combination therapy. Antimicrob. Agents Chemother. 2001, 45, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Piddock, L.J.; Garvey, M.I.; Rahman, M.M.; Gibbons, S. Natural and synthetic compounds such as trimethoprim behave as inhibitors of efflux in Gram-negative bacteria. J. Antimicrob. Chemother. 2010, 65, 1215–1223. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, P.; Le, U.; Martínez, J.L. The efflux pump inhibitor Phe-Arg-beta-naphthylamide does not abolish the activity of the Stenotrophomonas maltophilia SmeDEF multidrug efflux pump. J. Antimicrob. Chemother. 2003, 51, 1042–1045. [Google Scholar] [CrossRef] [PubMed]
- Sáenz, Y.; Ruiz, J.; Zarazaga, M.; Teixidó, M.; Torres, C.; Vila, J. Effect of the efflux pump inhibitor Phe-Arg-beta-naphthylamide on the MIC values of the quinolones, tetracycline and chloramphenicol, in Escherichia coli isolates of different origin. J. Antimicrob. Chemother. 2004, 53, 544–545. [Google Scholar] [CrossRef] [PubMed]
- Marquez, B. Bacterial efflux systems and efflux pumps inhibitors. Biochimie 2005, 87, 1137–1147. [Google Scholar] [CrossRef] [PubMed]
- Sonnet, P.; Izard, D.; Mullié, C. Prevalence of efflux-mediated ciprofloxacin and levofloxacin resistance in recent clinical isolates of Pseudomonas aeruginosa and its reversal by the efflux pump inhibitors 1-(1-naphthylmethyl)-piperazine and phenylalanine-arginine-β-naphthylamide. Int. J. Antimicrob. Agents 2012, 39, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Adabi, M.; Talebi-Taher, M.; Arbabi, L.; Afshar, M.; Fathizadeh, S.; Minaeian, S.; Moghadam-Maragheh, N.; Majidpour, A. Spread of efflux pump overexpressing-mediated fluoroquinolone resistance and multidrug resistance in Pseudomonas aeruginosa by using an efflux pump inhibitor. Infect. Chemother. 2015, 47, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Kriengkauykiat, J.; Porter, E.; Lomovskaya, O.; Wong-Beringer, A. Use of an efflux pump inhibitor to determine the prevalence of efflux pump-mediated fluoroquinolone resistance and multidrug resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2005, 49, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Pagès, J.M.; Amaral, L. Mechanisms of drug efflux and strategies to combat them: Challenging the efflux pump of Gram-negative bacteria. Biochim. Biophys. Acta 2009, 1794, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Opperman, T.J.; Kwasny, S.M.; Kim, H.S.; Nguyen, S.T.; Houseweart, C.; D’Souza, S.; Walker, G.C.; Peet, N.P.; Nikaido, H.; Bowlin, T.L. Characterization of a novel pyranopyridine inhibitor of the AcrAB efflux pump of Escherichia coli. Antimicrob. Agents Chemother. 2014, 58, 722–733. [Google Scholar] [CrossRef] [PubMed]
- Malléa, M.; Chevalier, J.; Eyraud, A.; Pagès, J.M. Inhibitors of antibiotic efflux pump in resistant Enterobacter aerogenes strains. Biochem. Biophys. Res. Commun. 2002, 293, 1370–1373. [Google Scholar] [CrossRef]
- Hasdemir, U.O.; Chevalier, J.; Nordmann, P.; Pages, J.M. Detection and prevalence of active drug efflux mechanism in various multidrug resistant Klebsiella pneumoniae strains from Turkey. J. Clin. Microbiol. 2004, 42, 2701–2706. [Google Scholar] [CrossRef] [PubMed]
- Baucheron, S.; Imberechts, H.; Chaslus-Dancla, E.; Cloeckaert, A. The AcrB multidrug transporter plays a major role in high-level fluorquinolone resistance in Salmonella enterica serovar thyphimurium phage typer DT 204. Microb. Drug Resist. 2008, 8, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Zechini, B.; Versace, I. Inhibitors of multidrug resistant efflux systems in bacteria. Recent Pat. Antiinfect. Drug Discov. 2009, 4, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Farha, M.A.; Leung, A.; Sewell, E.W.; D’Elia, M.A.; Allison, S.E.; Ejim, L.; Pereira, P.M.; Pinho, M.G.; Wright, G.D.; Brown, E.D. Inhibition of WTA synthesis blocks the cooperative action of PBPs and sensitizes MRSA to β-lactams. ACS Chem. Biol. 2013, 8, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Bazyleu, A.; Kumar, A. Incubation temperature, osmolarity, and salicylate affect the expression of resistance-nodulation-division efflux pumps and outer membrane porins in Acinetobacter baumannii ATCC 19606T. FEMS Microbiol. Lett. 2014, 357, 136–143. [Google Scholar] [PubMed]
- Lode, H.M. Preserving the efficacy of front-line fluoroquinolones through selective use to optimise clinical outcomes. Int. J. Antimicrob. Agents 2014, 43, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard, 9th ed.; Document M07-A9; CLSI: Wayne, PA, USA, 2012. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement; Document M100-S24; CLSI: Wayne, PA, USA, 2014. [Google Scholar]
- Lamers, R.P.; Cavallari, J.F.; Burrows, L.L. The efflux inhibitor phenylalanine-arginine beta-naphthylamide (PAβN) permeabilizes the outer membrane of gram-negative bacteria. PLoS ONE 2013, 8, e60666. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Not available.
Strains | MIC (mg/L) | ||||
---|---|---|---|---|---|
alen/Ostenil a (+PAβN) b | tic/Apo-Clodin a (+PAβN)b | amit/Amitriptylinum a (+PAβN)b | nic/Niglostin a (+PAβN)b | crb/Carbosin a (+PAβN)b | |
E. coli ATCC 25922 | >800 (200/100) | >800 (25) | 200 (50) | >800 (100) | >800 (>800) |
E. coli NCTC 8196 | >800 (200/100) | >800 (25) | 200 (50) | >800 (100) | >800 (>800) |
E. coli NCTC 10538 | >800 (200/100) | >800 (25) | 400 (25) | >800 (100) | >800 (>800) |
K. pneumoniae ATCC 13883 | >800 (200) | >800 (25) | 200 (50) | >800 (200) | >800 (>800) |
K. pneumoniae ATCC 700603 | >800 (800) | >800 (100) | 400 (100) | >800 (>800) | >800 (>800) |
P. vulgaris ATCC 13315 | >800 (400) | >800 (>800) | 800 (800) | >800 (>800) | >800 (>800) |
P. aeruginosa ATCC 27853 | 200 (25) | >800 (>800) | 800 (25) | >800 (>800) | 800 (200) |
P. aeruginosa NCTC 6749 | 100 (25) | >800 (>800) | 800 (400) | >800 (>800) | 800 (400) |
P. aeruginosa PAO1 | 100 (25) | >800 (>800) | 800 (400) | >800 (>800) | 800 (400) |
S. maltophilia ATCC 13637 | 200 (100) | >800 (12.5/25) | 100 (50) | >800 (800) | >800 (>800) |
S. maltophilia ATCC 12714 | 400 (400) | >800 (50) | 200 (100) | >800 (800) | >800 (>800) |
A. baumannii ATCC 19606 | >800 (800) | >800 (400) | 200 (50) | >800 (100) | >800 (>800) |
B. cepacia ATCC 25416 | >800 (800) | >800 (>800) | 800 (800) | >800 (>800) | 800 (800) |
Bacteria (No. of Isolates) | Quinolone a | MICs Range (mg/L) b | No. of Strains c | |
---|---|---|---|---|
MH | MH + PAβN | |||
E. coli (n = 36) | ofloxacin | 1–64 | 0.125–8 | 36 |
nalidixic acid | 1024 to >2048 | 64–256 | 36 | |
K. pneumoniae (n = 36) | ofloxacin | 4–32 | 0.25–4 | 36 |
nalidixic acid | 4 to >2048 | 1–512 | 36 | |
P. aeruginosa (n = 36) | ofloxacin | 2–128 | 0.063–4 | 36 |
nalidixic acid | 64–2048 | 1–32 | 36 | |
S. maltophilia (n = 36) | ofloxacin | 1–8 | 1–8 | 1 |
nalidixic acid | 4–32 | 1–4 | 36 | |
A. baumannii (n = 36) | ofloxacin | 8–64 | 4–64 | 5 |
nalidixic acid | 128–2048 | 32–256 | 36 |
Bacteria (No. of Strains) | Non-Antibiotic Active Substance (Medicinal Product) | No. of Isolates with MIC Values | |||
---|---|---|---|---|---|
200 mg/L | 400 mg/L | 800 mg/L | >800 mg/L | ||
E. coli (n = 36) | amitriptyline (Amitriptylinum) | 7 (7) | 27 (27) | 2 (2) | 0 (0) |
K. pneumoniae (n = 36) | amitriptyline (Amitriptylinum) | 23 (23) | 13 (13) | 0 (0) | 0 (0) |
P. aeruginosa (n = 36) | alendronate (Ostenil) | 33 (33) a | 3 (3) | 0 (0) | 0 (0) |
amitriptyline (Amitriptylinum) | 0 (0) | 0 (0) | 36 (36) | 0 (0) | |
carboplatin (Carbosin) | 0 (0) | 6 (6) | 29 (29) | 1 (1) | |
S. maltophilia (n = 36) | alendronate (Ostenil) | 10 (10) | 17 (16) | 9 (10) | 0 (0) |
amitriptyline (Amitriptylinum) | 33 (33) a | 3 (3) | 0 (0) | 0 (0) | |
A. baumannii (n = 36) | amitriptyline (Amitriptylinum) | 36 (36) | 0 (0) | 0 (0) | 0 (0) |
Bacteria (No. of Strains) | Non-Antibiotic Substance (Medicinal Product) | No. of Isolates with Indicated Fold Reduction in Non-Antibiotic MICs in the Presence of PAβN | ||||
---|---|---|---|---|---|---|
≥4-Fold | ≥8-Fold | ≥16-Fold | ≥32-Fold | ≥64-Fold | ||
E. coli (n = 36) | alendronate (Ostenil) | 36 (36) | 36 (35) | 28 (26) | 0 (0) | 0 (0) |
ticlopidine (Apo-Clodin) | 36 (36) | 36 (36) | 36 (36) | 36 (36) | 36 (36) | |
amitriptyline (Amitriptylinum) | 36 (36) | 28 (28) | 4 (4) | 1 (1) | 0 (0) | |
nicergoline (Niglostin) | 36 (36) | 36 (36) | 26 (25) | 0 (0) | 0 (0) | |
K. pneumoniae (n = 36) | alendronate (Ostenil) | 30 (30) | 19 (18) | 0 (0) | 0 (0) | 0 (0) |
ticlopidine (Apo-Clodin) | 36 (36) | 36 (36) | 36 (36) | 33 (33) | 31 (30) | |
amitriptyline (Amitriptylinum) | 27 (27) | 2 (1) | 1 (0) | 0 (0) | 0 (0) | |
nicergoline (Niglostin) | 30 (30) | 28 (28) | 7 (6) | 0 (0) | 0 (0) | |
P. aeruginosa (n = 36) | alendronate (Ostenil) | 28 (28) | 17 (16) | 1 (1) | 0 (0) | 0 (0) |
amitriptyline (Amitriptylinum) | 21 (21) | 16 (15) | 10 (10) | 4 (3) | 0 (0) | |
carboplatin (Carbosin) | 16 (16) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
S. maltophilia (n = 36) | ticlopidine (Apo-Clodin) | 33 (33) | 21 (21) | 16 (16) | 13 (13) | 4 (3) |
A. baumannii (n = 36) | ticlopidine (Apo-Clodin) | 30 (30) | 27 (27) | 24 (24) | 21 (21) | 8 (7) |
amitriptyline (Amitriptylinum) | 24 (24) | 3 (2) | 1 (0) | 0 (0) | 0 (0) | |
nicergoline (Niglostin) | 36 (36) | 36 (36) | 11 (10) | 1 (0) | 0 (0) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laudy, A.E.; Kulińska, E.; Tyski, S. The Impact of Efflux Pump Inhibitors on the Activity of Selected Non-Antibiotic Medicinal Products against Gram-Negative Bacteria. Molecules 2017, 22, 114. https://doi.org/10.3390/molecules22010114
Laudy AE, Kulińska E, Tyski S. The Impact of Efflux Pump Inhibitors on the Activity of Selected Non-Antibiotic Medicinal Products against Gram-Negative Bacteria. Molecules. 2017; 22(1):114. https://doi.org/10.3390/molecules22010114
Chicago/Turabian StyleLaudy, Agnieszka E., Ewa Kulińska, and Stefan Tyski. 2017. "The Impact of Efflux Pump Inhibitors on the Activity of Selected Non-Antibiotic Medicinal Products against Gram-Negative Bacteria" Molecules 22, no. 1: 114. https://doi.org/10.3390/molecules22010114
APA StyleLaudy, A. E., Kulińska, E., & Tyski, S. (2017). The Impact of Efflux Pump Inhibitors on the Activity of Selected Non-Antibiotic Medicinal Products against Gram-Negative Bacteria. Molecules, 22(1), 114. https://doi.org/10.3390/molecules22010114