Synthesis and Antibacterial Evaluation of New Sulfone Derivatives Containing 2-Aroxymethyl-1,3,4-Oxadiazole/Thiadiazole Moiety
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. In Vitro Antibacterial Activity
2.3. In Vivo Antibacterial Activity
2.4. Structure-Activity Relationship (SAR) Analyses
2.5. Phytotoxic Activity
3. Experimental
3.1. Chemicals and Instruments
3.2. General Synthetic Procedure for the Target Compounds 5I and 5II
3.2.1. Synthesis of Substituted Phenoxyacetohydrazide (2) as Intermediate
3.2.2. Synthesis of the Key Intermediate 2-Thiol-5-Substituted-1,3,4-Oxadiazole/Thiadiazole (3)
3.2.3. Synthesis of the Intermediate 2-Thiol-5-Substituted-1,3,4-Oxadiazole/Thiadiazole (4)
3.2.4. Synthetic Procedure for the Target Compounds 5
3.3. X-ray Diffraction Analysis
3.4. Antibacterial Bioassay In Vitro
3.5. Antibacterial Activity Bioassay In Vivo
3.6. Phytotoxic Bioassay
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Spago, F.R.; Ishii Mauro, C.S.; Oliveira, A.G.; Beranger, J.P.O.; Cely, M.V.T.; Stanganelli, M.M.; Simionato, A.S.; San Martin, J.A.B.; Andrade, C.G.T.J.; Mello, J.C.P.; et al. Pseudomonas aeruginosa produces secondary metabolites that have biological activity against plant pathogenic Xanthomonas species. Crop Prot. 2014, 62, 46–54. [Google Scholar] [CrossRef]
- Hayward, A.C. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 1991, 29, 65–87. [Google Scholar] [CrossRef] [PubMed]
- Milling, A.; Babujee, L.; Allen, C. Ralstonia solanacearum, extracellular polysaccharide is a specific elicitor of defense responses in wilt-resistant tomato plants. PLoS ONE 2011, 6, e15853. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.M.; Han, F.F.; He, M.; Hu, D.Y.; He, J.; Yang, S.; Song, B.A. Inhibition of tobacco bacterial wilt with sulfone derivatives containing an 1,3,4-Oxadiazole Moiety. J. Agric. Food Chem. 2012, 60, 1036–1041. [Google Scholar] [CrossRef] [PubMed]
- Denny, T. Plant Pathogenic Ralstonia Species. Plant-Associated Bacteria; Springer: Dordrecht, The Netherlands, 2007; pp. 1–62. [Google Scholar]
- Imazaki, I.; Nakaho, K. Pyruvate-amended modified SMSA medium: Imporved sensitivity for detection of Ralstonia solanacearum. J. Gen. Plant Pathol. 2010, 76, 52–61. [Google Scholar] [CrossRef]
- Lo Cantore, P.; Shanmugaiah, V.; Iacbellis, N.S. Antibacterial activity of essential oil components and their potential use in seed disinfection. J. Agric. Food Chem. 2009, 57, 9454–9461. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.Y.; Zhou, L.; Zhou, J.; Wu, Z.B.; Xue, W.; Song, B.A.; Yang, S. Synthesis and antibacterial activity of pyridinium-tailored 2,5-substituted-1,3,4-oxadiazole thioether/sulfoxide/sulfone derivatives. Bioorg. Med. Chem. Lett. 2016, 26, 1214–1217. [Google Scholar] [PubMed]
- Zhu, X.F.; Xu, Y.; Peng, D.; Zhang, Y.; Huang, T.T.; Wang, J.X. Detection and characterization of bismerthiazol-resistance of Xanthomonas oryzae, pv. oryzae. Crop Prot. 2013, 47, 24–29. [Google Scholar]
- Zhou, X.J.; Wang, J.; Yang, Y.W.; Zhao, T.C.; Gao, B.D. Advances in tobacco bacterial wilt disease. Microbiol. China 2012, 39, 1479–1486. [Google Scholar]
- Kleefeld, G.; Diehr, H.J.; Haas, W.; Dehne, H.W.; Brandes, W. Fungicidal Agents Based on Heterocyclic Substituted Sulfones. U.S. Patent 5,166,165, 27 May 1992. [Google Scholar]
- Xu, W.M.; He, J.; He, M.; Han, F.F.; Chen, X.H.; Pan, Z.X.; Wang, J.; Tong, M.G. Synthesis and antifungal activity of novel sulfone derivatives containing 1,3,4-oxadiazole moieties. Molecules 2011, 16, 9129–9141. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.M.; Yang, S.; Bhadury, P.; He, J.; He, M.; Gao, L.L.; Hu, D.Y.; Song, B.A. Synthesis and bioactivity of novel sulfone derivatives containing 2,4-dichlorophenyl substituted 1,3,4-oxadiazole/thiadiazole moiety as chitinase inhibitors. Pestic. Biochem. Phys. 2011, 101, 6–15. [Google Scholar] [CrossRef]
- Li, P.; Yin, J.; Xu, W.M.; Wu, J.; He, M.; Hu, D.Y.; Yang, S.; Song, B.A. Synthesis, antibacterial activities, and 3D-QSAR of sulfone derivatives containing 1,3,4-oxadiazole moiety. Chem. Biol. Drug Des. 2013, 82, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Shi, L.; Yang, X.; Yang, L.; Chen, X.W.; Wu, F.; Shi, Q.C.; Xu, W.M.; He, M.; Hu, D.Y.; et al. Design, synthesis, and antibacterial activity against rice bacterial leaf blight and leaf streak of 2,5-substituted-1,3,4-oxadiazole/thiadiazole sulfone derivative. Bioorg. Med. Chem. Lett. 2014, 24, 1677–1680. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, P.; Wang, W.L.; Gao, M.N.; Wu, Z.X.; Song, X.P.; Hu, D.Y. Antibacterial activity and mechanism of action of sulfone derivatives containing 1,3,4-oxadiazole moieties on rice bacterial leaf blight. Molecules 2015, 20, 11660–11675. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.B.; Chen, J.; Xu, R.; Zhang, Y.M. Synthesis, crystal structure and biological activities of 5-(2-aryloxymethylbenzimidazole-1-carbadehyde)-1,3,4-oxadiazole-2-thine. Chin. J. Org. Chem. 2009, 29, 758–763. [Google Scholar]
- Sauter, H.; Steglich, W.; Anke, T. Strobilurins: Evolution of a New Class of Active Substances. Angew. Chem. Int. Ed. 1999, 38, 1328–1349. [Google Scholar] [CrossRef]
- Chen, C.J.; Song, B.A.; Yang, S.; Xu, G.F.; Bhadury, P.S.; Jin, L.H.; Hu, D.Y.; Li, Q.Z.; Liu, F.; Xue, W. Synthesis and antifungal activities of 5-(3,4,5-trimethoxyphenyl)-2-sulfonyl-1,3,4-thiazole and 5-(3,4,5-trimethoxyphenyl)-2-sulfonyl-1,3,4-oxadiazole derivatives. Bioorg. Med. Chem. 2007, 15, 3981–3989. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhu, X.L.; Jiang, L.L.; Liu, Z.M.; Yang, G.F. Synthesis, antifungal activity and comfa analysis of novel 1,2,4-triazolo[1,5-a]pyrimidine derivatives. Eur. J. Med. Chem. 2008, 43, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Dalgaard, P.; Ross, T.; Kamperman, L.; Neumeryer, K.; McMeekin, T.A. Estimation of bacterial growth rates from turbidimetric and viable count data. Int. J. Food Microbiol. 1994, 23, 391–404. [Google Scholar] [CrossRef]
- Schaad, N.W.; Wang, Z.K.; Di, M.; Mcbeath, J.; Peterson, G.L.; Bonde, M.R. An improved infiltration technique to test the pathogenicity of Xanthomonas oryzae pv. oryzae in rice seedlings. Seed Sci. Technol. 1996, 24, 449–456. [Google Scholar]
- Velusamy, P.; Immanuel, J.E.; Gnanamanickam, S.S.; Thomashow, L. Biological control of rice bacterial blight by plant-associated bacteria producing 2,4-diacetylphloroglucinol. Can. J. Microbiol. 2006, 52, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.L.; Tan, Y.; Zhu, X.L.; Wang, Z.F.; Zuo, Y.; Chen, Q.; Xi, Z.; Yang, G.F. Design, synthesis, and 3D-QSAR analysis of novel 1,3,4-oxadiazol-2(3H)-ones as protoporphyrinogen oxidase inhibitors. J. Agric. Food Chem. 2010, 58, 2643–2651. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Yang, S.G.; Jiang, L.L.; Hao, G.F.; Wang, Z.F.; Wu, Q.Y.; Xi, Z.; Yang, G.F. Quantitative structure–activity relationships of 1,3,4-thiadiazol-2(3H)-ones and 1,3,4-oxadiazol-2(3H)-ones as human protoporphyrinogen oxidase inhibitors. Bioorg. Med. Chem. 2012, 20, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.M.; Song, B.A.; Yang, S.; Hu, D.Y.; Zeng, S.; He, M.; Li, P.; Yin, J. Antiacterial Activity of Sulfone Derivatives Containing 1,3,4-Oxadiazole Moiety. In Proceedings of the Collection of the 10th National Pesticide Research and Development Conference, Guiyang, China, 6 June 2014; pp. 44–48.
- Vilà, S.; Badosa, E.; Montesinos, E.; Planas, M.; Feliu, L. Synthetic cyclolipopeptides selective against microbial, plant and animal cell targets by incorporation of d-amino acids or histidine. PLoS ONE 2016, 11, e0151639. [Google Scholar] [CrossRef] [PubMed]
- Nadal, A.; Montero, M.; Company, N.; Badosa, E.; Messeguer, J.; Montesinos, L. Constitutive expression of transgenes encoding derivatives of the synthetic antimicrobial peptide bp100: Impact on rice host plant fitness. BMC Plant Biol. 2012, 12, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sample Availability: Not available.
Compd. | R1/R2 | X. oryzae | R. solanacearum | X. axonopodis | |||
---|---|---|---|---|---|---|---|
200 μg/mL | 100 μg/mL | 200 μg/mL | 100 μg/mL | 200 μg/mL | 100 μg/mL | ||
5I-1 | 4-F/CH3 | 100 | 100 | 100 | 100 | 80 | 72 |
5I-2 | 4-Cl/CH3 | 100 | 100 | 100 | 100 | 88 | 76 |
5I-3 | 4-Br/CH3 | 100 | 100 | 100 | 100 | 91 | 90 |
5I-4 | 2,4-diCl/CH3 | 100 | 100 | 100 | 100 | 69 | 48 |
5I-5 | 2-Me-4-Cl/CH3 | 100 | 100 | 100 | 100 | 100 | 54 |
5I-6 | H/CH3 | 100 | 100 | 100 | 100 | 88 | 57 |
5I-7 | 4-F/CH2CH3 | 100 | 100 | 100 | 99 | 65 | 53 |
5I-8 | 2,4-diCl/CH2CH3 | 100 | 87 | 97 | 43 | 62 | 36 |
5I-9 | 4-F/CH2Ph | 100 | 100 | 33 | 25 | 72 | 50 |
5I-10 | 4-Cl/CH2Ph | 90 | 48 | 24 | 19 | 74 | 62 |
5I-11 | 4-Br/CH2Ph | 56 | 38 | 18 | 13 | 11 | 16 |
5I-12 | 2,4-diCl/CH2Ph | 98 | 70 | 33 | 20 | 26 | 23 |
5I-13 | 2-Me-4-Cl/CH2Ph | 33 | 13 | 15 | 8 | 7 | 0 |
5I-14 | H/CH2Ph | 95 | 78 | 69 | 37 | 76 | 53 |
5II-1 | 4-F/CH3 | 99 | 92 | 50 | 49 | 40 | 36 |
5II-2 | 4-Cl/CH3 | 84 | 73 | 56 | 45 | 27 | 16 |
5II-3 | 4-Br/CH3 | 30 | 28 | 26 | 7 | 25 | 18 |
5II-4 | 2,4-diCl/CH3 | 16 | 18 | 18 | 15 | 23 | 20 |
5II-5 | 2-Me-4-Cl/CH3 | 42 | 16 | 9 | 8 | 25 | 24 |
5II-6 | 4-F/CH2CH3 | 65 | 55 | 7 | 12 | 15 | 18 |
5II-7 | 2,4-diCl/CH2CH3 | 20 | 13 | 0 | 0 | 32 | 6 |
5II-8 | 4-F/CH2Ph | 24 | 8 | 30 | 10 | 24 | 21 |
5II-9 | 4-Cl/CH2Ph | 19 | 14 | 17 | 18 | 14 | 23 |
5II-10 | 4-Br/CH2Ph | 10 | 0 | 11 | 1 | 5 | 8 |
5II-11 | 2,4-diCl/CH2Ph | 37 | 14 | 27 | 26 | 38 | 32 |
5II-12 | 2-Me-4-Cl/CH2Ph | 5 | 0 | 0 | 0 | 10 | 33 |
Bismerthiazol b | 72 | 54 | 100 | 99 | 67 | 45 | |
Kocide 3000 b | 69 | 52 | 100 | 100 | 39 | 25 | |
Thiodiazole-copper b | 69 | 35 | 50 | 35 | 65 | 47 |
Compd. | X. oryzae | R. solanacearum | X. axonopodis | ||||||
---|---|---|---|---|---|---|---|---|---|
EC50 (μg/mL) | Regression Equation | r | EC50 (μg/mL) | Regression Equation | r | EC50 (μg/mL) | Regression Equation | r | |
5I-1 | 0.45 ± 0.06 | y = 0.90x + 5.32 | 0.88 | 1.97 ± 0.23 | y = 2.25x + 4.34 | 0.98 | 80.46 ± 5.38 | y = 0.99x + 2.77 | 0.96 |
5I-2 | 1.44 ± 0.18 | y = 2.73x + 4.57 | 0.93 | 13.42 ± 1.54 | y = 2.79x + 1.86 | 0.92 | 31.35 ± 3.56 | y = 1.95x + 2.09 | 0.98 |
5I-3 | 1.67 ± 0.22 | y = 2.96x + 4.40 | 0.97 | 19.61 ± 0.98 | y = 1.44x + 3.14 | 0.93 | 24.89 ± 2.52 | y = 1.52x + 2.87 | 0.95 |
5I-4 | 0.72 ± 0.15 | y = 2.28x + 5.33 | 0.89 | 20.51 ± 1.56 | y = 2.18x + 2.14 | 0.98 | 49.05 ± 2.34 | y = 1.40x + 2.58 | 0.93 |
5I-5 | 1.67 ± 0.16 | y = 2.78x + 4.38 | 0.96 | 14.94 ± 1.27 | y = 3.43x + 0.97 | 0.95 | 96.83 ± 5.78 | y = 1.36x + 2.29 | 0.97 |
5I-6 | 1.86 ± 0.23 | y = 1.59x + 4.57 | 0.90 | 13.55 ± 2.12 | y = 2.62x + 2.04 | 0.91 | 85.02 ± 4.32 | y = 1.06x + 2.96 | 0.96 |
5I-7 | 0.52 ± 0.16 | y = 0.99x + 5.28 | 0.96 | 7.75 ± 1.01 | y = 1.04x + 4.08 | 0.99 | 52.23 ± 2.14 | y = 1.67x + 2.14 | 0.97 |
Bismerthiazol b | 92.61 ± 2.15 | y = 1.50x + 2.05 | 0.98 | 59.69 ± 2.56 | y = 1.21x + 2.84 | 0.98 | 119.5 ± 5.1 | y = 1.50x + 1.82 | 0.98 |
Kocide 3000 b | 101.60 ± 5.12 | y = 160x + 1.80 | 0.99 | 45.91 ± 6.6 | y = 4.87x − 3.10 | 0.98 | >200 | / | / |
Thiodiazole-copper b | 121.82 ± 3.59 | y = 1.54x + 1.79 | 0.98 | >200 | / | / | 107.04 ± 1.96 | y = 2.15x + 0.94 | 0.98 |
Compd. | 14 Days after Spraying | ||
---|---|---|---|
Morbidity (%) c | Disease Index | Protective Efficiency (%) d | |
5I-1 | 100.0 | 15.6 | 90.4 ± 2.8 |
5I-2 | 100.0 | 23.8 | 77.7 ± 3.4 |
5I-4 | 100.0 | 17.5 | 81.1 ± 1.9 |
Bismerthiazol | 100.0 | 60.0 | 25.6 ± 4.4 |
Thiodiazole-copper | 100.0 | 55.6 | 32.0 ± 3.0 |
CK1 a | 0.0 | 0.0 | 100.0 ± 0.0 |
CK2 b | 100.0 | 91.1 | / |
Plant Bacteria | EC50 (μg/mL) a | |||
---|---|---|---|---|
R | X = No Atom | X = CH2 | X = OCH2 | |
X. oryzae | F | 9.89 ± 1.52 16 | 1.07 ± 0.68 15 | 0.45 ± 0.06 (5I-1) |
4-Cl | 23.21 ± 0.98 16 | 12.23 ± 1.45 15 | 1.44 ± 0.18 (5I-2) | |
2,4-di Cl | 52.14 ± 1.05 16 | 1.96 ± 0.99 15 | 0.72 ± 0.15 (5I-4) | |
R. solanacearum | F | 8.29 ± 0.56 14 | / b | 1.97 ± 0.27 (5I-1) |
4-Cl | 120.90 ± 2.6 14 | NA 4 | 13.42 ± 1.54 (5I-2) | |
2,4-di Cl | 16.55 ± 1.12 14 | 59.9 26 | 20.51 ± 1.56 (5I-4) |
Comp. | Inhibition on Rice Germination Shoot Length (cm) | ||||
---|---|---|---|---|---|
1 μM | 10 μM | 50 μM | 100 μM | 300 μM | |
5I-1 | 3.8 ± 0.5 | 3.8 ± 0.5 | 3.7 ± 0.6 | 2.8 ± 0.2 | 0.1 ± 0.1 |
5I-2 | 3.7 ± 0.6 | 3.2 ± 0.3 | 3.2 ± 0.6 | 1.5 ± 0.0 | 0.5 ± 0.1 |
5I-4 | 1.7 ± 0.3 | 1.6 ± 0.2 | 1.0 ± 0.1 | 1.1 ± 0.0 | 0.5 ± 0.0 |
Bismerthiazol b | 4.2 ± 0.6 | 3.5 ± 0.5 | 3.7 ± 0.4 | 3.2 ± 0.3 | 0.1 ± 0.1 |
H2O | 4.6 ± 0.2 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, S.; Zhou, X.; Liao, G.; Qi, P.; Jin, L. Synthesis and Antibacterial Evaluation of New Sulfone Derivatives Containing 2-Aroxymethyl-1,3,4-Oxadiazole/Thiadiazole Moiety. Molecules 2017, 22, 64. https://doi.org/10.3390/molecules22010064
Su S, Zhou X, Liao G, Qi P, Jin L. Synthesis and Antibacterial Evaluation of New Sulfone Derivatives Containing 2-Aroxymethyl-1,3,4-Oxadiazole/Thiadiazole Moiety. Molecules. 2017; 22(1):64. https://doi.org/10.3390/molecules22010064
Chicago/Turabian StyleSu, Shihu, Xia Zhou, Guoping Liao, Puying Qi, and Linhong Jin. 2017. "Synthesis and Antibacterial Evaluation of New Sulfone Derivatives Containing 2-Aroxymethyl-1,3,4-Oxadiazole/Thiadiazole Moiety" Molecules 22, no. 1: 64. https://doi.org/10.3390/molecules22010064
APA StyleSu, S., Zhou, X., Liao, G., Qi, P., & Jin, L. (2017). Synthesis and Antibacterial Evaluation of New Sulfone Derivatives Containing 2-Aroxymethyl-1,3,4-Oxadiazole/Thiadiazole Moiety. Molecules, 22(1), 64. https://doi.org/10.3390/molecules22010064