Separation and Enrichment of Lectin from Zihua Snap-Bean (Phaseolus vulgaris) Seeds by PEG 600–Ammonium Sulfate Aqueous Two-Phase System
Abstract
:1. Introduction
2. Results and Discussion
2.1. Single-Factor Variable Analysis
2.1.1. Effect of Concentration of (NH4)2SO4
2.1.2. Effect of Concentration of PEG
2.1.3. Effect of NaCl on the Extraction
2.1.4. Effect of pH
2.2. Response Surface Analysis
2.2.1. Statistical Analysis and Model Fitting
2.2.2. Analysis of Variance
2.2.3. Interactive Analysis
2.2.4. Validation of the Best Extraction Conditions
2.3. Electrophoretic Analysis
2.4. Comparison of Different Methods
3. Materials and Methods
3.1. Instruments
3.2. Reagents
3.3. Preparation of Extract
3.4. Preparation of ATPS
3.5. Protein Determination
3.6. Determination of the Hemagglutinating Activity
3.7. Definition of Parameters in ATP Systems
3.8. Experimental Design
3.9. Electrophoresis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Silva, M.C.C.; Santana, L.A.; Mentele, R.; Ferreira, R.S.; De Miranda, A.; Silva-Lucca, R.A.; Sampaio, M.U.; Correia, M.T.S.; Oliva, M.L.V. Purification, primary structure and potential functions of a novel lectin from Bauhinia forficata seeds. Process Biochem. 2012, 47, 1049–1059. [Google Scholar] [CrossRef]
- Li, J.; Qu, X.; Payne, G.F.; Zhang, C.; Zhang, Y.; Li, J.; Ren, J.; Hong, H.; Liu, C. Biospecific self-assembly of a nanoparticle coating for targeted and stimuli-responsive drug delivery. Adv. Funct. Mater. 2015, 25, 1404–1417. [Google Scholar] [CrossRef]
- Da Silva, J.S.; Oliveira, M.D.; De Melo, C.P.; Andrade, C.A. Impedimetric sensor of bacterial toxins based on mixed (Concanavalin A)/polyaniline films. Colloids Surf. B Biointerfaces 2014, 117, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Luna, D.M.; Oliveira, M.D.; Nogueira, M.L.; Andrade, C.A. Biosensor based on lectin and lipid membranes for detection of serum glycoproteins in infected patients with dengue. Chem. Phys. Lipids 2014, 180, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.; Bai, H.J.; Wang, G.L.; Xu, J.J.; Chen, H.Y. A photoelectrochemical sensor based on CdS-polyamidoamine nano-composite film for cell capture and detection. Biosens. Bioelectron. 2010, 25, 2045–2050. [Google Scholar] [CrossRef] [PubMed]
- Rosén, S.; Kata, M.; Persson, Y.; Lipniunas, P.H.; Wikström, M.; Hondel, C.A.; Brink, J.M.; Rask, L.; Hedén, L.O.; Tunlid, A. Molecular characterization of a saline-soluble lectin from a parasitic fungus. Extensive sequence similarities between fungal lectins. Eur. J. Biochem. 1996, 238, 822–829. [Google Scholar] [CrossRef] [PubMed]
- Peumans, W.J.; Damme, E.J.M.V.; Barre, A.; Rougé, P. Classification of Plant Lectins in Families of Structurally and Evolutionary Related Proteins. In The Molecular Immunology of Complex Carbohydrates—2; Wu, A.M., Ed.; Springer: New York, NY, USA, 2001; Volume 491, pp. 27–54. ISBN 978-1-4615-1267-7. [Google Scholar]
- Sharon, N.; Lis, H. Legume Lectins—A large family of homologous proteins. FASEB J. 1990, 4, 3198–3208. [Google Scholar] [PubMed]
- Zhang, J.; Shi, J.; Ilic, S.; Jun Xue, S.; Kakuda, Y. Biological properties and characterization of lectin from red kidney bean (Phaseolus vulgaris). Food Rev. Int. 2008, 25, 12–27. [Google Scholar] [CrossRef]
- Nascimento, K.S.; Cunha, A.I.; Nascimento, K.S.; Cavada, B.S.; Azevedo, A.M.; Aires-Barros, M.R. An overview of lectins purification strategies. J. Mol. Recognit. 2012, 25, 527–541. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Shi, J.; Kakuda, Y.; Kim, D.; Xue, S.J.; Zhao, M.; Jiang, Y.; Sun, J. Comparison of the phytohaemagglutinin from red kidney bean (Phaseolus vulgaris) purified by different affinity chromatography. Food Chem. 2008, 108, 394–401. [Google Scholar] [CrossRef]
- Hu, R.; Feng, X.; Chen, P.; Fu, M.; Chen, H.; Guo, L.; Liu, B.F. Rapid, highly efficient extraction and purification of membrane proteins using a microfluidic continuous-flow based aqueous two-phase system. J. Chromatogr. A 2011, 1218, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Coelho, D.F.; Silveira, E.; Junior, A.P.; Tambourgi, E.B. Bromelain purification through unconventional aqueous two-phase system (PEG/ammonium sulphate). Bioprocess Biosyst. Eng. 2013, 36, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, S.; Rao, J.R.; Murugesan, T.; Nair, B.U.; Ramasami, T. Recovery of value-added globular proteins from tannery wastewaters using PEG-salt aqueous two-phase systems. J. Chem. Technol. Biot. 2006, 81, 1814–1819. [Google Scholar] [CrossRef]
- Nascimento, C.O.; Costa, R.M.P.B.; Araújo, R.M.S.; Chaves, M.E.C.; Coelho, L.C.B.B.; Paiva, P.M.G.; Teixeira, J.A.; Correia, M.T.S.; Carneiro-da-Cunha, M.G. Optimized extraction of a lectin from Crataeva tapia bark using AOT in isooctane reversed micelles. Process Biochem. 2008, 43, 779–782. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Shi, J.; Walid, E.; Ma, Y.; Xue, S.J. Extraction and purification of a lectin from small black kidney bean (Phaseolus vulgaris) using a reversed micellar system. Process Biochem. 2013, 48, 746–752. [Google Scholar] [CrossRef]
- Azevedo, A.M.; Rosa, P.A.; Ferreira, I.F.; Aires-Barros, M.R. Optimisation of aqueous two-phase extraction of human antibodies. J. Biotechnol. 2007, 132, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, K.S.; Rosa, P.A.J.; Nascimento, K.S.; Cavada, B.S.; Azevedo, A.M.; Aires-Barros, M.R. Partitioning and recovery of Canavalia brasiliensis lectin by aqueous two-phase systems using design of experiments methodology. Sep. Purif. Technol. 2010, 75, 48–54. [Google Scholar] [CrossRef]
- Nascimento, K.S.; Azevedo, A.M.; Cavada, B.S.; Aires-Barros, M.R. Partitioning of Canavalia brasiliensis lectin in polyethylene glycol-sodium citrate aqueous two-phase systems. Sep. Sci. Technol. 2010, 45, 2180–2186. [Google Scholar] [CrossRef]
- Soares, P.A.; Nascimento, C.O.; Porto, T.S.; Correia, M.T.; Porto, A.L.; Carneiro-da-Cunha, M.G. Purification of a lectin from Canavalia ensiformis using PEG-citrate aqueous two-phase system. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, C.O.; Soares, P.A.G.; Porto, T.S.; Costa, R.M.P.B.; Lima, C.D.A.; De Lima Filho, J.L.; Coelho, L.C.B.B.; Dos Santos Correia, M.T.; Carneiro da Cunha, M.D.G.; Porto, A.L.F. Aqueous two-phase systems: New strategies for separation and purification of lectin from crude extract of Cratylia mollis seeds. Sep. Purif. Technol. 2013, 116, 154–161. [Google Scholar] [CrossRef]
- Zaslavsky, B.Y.; Mestechkina, N.M.; Miheeva, L.M.; Rogozhin, S.V. Physico-chemical factors governing partition behaviour of solutes and particles in aqueous polymeric biphasic systems: III. Features of solutes and biological particles detected by the partition technique. J. Chromatogr. A 1983, 256, 49–59. [Google Scholar] [CrossRef]
- Mckee, T.; Mckee, J.R. Biochemistry: An Introduction, 2nd ed.; McGraw-Hill: New York, NY, USA, 1999. [Google Scholar]
- Babu, B.R.; Rastogi, N.K.; Raghavarao, K.S.M.S. Liquid-liquid extraction of bromelain and polyphenol oxidase using aqueous two-phase system. Chem. Eng. Process. Process Intensif. 2008, 47, 83–89. [Google Scholar] [CrossRef]
- Dreyer, S.; Salim, P.; Kragl, U. Driving forces of protein partitioning in an ionic liquid-based aqueous two-phase system. Biochem. Eng. J. 2009, 46, 176–185. [Google Scholar] [CrossRef]
- Shanbhag, V.P.; Axelsson, C.G. Hydrophobic interaction determined by partition in aqueous two-phase systems. Partition of proteins in systems containing fatty-acid esters of poly(ethylene glycol). Eur. J. Biochem. 1975, 60, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Tubio, G.; Nerli, B.; Pico, G. Partitioning features of bovine trypsin and alpha-chymotrypsin in polyethyleneglycol-sodium citrate aqueous two-phase systems. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 852, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Niven, G.W.; Smith, S.J.; Scurlock, P.G.; Andrews, A.T. Separations for Biotechnology 2; Springer: Berlin, Germany, 1990; pp. 210–216. ISBN 978-94-009-0783-6. [Google Scholar]
- Zhang, H.; Jiang, B.; Feng, Z.B.; Qu, Y.X.; Li, X. Separation of α-Lactalbumin and β-Lactoglobulin in Whey Protein Isolate by Aqueous Two-phase System of Polymer/Phosphate. Chin. J. Anal. Chem. 2016, 44, 754–759. [Google Scholar] [CrossRef]
- Ng, H.S.; Tan, C.P.; Chen, S.K.; Mokhtar, M.N.; Ariff, A.; Ling, T.C. Primary capture of cyclodextrin glycosyltransferase derived from Bacillus cereus by aqueous two phase system. Sep. Purif. Technol. 2011, 81, 318–324. [Google Scholar] [CrossRef] [Green Version]
- Biswas, S.; Kayastha, A.M. Thermal Stability of Phaseolus vulgaris Leucoagglutinin: A Differential Scanning Calorimetry Study. BMB Rep. 2002, 35, 472–475. [Google Scholar] [CrossRef]
- Miller, J.B.; Noyes, C.; Heinrikson, R.; Kingdon, H.S.; Yachnin, S. Phytohemagglutinin mitogenic proteins structural evidence for a family of isomitogenic proteins. J. Exp. Med. 1973, 138, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Loris, R.; Hamelryck, T.; Bouckaert, J.; Wyns, L. Legume lectin structure. Biochim. Biophys. Acta 1998, 1383, 9–36. [Google Scholar] [CrossRef]
- Albertsson, P.Å. Separation of particles and macromolecules by phase partition. Endeavour 1977, 1, 69–74. [Google Scholar] [CrossRef]
- Mohamadi, H.S.; Omidinia, E.; Dinarvand, R. Evaluation of recombinant phenylalanine dehydrogenase behavior in aqueous two-phase partitioning. Process Biochem. 2007, 42, 1296–1301. [Google Scholar] [CrossRef]
- Gabius, H.J.; André, S.; Kaltner, H.; Siebert, H.C. The sugar code: Functional lectinomics. Biochim. Biophys. Acta 2002, 1572, 165–177. [Google Scholar] [CrossRef]
- Merchuk, J.C.; Andrews, B.A.; Asenjo, J.A. Aqueous two-phase systems for protein separation Studies on phase inversion. J. Chromatogr. B 2012, 1238, 1–10. [Google Scholar] [CrossRef]
- Andrews, B.A.; Schmidt, A.S.; Asenjo, J.A. Correlation for the partition behavior of proteins in aqueous two-phase systems: Effect of surface hydrophobicity and charge. Biotechnol. Bioeng. 2005, 90, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Melander, W.; Horváth, C. Salt effects on hydrophobic interactions in precipitation and chromatography of proteins: An interpretation of the lyotropic series. Arch. Biochem. Biophys. 1977, 183, 200–215. [Google Scholar] [CrossRef]
- Berggren, K.; Johansson, H.O.; Yjerneld, F. Effects of salts and the surface hydrophobicity of proteins on partitioning in aqueous two-phase systems containing thermoseparating ethylene oxide-propylene oxide copolymers. J. Chromatogr. A 1995, 718, 67–79. [Google Scholar] [CrossRef]
- Settu, S.; Velmurugan, P.; Jonnalagadda, R.R.; Nair, B.U. Extraction of bovine serum albumin using aqueous two-phase poly (ethylene glycol)—Poly (acrylic acid) system. J. Sci. Ind. Res. India 2015, 74, 348–353. [Google Scholar]
- Han, J.H.; Lee, C.H. Determining isoelectric points of model proteins and Bacillus subtilis neutral protease by the cross partitioning using poly(ethylene glycol)/Dextran aqueous two-phase systems. Colloids Surf. B Biointerfaces 1997, 9, 131–137. [Google Scholar] [CrossRef]
- Shi, J.; Xue, S.J.; Kakuda, Y.; Ilic, S.; Kim, D. Isolation and characterization of lectins from kidney beans (Phaseolus vulgaris). Process Biochem. 2007, 42, 1436–1442. [Google Scholar] [CrossRef]
- Alves, J.G.; Chumpitaz, L.D.; Da, S.L.; Franco, T.T.; Meirelles, A.J. Partitioning of whey proteins, bovine serum albumin and porcine insulin in aqueous two-phase systems. J. Chromatogr. B Biomed. Appl. 2000, 743, 235–239. [Google Scholar] [CrossRef]
- Matsushita, S.; Iwami, N.; Nitta, Y. Colorimetric estimation of amino acids and peptides with the Folin phenol reagent. Anal. Biochem. 1966, 16, 365–371. [Google Scholar] [CrossRef]
- Correia, M.T.; Coelho, L.C. Purification of a glucose/mannose specific lectin, isoform 1, from seeds of Cratylia mollis Mart. (Camaratu bean). Biochem. Biotechnol. 1995, 55, 261–273. [Google Scholar] [CrossRef]
- Bera, M.B.; Panesar, P.S.; Panesar, R.; Singh, B. Application of reverse micelle extraction process for amylase recovery using response surface methodology. Bioprocess Biosyst. Eng. 2008, 31, 379–384. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Shi, J.; Walid, E.; Zhang, H.; Ma, Y.; Xue, S.J. Reverse micellar extraction of lectin from black turtle bean (Phaseolus vulgaris): Optimisation of extraction conditions by response surface methodology. Food Chem. 2015, 166, 93–100. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Not available. |
Number | X1 (NH4)2SO4 (w/w) % | X2 PEG 600 (w/w) % | X3 NaCl g | X4 pH | Protein Recovery (%) | Purification Factor (Fold) |
---|---|---|---|---|---|---|
1 | 0 | 1 | 0 | −1 | 32.5 | 1.85 |
2 | 1 | 0 | 0 | −1 | 35.0 | 1.71 |
3 | 0 | 0 | −1 | 1 | 40.9 | 3.18 |
4 | 1 | −1 | 0 | 0 | 30.2 | 1.98 |
5 | 0 | 0 | 0 | 0 | 25.7 | 2.24 |
6 | 0 | 0 | 0 | 0 | 30.5 | 1.80 |
7 | 0 | 1 | 0 | 1 | 32.0 | 1.72 |
8 | 0 | −1 | 0 | −1 | 32.0 | 1.72 |
9 | −1 | 1 | 0 | 0 | 33.0 | 1.82 |
10 | 0 | 0 | 0 | 0 | 41.6 | 3.12 |
11 | 0 | 0 | 1 | 1 | 33.8 | 2.37 |
12 | 1 | 1 | 0 | 0 | 33.1 | 2.26 |
13 | 0 | 0 | −1 | −1 | 34.8 | 1.58 |
14 | 1 | 0 | −1 | 0 | 32.3 | 1.86 |
15 | 0 | −1 | −1 | 0 | 39.7 | 3.28 |
16 | 0 | 1 | 1 | 0 | 25.9 | 1.84 |
17 | 1 | 0 | 0 | 1 | 31.8 | 1.73 |
18 | 0 | −1 | 0 | 1 | 31.7 | 1.90 |
19 | −1 | 0 | −1 | 0 | 33.2 | 1.66 |
20 | 0 | 0 | 0 | 0 | 32.3 | 2.09 |
21 | −1 | 0 | 1 | 0 | 29.3 | 2.13 |
22 | 0 | 1 | −1 | 0 | 41.5 | 3.13 |
23 | 0 | 0 | 0 | 0 | 31.5 | 1.59 |
24 | 1 | 0 | 1 | 0 | 29.5 | 2.37 |
25 | 0 | 0 | 1 | −1 | 26.8 | 2.33 |
26 | −1 | −1 | 0 | 0 | 31.2 | 1.84 |
27 | 0 | −1 | 1 | 0 | 33.5 | 2.09 |
28 | −1 | 0 | 0 | 1 | 41.5 | 3.13 |
29 | −1 | 0 | 0 | −1 | 26.9 | 1.39 |
Source | Sum of Squares | df | Mean Square | F | p1-Value |
---|---|---|---|---|---|
Model | 545.13 | 14 | 38.94 | 27.72 | <0.0001 |
Residual | 19.67 | 14 | 1.4 | ||
Lack of fit | 17.11 | 10 | 1.71 | 2.68 | 0.1771 |
Pure error | 2.55 | 4 | 0.64 | ||
Cor total | 564.79 | 28 | |||
CV% | 3.6% | ||||
R12 | 0.9652 |
Source | Sum of Squares | df | Mean Square | F | p2-Value |
---|---|---|---|---|---|
Model | 8.12 | 14 | 0.58 | 77.69 | <0.0001 |
Residual | 0.1 | 14 | 7.47 × 10−3 | ||
Lack of fit | 0.087 | 10 | 8.67 × 10−3 | 1.94 | 0.2737 |
Pure error | 0.018 | 4 | 4.47 × 10−3 | ||
Cor total | 8.23 | 28 | 0.58 | ||
CV% | 4.06% | ||||
R22 | 0.9873 |
Variables | Coded Variable Levels | ||
---|---|---|---|
−1 | 0 | +1 | |
X1 (NH4)2SO4 (w/w)% | 12 | 15 | 18 |
X2 PEG 600 (w/w)% | 14 | 16 | 18 |
X3 NaCI/g | 0.3 | 0.4 | 0.5 |
X4 pH | 7.0 | 7.5 | 8.0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, B.; Yuan, Y.; Zhang, X.; Feng, Z.; Liu, C. Separation and Enrichment of Lectin from Zihua Snap-Bean (Phaseolus vulgaris) Seeds by PEG 600–Ammonium Sulfate Aqueous Two-Phase System. Molecules 2017, 22, 1596. https://doi.org/10.3390/molecules22101596
Jiang B, Yuan Y, Zhang X, Feng Z, Liu C. Separation and Enrichment of Lectin from Zihua Snap-Bean (Phaseolus vulgaris) Seeds by PEG 600–Ammonium Sulfate Aqueous Two-Phase System. Molecules. 2017; 22(10):1596. https://doi.org/10.3390/molecules22101596
Chicago/Turabian StyleJiang, Bin, Yongqiang Yuan, Xiaoqing Zhang, Zhibiao Feng, and Chunhong Liu. 2017. "Separation and Enrichment of Lectin from Zihua Snap-Bean (Phaseolus vulgaris) Seeds by PEG 600–Ammonium Sulfate Aqueous Two-Phase System" Molecules 22, no. 10: 1596. https://doi.org/10.3390/molecules22101596
APA StyleJiang, B., Yuan, Y., Zhang, X., Feng, Z., & Liu, C. (2017). Separation and Enrichment of Lectin from Zihua Snap-Bean (Phaseolus vulgaris) Seeds by PEG 600–Ammonium Sulfate Aqueous Two-Phase System. Molecules, 22(10), 1596. https://doi.org/10.3390/molecules22101596