In Vitro Activities of LCB 01-0648, a Novel Oxazolidinone, against Gram-Positive Bacteria
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Antimicrobial Agents
4.2. Bacterial Strains
4.3. Susceptibility Test
4.4. Time–Kill Assay
4.5. Monoamine Oxidase Inhibition Assays
4.6. Myelosuppression Assay
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Levy, S.B.; Marshall, B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med. 2004, 10, S122–S129. [Google Scholar] [CrossRef] [PubMed]
- Lode, H.M. Clinical impact of antibiotic-resistant gram-positive pathogens. Clin. Microbiol. Infect. 2009, 15, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Rice, L.B. Antimicrobial resistance in gram-positive bacteria. Am. J. Infect. Control 2006, 34, S11–S19. [Google Scholar] [CrossRef] [PubMed]
- Cornaglia, G. Fighting infections due to multidrug-resistant gram-positive pathogens. Clin. Microbiol. Infect. 2009, 15, 209–211. [Google Scholar] [CrossRef] [PubMed]
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Brown, E.D.; Wright, G.D. Antibacterial drug discovery in the resistance era. Nature 2016, 529, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Penesyan, A.; Gillings, M.; Paulsen, I.T. Antibiotic discovery: Combatting bacterial resistance in cells and in biofilm communities. Molecules 2015, 20, 5286–5298. [Google Scholar] [CrossRef] [PubMed]
- Bozdogan, B.; Appelbaum, P.C. Oxazolidinones: Activity, mode of action, and mechanism of resistance. Int. J. Antimicrob. Agents 2004, 23, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Barbachyn, M.R.; Ford, C.W. Oxazolidinone structure-activity relationships leading to linezolid. Angew. Chem. Int. Ed. Engl. 2003, 42, 2010–2023. [Google Scholar] [CrossRef] [PubMed]
- Diekema, D.J.; Jones, R.N. Oxazolidinone antibiotics. Lancet 2001, 358, 1975–1982. [Google Scholar] [CrossRef]
- Pandit, N.; Singla, R.K.; Shrivastava, B. Current updates on oxazolidinone and its significance. Int. J. Med. Chem. 2012, 2012, 159285. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.H.; Murray, R.W.; Vidmar, T.J.; Marotti, K.R. The oxazolidinone eperezolid binds to the 50s ribosomal subunit and competes with binding of chloramphenicol and lincomycin. Antimicrob. Agents Chemother. 1997, 41, 2127–2131. [Google Scholar] [PubMed]
- Patel, U.; Yan, Y.P.; Hobbs, F.W., Jr.; Kaczmarczyk, J.; Slee, A.M.; Pompliano, D.L.; Kurilla, M.G.; Bobkova, E.V. Oxazolidinones mechanism of action: Inhibition of the first peptide bond formation. J. Biol. Chem. 2001, 276, 37199–37205. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.N.; Schluenzen, F.; Harms, J.M.; Starosta, A.L.; Connell, S.R.; Fucini, P. The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect trna positioning. Proc. Natl. Acad. Sci. USA 2008, 105, 13339–13344. [Google Scholar] [CrossRef] [PubMed]
- Perry, C.M.; Jarvis, B. Linezolid: A review of its use in the management of serious gram-positive infections. Drugs 2001, 61, 525–551. [Google Scholar] [CrossRef] [PubMed]
- Moellering, R.C. Linezolid: The first oxazolidinone antimicrobial. Ann. Intern. Med. 2003, 138, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Brickner, S.J.; Barbachyn, M.R.; Hutchinson, D.K.; Manninen, P.R. Linezolid (zyvox), the first member of a completely new class of antibacterial agents for treatment of serious gram-positive infections. J. Med. Chem. 2008, 51, 1981–1990. [Google Scholar] [CrossRef] [PubMed]
- Stevens, D.L.; Dotter, B.; Madaras-Kelly, K. A review of linezolid: The first oxazolidinone antibiotic. Expert Rev. Anti-Infect. Ther. 2004, 2, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Righi, E.; Di Biagio, A.; Rosso, R.; Beltrame, A.; Bassetti, D. Role of linezolid in the treatment of orthopedic infections. Expert Rev. Anti-Infect. Ther. 2005, 3, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Vitale, F.; Melica, G.; Righi, E.; Di Biagio, A.; Molfetta, L.; Pipino, F.; Cruciani, M.; Bassetti, D. Linezolid in the treatment of gram-positive prosthetic joint infections. J. Antimicrob. Chemother. 2005, 55, 387–390. [Google Scholar] [CrossRef] [PubMed]
- Chien, J.W.; Kucia, M.L.; Salata, R.A. Use of linezolid, an oxazolidinone, in the treatment of multidrug-resistant gram-positive bacterial infections. Clin. Infect. Dis. 2000, 30, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.; Kelesidis, T.; Tsiodras, S.; Hindler, J.; Humphries, R.M. The emerging problem of linezolid-resistant staphylococcus. J. Antimicrob. Chemother. 2013, 68, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Sanchez Garcia, M.; De la Torre, M.A.; Morales, G.; Pelaez, B.; Tolon, M.J.; Domingo, S.; Candel, F.J.; Andrade, R.; Arribi, A.; Garcia, N.; et al. Clinical outbreak of linezolid-resistant Staphylococcus aureus in an intensive care unit. JAMA 2010, 303, 2260–2264. [Google Scholar] [CrossRef] [PubMed]
- Stefani, S.; Bongiorno, D.; Mongelli, G.; Campanile, F. Linezolid resistance in staphylococci. Pharmaceuticals 2010, 3, 1988–2006. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Li, T.; Zhu, Y.; Wang, B.; Zou, X.; Li, M. Mechanisms of linezolid resistance in staphylococci and enterococci isolated from two teaching hospitals in shanghai, china. BMC Microbiol. 2014, 14, 292. [Google Scholar] [CrossRef] [PubMed]
- Roman, F.; Roldan, C.; Trincado, P.; Ballesteros, C.; Carazo, C.; Vindel, A. Detection of linezolid-resistant Staphylococcus aureus with 23s rRNA and novel l4 riboprotein mutations in a cystic fibrosis patient in Spain. Antimicrob. Agents Chemother. 2013, 57, 2428–2429. [Google Scholar] [CrossRef] [PubMed]
- McCusker, K.P.; Fujimori, D.G. The chemistry of peptidyltransferase center-targeted antibiotics: Enzymatic resistance and approaches to countering resistance. ACS Chem. Biol. 2012, 7, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Michalska, K.; Karpiuk, I.; Krol, M.; Tyski, S. Recent development of potent analogues of oxazolidinone antibacterial agents. Bioorg. Med. Chem. 2013, 21, 577–591. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, D.; Lee, J.H.; Seo, S.H.; Nam, G.; Choo, H.; Kang, S.B.; Kwak, J.H.; Oh, T.; Cho, S.N.; Pae, A.N.; et al. Synthesis and in vitro evaluation of the antitubercular and antibacterial activity of novel oxazolidinones bearing octahydrocyclopenta[c]pyrrol-2-yl moieties. Chem. Pharm. Bull. 2014, 62, 1214–1224. [Google Scholar] [CrossRef] [PubMed]
- Cynamon, M.H.; Klemens, S.P.; Sharpe, C.A.; Chase, S. Activities of several novel oxazolidinones against Mycobacterium tuberculosis in a murine model. Antimicrob. Agents Chemother. 1999, 43, 1189–1191. [Google Scholar] [PubMed]
- Zhang, M.; Sala, C.; Dhar, N.; Vocat, A.; Sambandamurthy, V.K.; Sharma, S.; Marriner, G.; Balasubramanian, V.; Cole, S.T. In vitro and in vivo activities of three oxazolidinones against nonreplicating Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2014, 58, 3217–3223. [Google Scholar] [CrossRef] [PubMed]
- Sbardella, G.; Mai, A.; Artico, M.; Loddo, R.; Setzu, M.G.; La Colla, P. Synthesis and in vitro antimycobacterial activity of novel 3-(H-pyrrol-1-yl)-2-oxazolidinone analogues of pnu-100480. Bioorg. Med. Chem. Lett. 2004, 14, 1537–1541. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.N.; Stover, C.K.; Zhu, T.; Tasneen, R.; Tyagi, S.; Grosset, J.H.; Nuermberger, E. Promising antituberculosis activity of the oxazolidinone pnu-100480 relative to that of linezolid in a murine model. Antimicrob. Agents Chemother. 2009, 53, 1314–1319. [Google Scholar] [CrossRef] [PubMed]
- Wookey, A.; Turner, P.J.; Greenhalgh, J.M.; Eastwood, M.; Clarke, J.; Sefton, C. Azd2563, a novel oxazolidinone: Definition of antibacterial spectrum, assessment of bactericidal potential and the impact of miscellaneous factors on activity in vitro. Clin. Microbiol. Infect. 2004, 10, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Das, B.; Rudra, S.; Yadav, A.; Ray, A.; Rao, A.V.; Srinivas, A.S.; Soni, A.; Saini, S.; Shukla, S.; Pandya, M.; et al. Synthesis and sar of novel oxazolidinones: Discovery of ranbezolid. Bioorg. Med. Chem. Lett. 2005, 15, 4261–4267. [Google Scholar] [CrossRef] [PubMed]
- Kalia, V.; Miglani, R.; Purnapatre, K.P.; Mathur, T.; Singhal, S.; Khan, S.; Voleti, S.R.; Upadhyay, D.J.; Saini, K.S.; Rattan, A.; et al. Mode of action of ranbezolid against staphylococci and structural modeling studies of its interaction with ribosomes. Antimicrob. Agents Chemother. 2009, 53, 1427–1433. [Google Scholar] [CrossRef] [PubMed]
- Wong, E.; Rab, S. Tedizolid phosphate (sivextro): A second-generation oxazolidinone to treat acute bacterial skin and skin structure infections. Pharm. Ther. 2014, 39, 555–579. [Google Scholar]
- Zhanel, G.G.; Love, R.; Adam, H.; Golden, A.; Zelenitsky, S.; Schweizer, F.; Gorityala, B.; Lagace-Wiens, P.R.; Rubinstein, E.; Walkty, A.; et al. Tedizolid: A novel oxazolidinone with potent activity against multidrug-resistant gram-positive pathogens. Drugs 2015, 75, 253–270. [Google Scholar] [CrossRef] [PubMed]
- Burdette, S.D.; Trotman, R. Tedizolid: The first once-daily oxazolidinone class antibiotic. Clin. Infect. Dis. 2015, 61, 1315–1321. [Google Scholar] [PubMed]
- Jung, S.J.; Yun, I.N.; Park, H.S.; Lee, H.H.; Jeong, J.W.; Kim, Y.Z.; Cho, Y.L.; Kwak, J.H. Antibacterial activity of lcb01-0062, a novel oxazolidinone. Int. J. Antimicrob. Agents 2012, 40, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.W.; Jung, S.J.; Lee, H.H.; Kim, Y.Z.; Park, T.K.; Cho, Y.L.; Chae, S.E.; Baek, S.Y.; Woo, S.H.; Lee, H.S.; et al. In vitro and in vivo activities of lcb01-0371, a new oxazolidinone. Antimicrob. Agents Chemother. 2010, 54, 5359–5362. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.; Dunsmore, C.J.; Fishwick, C.W.; Chopra, I. Linezolid and tiamulin cross-resistance in Staphylococcus aureus mediated by point mutations in the peptidyl transferase center. Antimicrob. Agents Chemother. 2008, 52, 1737–1742. [Google Scholar] [CrossRef] [PubMed]
- Locke, J.B.; Hilgers, M.; Shaw, K.J. Mutations in ribosomal protein l3 are associated with oxazolidinone resistance in staphylococci of clinical origin. Antimicrob. Agents Chemother. 2009, 53, 5275–5278. [Google Scholar] [CrossRef] [PubMed]
- Shaw, K.J.; Poppe, S.; Schaadt, R.; Brown-Driver, V.; Finn, J.; Pillar, C.M.; Shinabarger, D.; Zurenko, G. In vitro activity of tr-700, the antibacterial moiety of the prodrug tr-701, against linezolid-resistant strains. Antimicrob. Agents Chemother. 2008, 52, 4442–4447. [Google Scholar] [CrossRef] [PubMed]
- Locke, J.B.; Finn, J.; Hilgers, M.; Morales, G.; Rahawi, S.; Kedar, G.C.; Picazo, J.J.; Im, W.; Shaw, K.J.; Stein, J.L. Structure-activity relationships of diverse oxazolidinones for linezolid-resistant Staphylococcus aureus strains possessing the cfr methyltransferase gene or ribosomal mutations. Antimicrob. Agents Chemother. 2010, 54, 5337–5343. [Google Scholar] [CrossRef] [PubMed]
- Poel, T.J.; Thomas, R.C.; Adams, W.J.; Aristoff, P.A.; Barbachyn, M.R.; Boyer, F.E.; Brieland, J.; Brideau, R.; Brodfuehrer, J.; Brown, A.P.; et al. Antibacterial oxazolidinones possessing a novel c-5 side chain. (5r)-trans-3-[3-fluoro-4-(1-oxotetrahydrothiopyran-4-yl)phenyl]-2-oxooxazolidine-5-carboxylic acid amide (pf-00422602), a new lead compound. J. Med. Chem. 2007, 50, 5886–5889. [Google Scholar] [CrossRef] [PubMed]
- Choy, A.L.; Vara Prasad, J.V.; Boyer, F.E.; Huband, M.D.; Dermyer, M.R. Synthesis and sar of novel conformationally restricted oxazolidinones possessing gram-positive and fastidious gram-negative antibacterial activity. Part 2: Amino substitutions on heterocyclic d-ring system. Bioorg. Med. Chem. Lett. 2007, 17, 4699–4702. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. Twenty-Third Informational Supplement m100-s23; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2013. [Google Scholar]
- Clinical and Laboratory Standards Institute. Methods for Determining Bactericidal Activity of Antimicrobial Agents: Approved Guideline m26-a; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 1999. [Google Scholar]
- Hickey, E.J.; Gill, C.J.; Misura, A.S.; Flattery, A.F.; Abruzzo, G.K. Experimental model of reversible myelosuppression caused by short-term, high-dose oxazolidinone administration. Therapy 2006, 3, 521–526. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds are not available from the authors.
Antimicrobial Agents | MSSA (n = 74) a | MRSA (n = 200) a | MSCNS (n = 19) a | MRCNS (n = 33) a | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Range | MIC50 | MIC90 | Range | MIC50 | MIC90 | Range | MIC50 | MIC90 | Range | MIC50 | MIC90 | |
LCB01-0648 | 0.25–0.5 | 0.5 | 0.5 | 0.125–0.5 | 0.5 | 0.5 | 0.125–0.5 | 0.25 | 0.5 | 0.125–1 | 0.25 | 0.5 |
Linezolid | 2 | 2 | 2 | 1–2 | 2 | 2 | 1–2 | 1 | 2 | 1–2 | 1 | 2 |
Oxacillin | 0.06–4 | 0.25 | 0.5 | 8–64 | >64 | >64 | 0.03–1 | 0.125 | 1 | 2–64 | >64 | >64 |
Erythromycin | 0.125–64 | 0.25 | >64 | 0.25–64 | >64 | >64 | 0.06–64 | 0.25 | >64 | 0.06–64 | >64 | >64 |
Ciprofloxacin | 0.06–64 | 0.25 | 0.5 | 0.125–64 | 32 | >64 | 0.06–8 | 0.125 | 8 | 0.06–64 | 8 | 32 |
Sparfloxacin | 0.015–8 | 0.06 | 0.125 | 0.06–64 | 16 | >64 | 0.03–8 | 0.125 | 4 | 0.03–32 | 4 | 16 |
Moxifloxacin | 0.015–8 | 0.06 | 0.125 | 0.03–64 | 4 | 64 | 0.03–4 | 0.125 | 4 | 0.06–16 | 2 | 8 |
Gemifloxacin | 0.008–8 | 0.015 | 0.06 | 0.008–64 | 2 | 64 | 0.008–0.5 | 0.015 | 0.5 | 0.008–8 | 0.5 | 4 |
Vancomycin | 0.25–2 | 1 | 1 | 0.5–4 | 1 | 2 | 1–4 | 2 | 4 | 1–4 | 2 | 4 |
Quinupristin–dalfopristin | 0.125–0.5 | 0.25 | 0.5 | 0.125–1 | 0.5 | 1 | 0.125–1 | 0.25 | 1 | 0.125–8 | 0.25 | 2 |
Antimicrobial Agents | S. pneumoniae (n = 79) | S. pyogenes (n = 21) | ||||
---|---|---|---|---|---|---|
Range | MIC50 | MIC90 | Range | MIC50 | MIC90 | |
LCB01-0648 | 0.03–1 | 0.125 | 0.25 | 0.125–0.5 | 0.25 | 0.25 |
Linezolid | 0.5–1 | 1 | 1 | 1–2 | 2 | 2 |
Oxacillin | 0.008–32 | 16 | 16 | 0.25–32 | 0.5 | 8 |
Erythromycin | 0.008–64 | >64 | >64 | 0.008–8 | 0.06 | 2 |
Ciprofloxacin | 0.5–32 | 2 | 4 | 0.5–4 | 1 | 2 |
Sparfloxacin | 0.06–16 | 0.25 | 0.5 | 0.125–1 | 0.25 | 0.5 |
Moxifloxacin | 0.06–4 | 0.25 | 0.5 | 0.125–0.5 | 0.125 | 0.25 |
Gemifloxacin | 0.008–0.25 | 0.03 | 0.06 | 0.03–0.125 | 0.03 | 0.06 |
Vancomycin | 0.5–2 | 1 | 1 | 0.5–4 | 1 | 1 |
Quinupristin–dalfopristin | 0.5–4 | 1 | 2 | 1–2 | 1 | 2 |
Antimicrobial Agents | E. faecalis (n = 108) | E. faecium (n = 29) | VRE (n = 47) a | ||||||
---|---|---|---|---|---|---|---|---|---|
Range | MIC50 | MIC90 | Range | MIC50 | MIC90 | Range | MIC50 | MIC90 | |
LCB01-0648 | 0.125–0.5 | 0.25 | 0.5 | 0.25–0.5 | 0.25 | 0.5 | 0.125–0.5 | 0.25 | 0.25 |
Linezolid | 1–2 | 2 | 2 | 1–2 | 2 | 2 | 1–2 | 2 | 2 |
Oxacillin | 8–64 | 16 | >64 | 16–64 | >64 | >64 | >64–64 | >64 | >64 |
Erythromycin | 0.125–64 | >64 | >64 | 0.125–64 | >64 | >64 | >64–64 | >64 | >64 |
Ciprofloxacin | 0.06–64 | 2 | 64 | 1~64 | 4 | 64 | 0.5–64 | 64 | >64 |
Sparfloxacin | 0.25–64 | 1 | 32 | 0.5–32 | 4 | 32 | 0.25–64 | 32 | 64 |
Moxifloxacin | 0.06–64 | 1 | 32 | 0.25–64 | 4 | 32 | 0.25–32 | 16 | 32 |
Gemifloxacin | 0.008–16 | 0.125 | 4 | 0.03–64 | 2 | 16 | 0.015–32 | 16 | 32 |
Vancomycin | 0.5–4 | 2 | 4 | 0.5–8 | 1 | 2 | >64–64 | >64 | >64 |
Quinupristin–dalfopristin | 0.25–16 | 4 | 16 | 0.25–32 | 0.5 | 4 | 0.25–4 | 0.5 | 2 |
Strains | Mutation Site | LCB01-0648 | Linezolid | Oxacillin | Ciprofloxacin | Moxifloxacin | Gemifloxacin |
---|---|---|---|---|---|---|---|
S. aureus NRS119 | G2576U | 4 | 64 | >64 | >64 | 4 | 8 |
S. aureus NRS121 | G2576U | 4 | 64 | >64 | >64 | 4 | 8 |
S. aureus NRS127 | Non-23s rRNA | 2 | 8 | 32 | >64 | 64 | 64 |
S. aureus NRS271 | G2576U | 2 | 64 | >64 | >64 | 16 | 16 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, S.-H.; Kim, J.; Baek, S.-Y.; Chae, S.-E.; Park, H.-S.; Cho, Y.-L.; Kwak, J.-H. In Vitro Activities of LCB 01-0648, a Novel Oxazolidinone, against Gram-Positive Bacteria. Molecules 2017, 22, 394. https://doi.org/10.3390/molecules22030394
Oh S-H, Kim J, Baek S-Y, Chae S-E, Park H-S, Cho Y-L, Kwak J-H. In Vitro Activities of LCB 01-0648, a Novel Oxazolidinone, against Gram-Positive Bacteria. Molecules. 2017; 22(3):394. https://doi.org/10.3390/molecules22030394
Chicago/Turabian StyleOh, Sang-Hun, Josep Kim, Sung-Yoon Baek, Sang-Eun Chae, Hee-Soo Park, Young-Lag Cho, and Jin-Hwan Kwak. 2017. "In Vitro Activities of LCB 01-0648, a Novel Oxazolidinone, against Gram-Positive Bacteria" Molecules 22, no. 3: 394. https://doi.org/10.3390/molecules22030394
APA StyleOh, S. -H., Kim, J., Baek, S. -Y., Chae, S. -E., Park, H. -S., Cho, Y. -L., & Kwak, J. -H. (2017). In Vitro Activities of LCB 01-0648, a Novel Oxazolidinone, against Gram-Positive Bacteria. Molecules, 22(3), 394. https://doi.org/10.3390/molecules22030394