The Emission of the Floral Scent of Four Osmanthus fragrans Cultivars in Response to Different Temperatures
Abstract
:1. Introduction
2. Results
2.1. Influence of Temperature on the Number of Chemical Compounds Emitted from Osmanthus fragrans
2.2. Influence of Temperature on the Relative Content of Chemical Compounds Emitted from Osmanthus fragrans
2.3. Influence of Temperature on The Relative Content of Main Chemical Compounds Emitted from Osmanthus fragrans
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Temperature Treatments
4.3. Floral Scent Collection
4.4. GC-MS Analysis
4.5. Statistical Analysis
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Knudsen, J.T.; Eriksson, R.; Gershenzon, J.; Ståhl, B. Diversity and distribution of floral scent. Bot. Rev. 2006, 72, 1–120. [Google Scholar] [CrossRef]
- Dudareva, N.; Negre, F.; Nagegowda, D.A.; Orlova, I. Plant volatiles: Recent advances and future perspectives. Crit. Rev. Plant Sci. 2006, 25, 417–440. [Google Scholar] [CrossRef]
- Dudareva, N.; Pichersky, E.; Gershenzon, J. Biochemistry of plant volatiles. Plant Physiol. 2004, 135, 1893–1902. [Google Scholar] [CrossRef] [PubMed]
- Raguso, R.A. Wake up and smell the roses: The ecology and evolution of floral scent. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 549–569. [Google Scholar] [CrossRef]
- Lin, C.Y.; Chen, Y.H.; Chang, T.C.; Chen, Y.J.; Cheng, S.S.; Chang, S.T. Characteristic aroma-active compounds of floral scent in situ from Barringtonia racemosa and their dynamic emission rates. J. Agric. Food Chem. 2013, 61, 12531–12538. [Google Scholar] [CrossRef] [PubMed]
- Bertin, N.; Staudt, M.; Hansen, U.; Seufert, G.; Ciccioli, P.; Foster, P.; Fugit, J.L.; Torres, L. Diurnal and seasonal course of monoterpene emissions from Quercus ilex (L.) under natural conditions application of light and temperature algorithms. Atmos. Environ. 1997, 31, 135–144. [Google Scholar] [CrossRef]
- Cna’ani, A.; Muhlemann, J.K.; Ravid, J.; Masci, T.; Klempien, A.; Nguyen, T.T.H.; Dudareva, N.; Pichersky, E.; Vainstein, A. Petunia × hybrida floral scent production is negatively affected by high-temperature growth conditions. Plant Cell Environ. 2015, 38, 1333–1346. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Zhang, H.; Leng, P.; Zhao, J.; Wang, W.; Wang, S. The emission of floral scent from Lilium ‘Siberia’ in response to light intensity and temperature. Acta Physiol. Plant 2013, 35, 1691–1700. [Google Scholar] [CrossRef]
- Niinemets, Ü. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: Past stress history, stress interactions, tolerance and acclimation. For. Ecol. Manag. 2010, 260, 1623–1639. [Google Scholar] [CrossRef]
- Penuelas, J. An increasingly scented world. New Phytol. 2008, 180, 735–738. [Google Scholar] [CrossRef] [PubMed]
- Penuelas, J.; Staudt, M. BVOCs and global change. Trends Plant Sci. 2010, 15, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Räisänen, T.; Ryyppö, A.; Kellomäki, S. Effects of elevated CO2 and temperature on monoterpene emission of Scots pine (Pinus sylvestris L.). Atmos. Environ. 2008, 42, 4160–4171. [Google Scholar]
- Staudt, M.; Bertin, N. Light and temperature dependence of the emission of cyclic and acyclic monoterpenes from holm oak (Quercus ilex L.) leaves. Plant Cell Environ. 1998, 21, 385–395. [Google Scholar] [CrossRef]
- Staudt, M.; Bertin, N.; Hansen, U.; Seufert, G.; Cicciolij, P.; Foster, P.; Frenzel, B.; Fugit, J.L. Seasonal and diurnal patterns of monoterpene emissions from Pinus pinea (L.) under field conditions. Atmos. Environ. 1997, 31, 145–156. [Google Scholar] [CrossRef]
- Rasulov, B.; Hüve, K.; Välbe, M.; Laisk, A.; Niinemets, Ü. Evidence that light, carbon dioxide, and oxygen dependencies of leaf isoprene emission are driven by energy status in hybrid aspen. Plant Physiol. 2009, 151, 448–460. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Copolovici, L.; Niinemets, Ü. Can the capacity for isoprene emission acclimate to environmental modifications during autumn senescence in temperate deciduous tree species Populus tremula? J. Plant Res. 2012, 125, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Velikova, V.; Tsonev, T.; Barta, C.; Centritto, M.; Koleva, D.; Stefanova, M.; Busheva, M.; Loreto, F. BVOC emissions, photosynthetic characteristics and changes in chloroplast ultrastructure of Platanus orientalis L. exposed to elevated CO2 and high temperature. Environ. Pollut. 2009, 157, 2629–2637. [Google Scholar] [CrossRef] [PubMed]
- Nurzyńska-Wierdak, R. Sweet basil essential oil composition: Relationship between cultivar, foliar feeding with nitrogen and oil content. J. Essent. Oil Res. 2012, 24, 217–227. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, X.; Lin, H.; Wang, F.; Chen, F. Floral scent in wisteria: Chemical composition, emission pattern, and regulation. J. Am. Soc. Hortic. Sci. 2011, 136, 307–314. [Google Scholar]
- Loivamäki, M.; Louis, S.; Cinege, G.; Zimmer, I.; Fischbach, R.J.; Schnitzler, J.-P. Circadian rhythms of isoprene biosynthesis in grey poplar leaves. Plant Physiol. 2007, 143, 540–551. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, M.J.; Owen, S.M.; Possell, M.; Hartwell, J.; Gould, P.; Hall, A.; Vickers, C.; Nicholas Hewitt, C. Circadian control of isoprene emissions from oil palm Elaeis guineensis. Plant J. 2006, 47, 960–968. [Google Scholar] [CrossRef] [PubMed]
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef] [Green Version]
- Mayrhofer, S.; Teuber, M.; Zimmer, I.; Louis, S.; Fischbach, R.J.; Schnitzler, J.-P. Diurnal and seasonal variation of isoprene biosynthesis-related genes in grey poplar leaves. Plant Physiol. 2005, 139, 474–484. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.G.; Lee, M.R.; Shen, D.L. Analysis of volatile compounds emitted from fresh Syringa oblata flowers in different florescence by headspace solid-phase microextraction-gas chromatography-mass spectrometry. Anal. Chim. Acta 2006, 576, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Steenhuisen, S.L.; Raguso, R.A.; Jurgens, A.; Johnson, S.D. Variation in scent emission among floral parts and inflorescence developmental stages in beetle-pollinated Protea species (Proteaceae). S. Afr. J. Bot. 2010, 76, 779–787. [Google Scholar] [CrossRef]
- Shiojiri, K.; Karban, R. Plant age, communication, and resistance to herbivores: Young sagebrush plants are better emitters and receivers. Oecologia 2006, 149, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Dixon, J.; Hewett, E.W. Factors affecting apple aroma/flavour volatile concentration: A review. N. Z. J. Crop Hortic. 2000, 28, 155–173. [Google Scholar] [CrossRef]
- Tingey, D.T.; Manning, M.; Grothaus, L.C.; Burns, W.F. Influence of light and temperature on monoterpene emission rates from slash pine. Plant Physiol. 1980, 65, 797–801. [Google Scholar] [CrossRef] [PubMed]
- Guenther, A.B.; Monson, R.K.; Fall, R. Isoprene and monoterpene emission rate variability: Observations with eucalyptus and emission rate algorithm development. J. Geophys. Res. 1991, 96, 10799–10808. [Google Scholar] [CrossRef]
- Gouinguené, S.P.; Turlings, T.C.J. The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol. 2002, 129, 1296–1307. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Alderson, P.G.; Hollowood, T.A.; Hewson, L.; Wright, C.J. Flavour and aroma of fresh basil are affected by temperature. J. Sci. Food Agric. 2007, 87, 1381–1385. [Google Scholar] [CrossRef]
- Jakobsen, H.B.; Olsen, C.E. Influence of climatic factors on emission of flower volatiles in situ. Planta 1994, 192, 365–371. [Google Scholar] [CrossRef]
- Sagae, M.; Oyama-Okubo, N.; Ando, T.; Marchesi, E.; Nakayama, M. Effect of temperature on the floral scent emission and endogenous volatile profile of Petunia axillaris. Biosci. Biotechnol. Biochem. 2008, 72, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Chandler, S.F.; Brugliera, F. Genetic modification in floriculture. Biotechnol. Lett. 2013, 33, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Mai, R.Z.; Zou, J.J.; Zhang, H.Y.; Zeng, X.L.; Zheng, R.R.; Wang, C.Y. Analysis of aroma-active compounds in three sweet osmanthus (Osmanthus fragrans) cultivars by GC-olfactometry and GC-MS. Zhejiang Univ. Sci. B 2014, 15, 638–648. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Guo, X.; Xiao, P.; Luo, L. Chemical composition comparison of the essential oil from four groups of Osmanthus fragrans Lour. flowers. J. Essent. Oil Bear. Plants 2012, 15, 832–838. [Google Scholar] [CrossRef]
- Xin, H.; Wu, B.; Zhang, H.; Wang, C.; Li, J.; Yang, B.; Li, S. Characterization of volatile compounds in flowers from four groups of sweet osmanthus (Osmanthus fragrans) cultivars. Can. J. Plant Sci. 2013, 93, 923–931. [Google Scholar] [CrossRef]
- Farré-Armengol, G.; Filella, I.; Llusià, J.; Niinemets, Ü.; Peñuelas, J. Changes in floral bouquets from compound-specific responses to increasing temperatures. Glob. Chang. Biol. 2014, 20, 3660–3669. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Li, Z.G.; Shen, D.L. GC/MS fingerprint analysis of Osmanthus fragrans Lour. in different varieties. Acta Hortic. Sin. 2009, 36, 391–398. [Google Scholar]
- Deng, C.H.; Song, G.X.; Hu, Y.M. Application of HS-SPME and GC-MS to characterization of volatile compounds emitted from osmanthus flowers. Ann. Chim. 2004, 94, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.G.; Cao, H.; Zhu, G.H.; Gao, J.R.; Shen, D.L. Study on chemical constituents of fragrance released from fresh flowers of three different Osmanthus franrans Lour. during different florescences. Chem. Ind. For. Prod. 2008, 28, 75–80. [Google Scholar]
- Lin, F.P.; Ma, N.; Zhou, S.; Zhang, R.M.; Gao, Y. Tds-Gc-Ms analysis of volatile organic compounds from the fresh flowers of four Osmanthus fragrans varieties. J. Inner Mong. Agric. Univ. (Nat. Sci. Ed.) 2012, 2, 48–51. [Google Scholar]
- Sun, B.G.; He, J. Introduction to Perfume; Chemical Industry Press: Beijing, China, 1996. [Google Scholar]
- Wang, L.M.; Li, M.T.; Jin, W.W.; Li, S.; Zhang, S.Q.; Yu, L.J. Variations in the components of Osmanthus fragrans Lour. essential oil at different stages of flowering. Food Chem. 2009, 114, 233–236. [Google Scholar] [CrossRef]
- Dötterl, S.; Burkhardt, D.; Weißbecker, B.; Jürgens, A.; Schütz, S.; Mosandl, A. Linalool and lilac aldehyde/alcohol in flower scents: Electrophysiological detection of lilac aldehyde stereoisomers by a moth. J. Chromatogr. A 2006, 1113, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.; Poll, L. Odour thresholds of some important aroma compounds in strawberries. Z. Lebensm. Unters. Forsch. 1992, 195, 120–123. [Google Scholar] [CrossRef]
- Palá-Paú, J.; Brophy, J.J.; Goldsack, R.J.; Fontaniella, B. Analysis of the volatile components of Lavandula canariensis (L.) Mill., a Canary Islands endemic species, growing in Australia. Biochem. Syst. Ecol. 2004, 32, 55–62. [Google Scholar]
- Sample Availability: Samples of the compounds are available from the authors.
No. | Volatile Category | Compound Name | Code |
---|---|---|---|
1 | Alcohols | cis-Linalool oxide | A1 |
2 | trans-Linalool oxide | A2 | |
3 | Linalool | A3 | |
4 | 3,7-Dimethyl-1,5,7-octatrien-3-ol | A4 | |
5 | Epoxy linalool | A5 | |
6 | 4-(2,6,6-Trimethyl-cyclohex-1-enyl)-butan-2-ol | A6 | |
7 | Cedrol | A7 | |
8 | 2,6-Dimethyl-1,7-octadiene-2,6-diol | A8 | |
9 | 2-(4-Methoxyphenyl)ethanol | A9 | |
10 | Ketones | 6-Methyl-5-hepten-2-one | B1 |
11 | 2,2,6-Trimethyl-6-ethenyldihydro-2H-pyran-3(4H)-one | B2 | |
12 | 4-(2,6,6-Trimethyl-2-cyclohexen-1-ylidene)-2-butanone | B3 | |
13 | 2H-α-Ionone | B4 | |
14 | 2H-β-Ionone | B5 | |
15 | α-Ionone | B6 | |
16 | Geranyl acetone | B7 | |
17 | β-Ionone | B8 | |
18 | 4-(2,2,6-Trimethyl-7-oxabicyclo[4.1.0]hept-1-yl)-3-buten-2-one | B9 | |
19 | Pseudo ionone | B10 | |
20 | 6-Pentyl-2H-pyran-2-one | B11 | |
21 | Alkenes | (E)-Ocimene | C1 |
22 | (Z)-Ocimene | C2 | |
23 | 2,2,4,6,6-Pentamethyl-3-heptene | C3 | |
24 | 2,2,4,10,12,12-Hexamethyl-7-(3,5,5-trimethylhexyl)-6-tridecene | C4 | |
25 | 7-Tetradecene | C5 | |
26 | α-farnesene | C6 | |
27 | Esters | (Z)-3-Hexenyl butanoic acid ester | D1 |
28 | (Z)-4-Hexen-1-yl butanoic acid ester | D2 | |
29 | cis-3-Hexenyl-α-methylbutyrate | D3 | |
30 | cis-3-Hexenyl n-valeric acid ester | D4 | |
31 | γ-Decalactone | D5 | |
32 | Alkanes | Tridecane | E1 |
33 | 3,7-Dimethyldecane | E2 | |
34 | Tetradecane | E3 | |
35 | 4,6-Dimethyldodecane | E4 | |
36 | 3-Methyltetradecane | E5 | |
37 | Pentadecane | E6 | |
38 | 2-Methylheptadecane | E7 | |
39 | 3-Methylpentadecane | E8 | |
40 | Hexadecane | E9 | |
41 | Nonadecane | E10 | |
42 | 2,6,10,14-Tetramethylpentadecane | E11 | |
43 | 8-Hexylpentadecane | E12 | |
44 | 2,6,10,14-tetramethylhexadecane | E13 | |
45 | Heptadecane | E14 | |
46 | Octadecane | E15 | |
47 | Pentacosane | E16 | |
48 | Heneicosane | E17 | |
49 | Eicosane | E18 | |
50 | Hexatriacontane | E19 | |
51 | Dotriacontane | E20 | |
52 | Tetrapentacontane | E21 | |
53 | Tetracontane | E22 |
Volatile Category | Compound Code | Average Relative Content (%) of Each Volatile Compounds Identified at Different Temperatures (°C) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
JQ | YL | YH | YD | ||||||||||||||
12 | 15 | 19 | 32 | 12 | 15 | 19 | 32 | 12 | 15 | 19 | 32 | 12 | 15 | 19 | 32 | ||
Alcohols | A1 | 1.14 | 1.09 | 0.42 | 0.70 | 4.21 | 4.13 | 2.23 | 1.39 | 0.9 | 2.61 | 2.14 | - | 4.91 | 4.31 | 0.66 | 0.64 |
A2 | 2.03 | 1.59 | 0.76 | 2.58 | 5.42 | 5.38 | 3.17 | 4.75 | 1.01 | 4.4 | 2.63 | - | 11.84 | 9.62 | 1.37 | 2.22 | |
A3 | 26.38 | 24.39 | 12.21 | 10.33 | 28.69 | 28.88 | 31.23 | 8.33 | 62.55 | 56.25 | 57.63 | 14.04 | 15.95 | 16.85 | 15.61 | 28.15 | |
A4 | - | - | - | - | - | - | - | - | - | - | - | 0.38 | - | - | - | - | |
A5 | 0.48 | 0.36 | 0.25 | 0.56 | 1.28 | 1.3 | 0.79 | 5.7 | 0.2 | 1.06 | 0.62 | 0.49 | 3.3 | 1.92 | 0.52 | 0.54 | |
A6 | 0.29 | 0.26 | 0.82 | 1.59 | 0.17 | 0.11 | 0.12 | 0.72 | - | 2.7 | - | 1.41 | 0.46 | 1.67 | 0.52 | 0.17 | |
A7 | 0.14 | - | - | - | 0.42 | - | - | - | - | - | - | - | - | - | - | - | |
A8 | - | - | - | - | 0.07 | - | 0.05 | - | - | - | - | - | - | 0.7 | - | - | |
A9 | 1.68 | 0.29 | 2.33 | - | - | - | - | - | - | - | - | - | - | - | - | - | |
Ketones | B1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
B2 | - | 0.07 | - | - | - | - | - | - | - | - | - | - | 0.47 | - | - | - | |
B3 | - | - | - | - | 0.05 | - | 0.07 | - | - | - | - | - | - | - | - | - | |
B4 | 0.14 | 0.2 | 0.27 | - | - | - | 0.23 | 0.02 | - | - | - | - | - | - | - | - | |
B5 | 3.55 | 1.4 | 2.02 | 2.70 | 4.86 | 3.62 | 4.81 | 36.43 | 0.22 | 2.87 | 1.13 | 15.24 | 1.16 | 2.78 | 2.46 | 3.39 | |
B6 | 7.29 | 3.25 | 11.6 | 5.70 | 7.47 | 8.21 | 12.09 | 10.96 | 1.14 | 2.79 | 2.86 | 4.78 | 4.93 | 6.6 | 8.2 | 5.13 | |
B7 | 0.08 | 0.04 | 0.07 | 0.91 | - | - | 0.06 | 0.16 | - | - | 0.15 | 0.41 | - | 0.19 | 0.31 | ||
B8 | 22.37 | 25.8 | 39.28 | 10.42 | 17.59 | 22.77 | 25.59 | 10.49 | 2.45 | 7.16 | 9.68 | 4.26 | 32.11 | 30.31 | 36.27 | 32.55 | |
B9 | - | - | 0.05 | - | - | - | - | - | - | - | - | - | - | - | - | - | |
B10 | - | 0.03 | 0.11 | - | - | - | 0.08 | - | - | - | - | - | - | - | - | - | |
B11 | - | 0.17 | - | - | - | - | - | - | - | 1.16 | 0.32 | - | - | - | - | - | |
Alkenes | C1 | - | 0.57 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
C2 | 19.5 | 31.14 | 4.28 | 2.40 | 10.71 | 13.77 | 9.23 | 1.32 | - | - | 1.86 | - | 7.94 | 9.4 | 3.72 | 2.07 | |
C3 | - | - | - | - | - | - | - | - | - | - | - | 0.29 | - | - | - | - | |
C4 | - | - | - | - | - | - | - | - | 0.22 | 1.18 | - | 0.21 | - | - | - | - | |
C5 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
C6 | - | 0.03 | 0.34 | 2.14 | 0.14 | - | - | - | - | - | - | - | 0.17 | - | - | ||
Esters | D1 | - | - | - | - | 0.09 | 0.45 | 0.14 | 0.32 | 0.09 | 0.39 | - | 0.46 | - | - | 0.29 | |
D2 | 0.45 | 0.3 | 0.68 | 0.22 | - | - | - | 1.35 | 0.81 | 0.24 | 0.53 | 0.63 | - | - | - | - | |
D3 | - | - | - | - | - | - | 0.13 | - | - | - | - | - | - | - | - | - | |
D4 | - | - | - | - | - | - | - | - | - | - | 0.45 | - | - | - | - | - | |
D5 | 6.74 | 4.24 | 13.63 | 3.78 | 1.67 | 1.35 | 3.67 | 2.11 | 12.69 | 6.01 | - | 1.02 | 3.93 | 3.58 | 12.36 | 5.6 | |
Alkanes | E1 | - | - | - | 1.89 | - | - | - | - | - | - | - | - | - | - | - | - |
E2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
E3 | 0.12 | 0.14 | 0.37 | - | 0.2 | 0.34 | 0.17 | 0.7 | 0.12 | 0.54 | 0.51 | 1.79 | 1.62 | 0.42 | 0.33 | 0.5 | |
E4 | - | - | - | - | 0.15 | 0.21 | 0.11 | 0.35 | - | - | - | 0.51 | - | - | 0.26 | - | |
E5 | - | - | - | - | - | - | - | - | - | - | - | 0.32 | - | - | 0.07 | - | |
E6 | 0.34 | - | 0.66 | 5.52 | - | - | 0.27 | 0.52 | - | - | - | 4.53 | - | 0.24 | 0.77 | - | |
E7 | 0.26 | - | 0.28 | - | 0.06 | 0.07 | 0.03 | 0.11 | 0.09 | 0.13 | - | 0.3 | - | - | - | - | |
E8 | - | - | 0.08 | - | - | - | - | - | - | - | - | - | - | - | 0.37 | - | |
E9 | - | - | - | - | - | - | - | - | - | - | - | - | 1.2 | 0.23 | 1.23 | 0.35 | |
E10 | 0.62 | 0.2 | 0.66 | - | 0.37 | 0.35 | 0.38 | 0.83 | 0.41 | 0.68 | 0.41 | 1.29 | 0.94 | 0.37 | 0.96 | 1.46 | |
E11 | 0.34 | 0.14 | 0.41 | 1.75 | - | - | 0.36 | 1.02 | 0.17 | 0.59 | 0.43 | 1.81 | 0.95 | 0.34 | 0.68 | 0.59 | |
E12 | - | - | - | - | - | - | 0.05 | 0.17 | 0.16 | 0.09 | - | - | - | - | - | - | |
E13 | 0.27 | 0.06 | 0.21 | 1.75 | 0.13 | 0.2 | 0.18 | 0.38 | 0.23 | 0.45 | 0.35 | 0.55 | 1.37 | 0.45 | 0.08 | 0.14 | |
E14 | 0.05 | 0.18 | - | 2.76 | - | - | 0.18 | 0.93 | 0.14 | 0.11 | 0.76 | 1.19 | 0.97 | 0.14 | 0.59 | - | |
E15 | 0.08 | 0.13 | 0.14 | 1.36 | - | - | - | - | 0.18 | 0.45 | 0.2 | 1.52 | - | - | 0.03 | - | |
E16 | 0.25 | 0.19 | - | - | - | - | - | - | - | - | - | - | - | 0.25 | - | ||
E17 | 0.36 | 0.11 | 0.31 | 2.56 | 1.91 | 0.49 | 0.29 | 0.36 | 0.46 | 0.85 | 0.76 | 4.14 | 0.59 | 0.24 | 0.48 | 0.49 | |
E18 | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.16 | 0.08 | - | |
E19 | - | - | 1.29 | - | - | 1.21 | 0.36 | - | - | - | - | - | - | 0.33 | 1.34 | 0.7 | |
E20 | - | - | - | 6.06 | 1.58 | 0.18 | 0.37 | - | - | - | 0.97 | 9.84 | - | - | - | - | |
E21 | - | - | - | - | - | - | - | - | - | 0.08 | 0.14 | 0.32 | - | - | - | - | |
E22 | 0.72 | 0.52 | 1.18 | 6.64 | - | - | - | - | 3.67 | 1.14 | 0.18 | 8.99 | - | 0.36 | 1.63 | - |
Volatile Category | Number of Chemical Compounds Identified at Different Temperatures (°C) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
JQ | YL | YH | YD | |||||||||||||
12 | 15 | 19 | 32 | 12 | 15 | 19 | 32 | 12 | 15 | 19 | 32 | 12 | 15 | 19 | 32 | |
Alcohols | 7 | 6 | 6 | 5 | 7 | 5 | 6 | 5 | 4 | 5 | 4 | 4 | 5 | 6 | 5 | 5 |
Ketones | 5 | 8 | 7 | 4 | 4 | 3 | 7 | 5 | 3 | 4 | 5 | 4 | 4 | 4 | 4 | 3 |
Alkenes | 1 | 3 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 1 |
Esters | 2 | 2 | 2 | 2 | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 1 | 1 | 2 |
Alkanes | 11 | 9 | 11 | 9 | 7 | 8 | 12 | 10 | 10 | 11 | 10 | 14 | 7 | 11 | 16 | 7 |
Total | 26 | 28 | 27 | 22 | 21 | 20 | 29 | 24 | 21 | 24 | 23 | 26 | 19 | 24 | 27 | 18 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, J.; Hou, D.; Zhang, C.; Bao, Z.; Zhao, H.; Hu, S. The Emission of the Floral Scent of Four Osmanthus fragrans Cultivars in Response to Different Temperatures. Molecules 2017, 22, 430. https://doi.org/10.3390/molecules22030430
Fu J, Hou D, Zhang C, Bao Z, Zhao H, Hu S. The Emission of the Floral Scent of Four Osmanthus fragrans Cultivars in Response to Different Temperatures. Molecules. 2017; 22(3):430. https://doi.org/10.3390/molecules22030430
Chicago/Turabian StyleFu, Jianxin, Dan Hou, Chao Zhang, Zhiyi Bao, Hongbo Zhao, and Shaoqing Hu. 2017. "The Emission of the Floral Scent of Four Osmanthus fragrans Cultivars in Response to Different Temperatures" Molecules 22, no. 3: 430. https://doi.org/10.3390/molecules22030430
APA StyleFu, J., Hou, D., Zhang, C., Bao, Z., Zhao, H., & Hu, S. (2017). The Emission of the Floral Scent of Four Osmanthus fragrans Cultivars in Response to Different Temperatures. Molecules, 22(3), 430. https://doi.org/10.3390/molecules22030430