The Influence of pH on the Scleroglucan and Scleroglucan/Borax Systems
Abstract
:1. Introduction
2. Results and Discussion
2.1. Rheology
- (i)
- the presence of borax affects the polymeric network architecture mainly at long range, the condition actually tested by flow curve and stress sweep experiments, carried out also beyond the linear viscoelastic threshold;
- (ii)
- in the frequency sweep experiments, the systems are explored only at short range, with small deformations imposed in the linear viscoelastic range, thus less affected by the presence of borax.
2.2. Water Uptake and Dimensional Increase Studies
- (i)
- Sclg was first dissolved at pH = 14 before the addition of borax and the tablet preparation. The swelling experiments were then carried out in distilled water (at 37 °C).
- (ii)
- Sclg was first dissolved in distilled water before the addition of borax and the tablet preparation.
2.3. Spectroscopic and Chemometric Analysis
2.4. Molecular Dynamics (MD) Simulations
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Polysaccharide Purifications
3.2.2. Hydrogel and Tablet Preparation
3.2.3. Water Uptake and Dimensional Increase Studies
3.2.4. Rheology
3.2.5. Conformational Transition Studies
3.2.6. Molecular Dynamics Simulation
3.2.7. Chemometric Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Coviello, T.; Palleschi, A.; Grassi, M.; Matricardi, P.; Bocchinfuso, G.; Alhaique, F. Scleroglucan: A versatile polysaccharide for modified drug delivery. Molecules 2005, 10, 6–33. [Google Scholar] [CrossRef] [PubMed]
- Castillo, N.A.; Valdez, A.L.; Fariña, J.I. Microbial production of Scleroglucan and downstream processing. Front. Microbiol. 2015, 6, 1106. [Google Scholar] [CrossRef] [PubMed]
- Alhaique, F.; Casadei, M.A.; Cencetti, C.; Coviello, T.; Di Meo, C.; Matricardi, P.; Montanari, E.; Pacelli, S.; Paolicelli, P. From macro to nano polysaccharide hydrogels: An opportunity for the delivery of drugs. J. Drug Deliv. Sci. Technol. 2016, 32 Pt B, 88–99. [Google Scholar] [CrossRef]
- Sandford, P.A. Exocellular, microbial polysaccharides. Adv. Carbohydr. Chem. Biochem. 1979, 36, 265–313. [Google Scholar] [PubMed]
- Coviello, T.; Coluzzi, G.; Palleschi, A.; Grassi, M.; Santucci, E.; Alhaique, F. Structural and rheological characterization of scleroglucan/borax hydrogel for drug delivery. Int. J. Biol. Macromol. 2003, 32, 83–92. [Google Scholar] [CrossRef]
- Palleschi, A.; Coviello, T.; Bocchinfuso, G.; Alhaique, F. The investigation of a new scleroglucan hydrogel: Structure and drug release. Int. J. Pharm. 2006, 322, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Coviello, T.; Grassi, M.; Palleschi, A.; Bocchinfuso, G.; Coluzzi, G.; Banishoeib, F.; Alhaique, F. A new Scleroglucan/borax hydrogel anomalous swelling and drug release. Int. J. Pharm. 2005, 289, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Bocchinfuso, G.; Palleschi, A.; Mazzuca, C.; Coviello, T.; Alhaique, F.; Marletta, G. Theoretical and experimental study on a self-assembling polysaccharide forming nanochannels: Static and dynamic effects induced by a soft confinement. J. Phys. Chem. B 2008, 112, 6473–6483. [Google Scholar] [CrossRef] [PubMed]
- Di Meo, C.; Coviello, T.; Matricardi, P.; Alhaique, F.; Capitani, D.; La Manna, R. Anisotropic enhanced water diffusion in scleroglucan gel tablets. Soft Matter 2011, 7, 6068–6075. [Google Scholar] [CrossRef]
- Yanaki, T.; Norisuye, T. Triple helix and random coil of Scleroglucan in dilute solution. Polym. J. 1983, 15, 389–396. [Google Scholar] [CrossRef]
- Kitamura, S.; Hirano, T.; Takeo, K.; Kukada, H.; Takahashi, K.; Falch, B.H.; Stokke, B.T. Conformational transitions of Schizophyllan in aqueous alkaline solution. Biopolymers 1996, 39, 407–416. [Google Scholar] [CrossRef]
- Viñarta, S.C.; Delgado, O.D.; Figueroa, L.I.C.; Fariña, J.I. Effects of thermal, alkaline and ultrasonic treatments on scleroglucan stability and flow behavior. Carbohydr. Polym. 2013, 94, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Coviello, T.; Bertolo, L.; Matricardi, P.; Palleschi, A.; Bocchinfuso, G.; Maras, A.; Alhaique, F. Peculiar behaviour of polysaccharide/borax hydrogel tablets: A dynamo-mechanical characterization. Colloid Polym. Sci. 2009, 287, 413–423. [Google Scholar] [CrossRef]
- Bocchinfuso, G.; Mazzuca, C.; Sandolo, C.; Margheritelli, S.; Alhaique, F.; Coviello, T.; Palleschi, A. Guar Gum and Scleroglucan interactions with borax: Experimental and theoretical studies of an unexpected similarity. J. Phys. Chem. B 2010, 114, 13059–13068. [Google Scholar] [CrossRef] [PubMed]
- Frid, P.; Anisimov, S.V.; Popovic, N. Congo red and protein aggregation in neurodegenerative diseases. Brain Res. Rev. 2007, 53, 135–160. [Google Scholar] [CrossRef] [PubMed]
- Wood, P.J. Specificity in the interaction of direct dyes with polysaccharides. Carbohydr. Res. 1980, 85, 271–287. [Google Scholar] [CrossRef]
- Fariña, J.I.; Siñeriz, F.; Molina, M.O.; Perotti, N.I. Isolation and physicochemical characterization of soluble scleroglucan from Sclerotium rolfsii. Rheological properties, molecular weight and conformational characteristics. Carbohydr. Polym. 2001, 44, 41–50. [Google Scholar] [CrossRef]
- Yanaki, T.; Kojima, T.; Norisuye, T. Triple helix of scleroglucan in dilute aqueous sodium hydroxide. Polym. J. 1981, 13, 1135–1143. [Google Scholar] [CrossRef]
- Ansari, S.A.; Matricardi, P.; Di Meo, C.; Alhaique, F.; Coviello, T. Evaluation of rheological properties and swelling behaviour of sonicated Scleroglucan samples. Molecules 2012, 17, 2283–2297. [Google Scholar] [CrossRef] [PubMed]
- Ansari, S.A.; Matricardi, P.; Cencetti, C.; Di Meo, C.; Carafa, M.; Mazzuca, C.; Palleschi, A.; Capitani, D.; Alhaique, F.; Coviello, T. Sonication-based improvement on the physicochemical properties of Guar Gum as a potential substrate for modified drug delivery systems. BioMed Res. Int. 2013, 2013, 985259. [Google Scholar] [CrossRef] [PubMed]
- Maier, H.; Anderson, M.; Karl, C.; Magnuson, K.; Whistler, R.L. Guar, Locust bean, Tara, and Fenugreek Gums. In Industrial Gums: Polysaccharides and Their Derivatives, 3rd ed.; Whistler, R.L., BeMiller, J.N., Eds.; Academic Press, Inc.: San Diego, CA, USA, 1993; pp. 181–226. [Google Scholar]
- Sharma, M.; Mondal, D.; Mukesh, C.; Prasad, K. Self-healing guar gum and guar gum-multiwalled carbon nanotubes nanocomposite gels prepared in an ionic liquid. Carbohydr. Polym. 2013, 98, 1025–1030. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, K.; Hatano, M. Circular dichroism of the complex of a (1→3)-β-d-glucan with Congo Red. Carbohydr. Res. 1978, 67, 527–535. [Google Scholar] [CrossRef]
- Ogawa, K.; Dohmaru, T.; Yuj, T. Dependence of complex formation of (1→3)-β-d-glucan with Congo Red on temperature in alkaline solutions. Biosci. Biotechnol. Biochem. 1994, 58, 1870–1872. [Google Scholar] [CrossRef] [PubMed]
- Bocchinfuso, G.; Mazzuca, C.; Conflitti, P.; Cori, D.; Coviello, T.; Palleschi, A. Relative stability of the Scleroglucan triple-Helix and single strand: An insight from computational and experimental techniques. Z. Phys. Chem. 2016, 230, 1395–1410. [Google Scholar] [CrossRef]
- Lapasin, R.; Pricl, S. Rheology of Industrial Polysaccharides: Theory and Applications; Blackie Academic & Professional: London, UK, 1990. [Google Scholar]
- Pronk, S.; Pall, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M.R.; Smith, J.C.; Kasson, P.M.; van der Spoel, D.; et al. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 2013, 29, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Palleschi, A.; Bocchinfuso, G.; Coviello, T.; Alhaique, F. Molecular dynamics investigations for the polysaccharide scleroglucan: First study on the triple helix structure. Carbohydr. Res. 2005, 340, 2154–2162. [Google Scholar] [CrossRef] [PubMed]
- Król, M.; Borowski, T.; Roterman, I.; Piekarska, B.; Stopa, B.; Rybarska, J.; Konieczny, L. Force-field parametrization and molecular dynamics simulations of Congo red. J. Comput. Aided Mol. Des. 2004, 18, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; Hermans, J. Interaction models for water in relation to protein hydration. In Intermolecular Forces; Pullman, B., Ed.; D Reidel Publishing Company: Dordrecht, The Netherlands, 1981; pp. 331–342. [Google Scholar]
- Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G.J. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577–8593. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; Di Nola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemometr. Intell. Lab. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Mazzuca, C.; Micheli, L.; Marini, F.; Bevilacqua, M.; Bocchinfuso, G.; Palleschi, G.; Palleschi, A. Rheoreversible hydrogels in paper restoration processes: A versatile tool. Chem. Cent. J. 2014, 8, 10–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sample Availability: Samples of the compound Sclg (Actigum CS 11) are available from the authors.
Scleroglucan | |||||
pH | 5.5 | 10 | 12 | 13 | 14 |
G’c (Pa) | 12.8 | - | 14.4 | 9.7 | 0.0 |
G″c (Pa) | 4.8 | - | 4.8 | 3.6 | 0.0 |
τc (Pa) | 5.6 | - | 5.6 | 4.4 | 0.0 |
γc (−) | 0.41 | - | 0.37 | 0.42 | 0.0 |
Scleroglucan–Borax | |||||
pH | 9.0 | 10 | 12 | 13 | 14 |
G’c (Pa) | 16.1 | 14.8 | 20.0 | 10.0 | 0.0 |
G″c (Pa) | 5.1 | 5.0 | 5.2 | 3.7 | 0.0 |
τc (Pa) | 9.1 | 7.2 | 9.1 | 5.6 | 0.0 |
γc (−) | 0.54 | 0.46 | 0.44 | 0.52 | 0.0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzuca, C.; Bocchinfuso, G.; Palleschi, A.; Conflitti, P.; Grassi, M.; Di Meo, C.; Alhaique, F.; Coviello, T. The Influence of pH on the Scleroglucan and Scleroglucan/Borax Systems. Molecules 2017, 22, 435. https://doi.org/10.3390/molecules22030435
Mazzuca C, Bocchinfuso G, Palleschi A, Conflitti P, Grassi M, Di Meo C, Alhaique F, Coviello T. The Influence of pH on the Scleroglucan and Scleroglucan/Borax Systems. Molecules. 2017; 22(3):435. https://doi.org/10.3390/molecules22030435
Chicago/Turabian StyleMazzuca, Claudia, Gianfranco Bocchinfuso, Antonio Palleschi, Paolo Conflitti, Mario Grassi, Chiara Di Meo, Franco Alhaique, and Tommasina Coviello. 2017. "The Influence of pH on the Scleroglucan and Scleroglucan/Borax Systems" Molecules 22, no. 3: 435. https://doi.org/10.3390/molecules22030435
APA StyleMazzuca, C., Bocchinfuso, G., Palleschi, A., Conflitti, P., Grassi, M., Di Meo, C., Alhaique, F., & Coviello, T. (2017). The Influence of pH on the Scleroglucan and Scleroglucan/Borax Systems. Molecules, 22(3), 435. https://doi.org/10.3390/molecules22030435