The Effects of Sweet Foods on the Pharmacokinetics of Glycyrrhizic Acid by icELISA
Abstract
:1. Introduction
2. Results and Discussion
2.1. icELISA Determination of GA
2.2. The Effects of Honey on Pharmacokinetic Parameters of GA after Given Licorice Extract (LE) with or without Honey in Mouse Blood
2.3. The Effects of Honey on Pharmacokinetic Parameters of GA after Given GA Solutions in Mouse Blood
2.4. Effect of Important Components of Honey on Pharmacokinetics of GA in Mice
3. Materials and Methods
3.1. Reagents and Instruments
3.2. The icELISA for the Determination of GA
3.3. Animals
3.4. Establishment of Detection Method of ELISA of GA
3.5. Pharmacokinetics Experiment
3.6. Blood Sample Treatment
3.7. Data Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Vaissière, B.; Vinson, S. Pollen morphology and its effect on pollen collection by honey bees, Apis mellifera L. (Hymenoptera: Apidae), with special reference to upland cotton, Gossypium hirsutum L. (Malvaceae). Grana 1994, 33, 128–138. [Google Scholar] [CrossRef]
- Wang, C.; Yang, J.; Lei, J.; Zhang, J. Mechanism of radix aconiti carmichaeli processing and drug action and toxicity. Mod. Tradit. Chin. Med. 2009, 1, 33. [Google Scholar]
- Guo, J.; Yang, C.; Yang, J.; Yao, Y. Glycyrrhizic acid ameliorates cognitive impairment in a rat model of vascular dementia associated with oxidative damage and inhibition of voltage-gated sodium channels. CNS Neurol. Disord. Drug Targets 2016, 15, 1001–1008. [Google Scholar] [CrossRef] [PubMed]
- Akman, T.; Guven, M.; Bozkurt Aras, A.; Ozkan, A.; Murat Sen, H.; Okuyucu, A.; Kalkan, Y.; Sehitoglu, I.; Silan, C.; Cosar, M. The neuroprotective effect of glycyrrhizic acid on an experimental model of focal cerebral ischemia in rats. Inflammation 2015, 38, 1581–1588. [Google Scholar] [CrossRef] [PubMed]
- Yong, J.; Haji, A. Study advances on glycyrrhizic acid, derivatives and their biological activities. China J. Tradit. Chin. Med. Pharm. 2010, 25, 2065–2069. [Google Scholar]
- Pang, H.; Huang, T.; Song, J.; Li, D.; Zhao, Y.; Ma, X. Inhibiting HMGB1 with glycyrrhizic acid protects brain injury after DAI via its anti-inflammatory effect. Mediat. Inflamm. 2016, 2016, 4569521–4569530. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Ton SHKadir, K. Effects of glycyrrhizic acid on 11 beta-hydroxysteroid dehydrogenase (11 betaHSD1 and 2) activities and HOMA-IR in rats at different treatment periods. Exp. Clin. Endocrinol. Diabetes 2010, 118, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Campino, C.; Carvajal, C.; Cornejo, J.; San Martín, B.; Olivieri, O.; Guidi, G.; Faccini, G.; Pasini, F.; Sateler, J.; Baudrand, R. 11β-Hydroxysteroid dehydrogenase type-2 and type-1 (11β-HSD2 and 11β-HSD1) and 5β-reductase activities in the pathogenia of essential hypertension. Endocrine 2010, 37, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y. Traditional uses, phytochemistry, pharmacology, pharmacokinetics and quality control of Polyporus umbellatus (Pers.) Fries: A review. J. Ethnopharmacol. 2013, 149, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Li, D.; Jiang, J. Identification and quality control of Chinese medicine based on the fingerprint techniques. Curr. Med. Chem. 2009, 16, 3064–3075. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Li, Y.; Tang, C.; Zhang, Y.; Zhang, J.; Fan, G. Integration of HPLC-based fingerprint and quantitative analyses for differentiating botanical species and geographical growing origins of Rhizoma coptidis. Pharm. Biol. 2016, 54, 3264–3271. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Wu, Y.; Weng, Z.; Gao, Q.; Yang, G.; Chen, Z.; Cai, B.; Li, W. Development of an HPLC method for absolute quantification and QAMS of flavonoids components in Psoralea corylifolia L. J. Anal. Methods Chem. 2015, 2015, 792637. [Google Scholar] [CrossRef] [PubMed]
- Zhai, K.; Gao, G.; Cao, W.; Zhao, L.; Fang, X.; Duan, H. Simultaneous HPLC determination of four active compounds in fengshiding capsules, a chinese medicine. Indian J. Pharm. Sci. 2014, 76, 445–449. [Google Scholar] [PubMed]
- Cheng, J.; Zhang, Y.; Liu, S.; Qu, B.; Zhang, M.; Liu, X.; Zhao, Y.; Qu, H. A sensitive and specific indirect competitive enzymelinked immunosorbent assay for the detection of icariin. Mol. Med. Rep. 2017, 15, 411–416. [Google Scholar] [PubMed]
- Qu, H.; Wang, Y.; Shan, W.; Zhang, Y.; Feng, H.; Sai, J.; Wang, Q.; Zhao, Y. Development of ELISA for detection of Rh1 and Rg2 and potential method of immunoaffinity chromatography for separation of epimers. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015, 985, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Shan, W.; Cheng, J.; Qu, B.; Sai, J.; Kong, H.; Qu, H.; Zhao, Y.; Wang, Q. Development of a fluorescence-linked Immunosorbent Assay for Baicalin. J. Fluoresc. 2015, 25, 1371–1376. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Zhang, G.; Li, Y.; Sun, H.; Sun, Y.; Zhao, Y.; Wang, Q. Development of an enzyme-linked immunosorbent assay based on anti-puerarin monoclonal antibody and its applications. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 953–954, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Sun, Y.; Wu, T.; Zhang, G.; Cheng, J.; Wang, X.; Feng, H.; Zhao, Y.; Wang, Q. Pharmacokinetics of geniposide by monoclonal antibody-based icELISA in mice after oral administration of Huanglian-Jiedu-Tang. Biol. Pharm. Bull 2014, 37, 1525–1533. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qu, H.; Zeng, W.; Zhao, Y.; Shan, W.; Wang, X.; Wang, Q.; Zhao, Y. Development of an enzyme-linked immunosorbent assay and immunoaffinity chromatography for glycyrrhizic acid using an anti-glycyrrhizic acid monoclonal antibody. J. Sep. Sci. 2015, 38, 2363–2370. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Wang, C.; Wang, Y.; Pan, G.; Jiang, M.; Li, Z.; Zhu, Y. Qualitative and quantitative analysis of the major constituents in Chinese medical preparation Lianhua-Qingwen capsule by UPLC-DAD-QTOF-MS. Sci. World J. 2015, 2015, 731765. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Wang, Y.; Zheng, Y.; Yang, J.; Zhang, L. Ultra high performance liquid chromatography coupled with triple quadrupole mass spectrometry and chemometric analysis of licorice based on the simultaneous determination of saponins and flavonoids. J. Sep. Sci. 2016, 39, 2928–2940. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Y.; He, B.; Du, Y.; Li, J.; Wang, D.; Bi, K.; Li, Q. Simultaneous Determinations of Eleven Bioactive Components in Suanzaoren Decoction Granules by High-Performance Liquid Chromatography and Its Application to the Quality Control in Productive Processes. Anal. Sci. 2016, 32, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Qiao, S.; Liu, T.; Yu, H.; Wang, W.; Zhou, Y.; Li, Q.; Li, S. Simultaneous Determination of 18 Chemical Constituents in Traditional Chinese Medicine of Antitussive by UPLC-MS-MS. J. Chromatogr. Sci. 2016, 54, 1540–1552. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, R.; Chen, J.; An, D. Determination of glycyrrhizin and its metabolite glycyrrhetinic acid in rabbit plasma by high-performance liquid chromatography after oral administration of licorzin. J. Chromatogr. A 1989, 495, 343–348. [Google Scholar] [CrossRef]
- Chen, H.; Sheu, S. Determination of glycyrrhizin and glycyrrhetinic acid in traditional Chinese medicinal preparations by capillary electrophoresis. J. Chromatogr. A 1993, 653, 184. [Google Scholar] [CrossRef]
- Wen, J.; Qiao, Y.; Yang, J.; Liu, X.; Song, Y.; Liu, Z.; Li, F. UPLC-MS/MS determination of paeoniflorin, naringin, naringenin and glycyrrhetinic acid in rat plasma and its application to a pharmacokinetic study after oral administration of Si-Ni-San decoction. J. Pharm. Biomed. Anal. 2012, 66, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Guillaume, C.; van der Molen, J.; Kerstens, M.; Dullaart, R.; Wolthers, B. Determination of urinary 18 beta-glycyrrhetinic acid by gas chromatography and its clinical application in man. J. Chromatogr. B Biomed. Sci. Appl. 1999, 731, 323–334. [Google Scholar] [CrossRef]
- Fan, Y.; Ding, J.; Liu, S.; Zhang, X.; Liu, Q.; Zhang, J.; Hu, G. Studies on distribution in mice tissues of α-Glycyrrhizic acid and β-Glycyrrhizic acid. Chin. J. Clin. Pharmacol. Ther. 2004, 9, 619–622. [Google Scholar]
- Krähenbühl, S.; Hasler, F.; Krapf, R. Analysis and pharmacokinetics of glycyrrhizic acid and glycyrrhetinic acid in humans and experimental animals. Steroids 1994, 59, 121. [Google Scholar] [CrossRef]
- Namdeo, K.; Verma, S.; Bodakhe, S.; Shrivastava, S.; Dangi, J. Chemical investigations of honey: A multiactive component of herbal therapeutic agent. Int. J. Res. Ayurveda Pharm. 2010, 1, 85–89. [Google Scholar]
- Lu, Z.; Ni, H.; Yang, Y.; Cai, H. Study on Determination Fructose in Honey by Resorcinol Method. J. Jimei Univ. 2006, 11, 223–225. [Google Scholar]
- Chepulis, L. The effect of honey compared to sucrose, mixed sugars, and a sugar-free diet on weight gain in young rats. J. Food Sci. 2007, 72, S224–S229. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the compounds are available from the authors.
GA | Licorice Extract | Licorice Extract with Honey |
---|---|---|
Cmax (mg·L−1) | 3045.22 ± 116.92 | 2025.59 ± 84.97 |
Tmax (min) | 45.00 ± 8.90 | 240.00 ± 138.52 |
AUC0–840 (mg·min·L−1) | 17,385.33 ± 1567.36 | 48,605.87 ± 7797.37 |
AUCto-t | 336,236 ± 10,450.14 | 842,884 ± 34,613.27 |
MRT (min) | 233.50 ± 106.35 | 301.54 ± 266.50 |
GA | GA with Honey | |
---|---|---|
Cmax (mg·L−1) | 143.81 ± 19.34 | 88.53 ± 8.60 |
Tmax (min) | 45.00 ± 25.20 | 600.00 ± 92.53 |
AUC0–840 (mg·min·L−1) | 12,575.80 ± 8482.22 | 3619.53 ± 3835.65 |
AUCto-t | 22,791.4 ± 3180.61 | 81,918.3 ± 6715.43 |
MRT (min) | 235.02 ± 86.38 | 500.02 ± 169.70 |
GA | GLU | FRU | SUC | MIX |
---|---|---|---|---|
Cmax (mg·L−1) | 16.56 ± 7.64 | 28.46 ± 12.60 | 16.12 ± 9.82 | 41.36 ± 23.29 |
Tmax (min) | 45.00 ± 12.20 | 720.00 ± 191.83 | 45.00 ±25.80 | 630.00 ± 126.74 |
AUC0–720 (mg·min·L−1) | 200.13 ± 155.72 | 480.22 ± 289.18 | 279.90 ±121.76 | 728.11 ± 405.39 |
AUCto-t | 6801.75 ± 530.56 | 7514.27± 925.43 | 7274.90 ± 738.35 | 11,797.50 ± 1285.33 |
MRT (min) | 849.77 ± 316.19 | 564.451 ± 221.70 | 1112.67 ± 793.85 | 620.61 ± 285.93 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, B.; Qu, H.; Kong, H.; Zhang, Y.; Liu, S.; Cheng, J.; Yan, X.; Zhao, Y. The Effects of Sweet Foods on the Pharmacokinetics of Glycyrrhizic Acid by icELISA. Molecules 2017, 22, 498. https://doi.org/10.3390/molecules22030498
Jiang B, Qu H, Kong H, Zhang Y, Liu S, Cheng J, Yan X, Zhao Y. The Effects of Sweet Foods on the Pharmacokinetics of Glycyrrhizic Acid by icELISA. Molecules. 2017; 22(3):498. https://doi.org/10.3390/molecules22030498
Chicago/Turabian StyleJiang, Bingqian, Huihua Qu, Hui Kong, Yue Zhang, Shuchen Liu, Jinjun Cheng, Xin Yan, and Yan Zhao. 2017. "The Effects of Sweet Foods on the Pharmacokinetics of Glycyrrhizic Acid by icELISA" Molecules 22, no. 3: 498. https://doi.org/10.3390/molecules22030498
APA StyleJiang, B., Qu, H., Kong, H., Zhang, Y., Liu, S., Cheng, J., Yan, X., & Zhao, Y. (2017). The Effects of Sweet Foods on the Pharmacokinetics of Glycyrrhizic Acid by icELISA. Molecules, 22(3), 498. https://doi.org/10.3390/molecules22030498