The Structure–Antioxidant Activity Relationship of Ferulates
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals
3.2. Trolox Equivalent Antioxidant Capacity (TEAC)
3.3. Ferric-Reducing Antioxidant Power (FRAP)
3.4. Preparation of Triacylglycerols
3.5. Lipid Autoxidation
3.6. Kinetic Parameters of the Studied Extracts and Pure Compounds
3.7. Statistical Analysis
4. Conclusions
- Ferulic acid exhibited the strongest antioxidant activity investigated using ABTS and FRAP assays.
- Methyl and ethyl ferulates showed lower results of ABTA and FRAP assays than those of ferulic acid, iso-ferulic acid, and coniferyl aldehyde.
- This is the first work to compare five ferulates in terms of their antioxidant activity in the lipid system (TGSO autoxidation). iso-Ferulic acid showed weak antioxidant activity in this system. The other ferulates exhibited much stronger, yet similar, activities.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Załuski, D.; Cieśla, Ł.; Janeczko, Z. The structure-activity relationships of plant secondary metabolites with antimicrobial, free radical scavenging and inhibitory activity toward selected enzymes. Stud. Nat. Prod. Chem. 2015, 45, 217–249. [Google Scholar]
- Shahidi, F.; Wanasundara, J.P.K.P.D. Phenolic antioxidants. Crit. Rev. Food Sci. Nutr. 1992, 32, 67–103. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.Z.; Mei, S.; Jie, X.; Luo, Q.; Corke, H. Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 2006, 78, 2872–2888. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.H.; Moghadasian, M.H. Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: A review. Food Chem. 2008, 109, 691–702. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, C.; Santangelo, R. Ferulic acid: Pharmacological and toxicological aspects. Food Chem. Toxicol. 2014, 65, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Nazaré, A.C.; de Faria, C.M.Q.G.; Chiari, B.G.; Petrónio, M.S.; Regasini, L.O.; Silva, D.H.S.; Corréa, M.A.; Isaac, V.L.B.; da Fonseca, L.M.; Ximenes, V.F. Ethyl ferulate, a component with anti-inflammatory properties for emulsion-based creams. Molecules 2014, 19, 8124–8138. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Pruthi, V. Potential applications of ferulic acid from natural sources. Biotech. Rep. 2014, 4, 86–93. [Google Scholar] [CrossRef]
- Boz, H. Ferulic acid in cereals—A review. Czech J. Food Sci. 2015, 33, 1–7. [Google Scholar] [CrossRef]
- Karamać, M.; Sendrejova, E.; Kosińska, A.; Urminska, D. Presence of ferulic acid in wheat glutelin fraction and its enzymatic hydrolysates. Czech J. Food Sci. 2007, 25, 359–364. [Google Scholar]
- Weidner, S.; Amarowicz, R.; Karamać, M.; Fra̧czek, E. Changes in endogenous phenolic acids during development of Secale cereale caryopses and after dehydration treatment of unripe rye grains. Plant Physiol. Biochem. 2000, 38, 595–602. [Google Scholar] [CrossRef]
- Weidner, S.; Amarowicz, R.; Karamać, M.; Dąbrowski, G. Phenolic acids in caryopses of two cultivars of wheat, rye and triticale that display different resistance to pre-harvest sprouting. Eur. Food Res. Technol. 1999, 210, 109–113. [Google Scholar] [CrossRef]
- Colak, N.; Torun, H.; Gruz, J.; Strnad, M.; Subrtova, M.; Inceer, H.; Ayaz, F.A. Comparison of phenolics and phenolic acid profiles in conjunction with oxygen radical absorbing capacity (ORAC) in berries of Vaccinium arctostaphylos L. and V. myrtillus L. Pol. J. Food Nutr. Sci. 2016, 66, 85–91. [Google Scholar] [CrossRef]
- Mattila, P.; Hellstom, J.; Torronen, R. Phenolic acids in berries, fruits, and beverages. J. Agric. Food Chem. 2006, 54, 7193–7199. [Google Scholar] [CrossRef] [PubMed]
- Mattila, P.; Pihlava, J.M.; Hellstom, J. Contents of phenolic acids, alkyl- and alkenylresorcinols, and avenanthramides in commercial grain products. J. Agric. Food Chem. 2005, 53, 8290–8295. [Google Scholar] [CrossRef] [PubMed]
- Karamać, M.; Kosińska, A.; Pegg, R.B. Comparison of radical scavenging activities for selected phenolic acids. Pol. J. Food Nutr. Sci. 2005, 55, 165–170. [Google Scholar]
- Karamać, M.; Buciński, A.; Pegg, R.B.; Amarowicz, R. Antioxidant and antiradical activity of ferulates. Czech J. Food Sci. 2005, 23, 64–68. [Google Scholar]
- Nenadis, N.; Zhang, H.Y.; Tsimidou, M.Z. Structure-antioxidant activity relationship of ferulic acid derivatives: Effect of carbon side chain characteristic groups. J. Agric. Food Chem. 2003, 51, 1874–1879. [Google Scholar] [CrossRef] [PubMed]
- Kikuzaki, H.; Hisamoto, M.; Hirose, K.; Akiyama, K.; Taniguchi, H. Antioxidant properties of ferulic acid and its related compounds. J. Agric. Food Chem. 2002, 50, 2161–2168. [Google Scholar] [CrossRef] [PubMed]
- Piazzon, A.; Vrhovsek, U.; Masuero, D.; Mattivi, F.; Mandoj, F.; Nardini, M. Antioxidant activity of phenolic acids and their metabolites: Synthesis and antioxidant properties of the sulfate derivatives of ferulic and caffeic acids and of the acyl glucuronide of ferulic acid. J. Agric. Food Chem. 2012, 60, 12312–12323. [Google Scholar] [CrossRef] [PubMed]
- Urbaniak, A.; Szeląg, M.; Molski, M. Theoretical investigation on stereochemistry and solvent influence on antioxidant activity of ferulic acid. Comput. Theoret. Chem. 2013, 1012, 33–40. [Google Scholar] [CrossRef]
- Kanski, J.; Aksenova, M.; Stoyanova, A.; Butterfield, D.A. Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro: Structure-activity studies. J. Nutr. Biochem. 2002, 13, 273–281. [Google Scholar] [CrossRef]
- Van der Logt, E.M.J.; Roelofs, H.M.J.; Nagengast, F.M.; Peters, W.H.M. Induction of rat hepatic and intestinal UDP-glucuronosyltransferases by naturally occurring dietary anticarcinogens. Carcinogenesis 2003, 24, 1651–1657. [Google Scholar] [CrossRef] [PubMed]
- Hudson, L.A.; Dinh, P.A.; Kokubun, T.; Simmond, M.S.; Gescher, A.C. Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiol. Biomark. Prev. 2000, 9, 1163–1170. [Google Scholar]
- Mori, H.; Kawabata, K.; Yoshimi, N.; Tanaka, T.; Murakami, T.; Okuda, T.; Murai, H. Chemopreventive effects of ferulic acid on oral rice germ on large bowel carcinogenesis. Anticancer Res. 1999, 19, 3775–3783. [Google Scholar] [PubMed]
- Jing, P.; Zhao, S.-J.; Jian, W.-J.; Qian, B.-J.; Dong, Y.; Pang, J. Quantitative studies on structure-DPPH• scavenging activity relationships of food phenolic acids. Molecules 2012, 17, 12911–12924. [Google Scholar] [CrossRef] [PubMed]
- Csepregi, K.; Neugart, S.; Schreiner, M.; Hideg, E. Comparative evaluation of total antioxidant capacities of plant polyphenols. Molecules 2016, 21, 208. [Google Scholar] [CrossRef] [PubMed]
- Anselmi, C.; Centini, M.; Andreassi, M.; Buonocore, A.; La Rosa, C.; Facino, R.M.; Sega, A.; Tsuno, F. Conformational analysis: A tool for the elucidation of the antioxidant properties of ferulic acid derivatives in membrane models. J. Pharm. Biomed. Anal. 2004, 35, 1241–1249. [Google Scholar] [CrossRef] [PubMed]
- Slavova-Kazakova, A.; Karamać, M.; Kancheva, V.; Amarowicz, R. Antioxidant activity of flaxseed extracts in lipid systems. Molecules 2016, 21, 17. [Google Scholar] [CrossRef] [PubMed]
- Farhoosh, R.; Johnny, S.; Asnaashari, M.; Molaahmadibahraseman, N.; Sharif, A. Structure-antioxidant activity relationships of o-hydroxyl, o-methoxy, and alkyl ester derivatives of p-hydroxybenzoic acid. Food Chem. 2016, 194, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Rice-Evans, C.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationship of flavonoids and phenolic acids. Free Rad. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Chimi, H.; Cillard, J.; Cilladr, P.; Rahmani, M. Peroxyl and hydroxyl radical scavenging activity of some natural phenolic antioxidants. J. Am. Oil Chem. Soc. 1991, 68, 307–312. [Google Scholar] [CrossRef]
- Koroleva, O.; Torkova, A.; Nikolaev, I.; Khrameeva, E.; Fedorova, T.; Tsentalovich, M.; Amarowicz, R. Evaluation of the antiradical properties of phenolic acids. Int. J. Mol. Sci. 2014, 15, 16351–16380. [Google Scholar] [CrossRef] [PubMed]
- Denisov, E.T.; Denisova, T.G. The reactivity of natural phenols. Russ. Chem. Rev. 2009, 78, 1047–1073. [Google Scholar] [CrossRef]
- Yanishileva, N. Inhibiting oxidation. In Antioxidants in Food. Practical Applications; Pokorny, J., Yanishlieva, N., Gordon, M., Eds.; Woodhead Publishing Ltd.: Cambridge, UK, 2001; pp. 22–70. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Kancheva, V.; Slavova-Kazakova, A.; Fabbri, D.; Dettori, M.A.; Delogu, G.; Janiak, M.; Amarowicz, R. Protective effects of equimolar mixtures of monomer and dimer of dehydrozingerone with α-tocopherol and/or ascorbyl palmitate during bulk lipid autoxidation. Food Chem. 2014, 157, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Kancheva, V.D. Phenolic antioxidants—Radical-scavenging and chain-breaking antioxidant activity: A comparative study. Eur. J. Lipid Sci. Technol. 2009, 111, 1072–1089. [Google Scholar] [CrossRef]
Ferulates | TEAC (mol Trolox/mol) | FRAP (mol Fe2+/mol) |
---|---|---|
Ferulic acid | 1.948 ± 0.056 a | 4.727 ± 0.139 a |
iso-Ferulic acid | 1.063 ± 0.089 b | 4. 378 ± 0.123 b |
Coniferyl aldehyde | 1.087 ± 0.063 b | 4.606 ± 0.080 a |
Methyl ferulate | 0.904 ± 0.070 c | 3.469 ± 0.117 c |
Ethyl ferulaty | 0.925 ± 0.062 c | 3.123 ± 0.088 c |
Feulates | Antioxidant Efficacy | Antioxidant Reactivity | Antioxidant Capacity | |||
---|---|---|---|---|---|---|
IPA (h) | PF (-) | RA ∙ 10−6 (mol/s) | ID (-) | Rm∙ 10−8 (mol/s) | RRm∙ 10−2 (-) | |
Ferulic acid | 5.0 ± 0.5 a | 3.9 | 1.3 ± 0.1 b | 4.6 | 5.6 | 4.3 |
iso-Ferulic acid | 1.7 ± 0.1 b | 1.3 | 2.7 ± 0.3 a | 3.2 | 16.3 | 6.0 |
Coniferyl aldehyde | 5.3 ± 0.5 a | 4.1 | 1.2 ± 01 b | 5.0 | 5.2 | 4.3 |
Methyl ferulate | 5.7 ± 0.5 a | 4.4 | 1.3 ± 0.1 b | 4.6 | 4.9 | 3.5 |
Ethyl ferulate | 5.7 ± 0.5 a | 4.4 | 1.3 ± 0.1 b | 4.6 | 4.9 | 3.5 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karamać, M.; Koleva, L.; Kancheva, V.D.; Amarowicz, R. The Structure–Antioxidant Activity Relationship of Ferulates. Molecules 2017, 22, 527. https://doi.org/10.3390/molecules22040527
Karamać M, Koleva L, Kancheva VD, Amarowicz R. The Structure–Antioxidant Activity Relationship of Ferulates. Molecules. 2017; 22(4):527. https://doi.org/10.3390/molecules22040527
Chicago/Turabian StyleKaramać, Magdalena, Lidiya Koleva, Vessela D. Kancheva, and Ryszard Amarowicz. 2017. "The Structure–Antioxidant Activity Relationship of Ferulates" Molecules 22, no. 4: 527. https://doi.org/10.3390/molecules22040527
APA StyleKaramać, M., Koleva, L., Kancheva, V. D., & Amarowicz, R. (2017). The Structure–Antioxidant Activity Relationship of Ferulates. Molecules, 22(4), 527. https://doi.org/10.3390/molecules22040527