Novel Sulfamethoxazole Ureas and Oxalamide as Potential Antimycobacterial Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Antimycobacterial Activity
3. Materials and Methods
3.1. Chemistry
3.1.1. General
3.1.2. Synthesis
Synthesis of Urea Derivatives 2
Synthesis of Oxalamide 3
3.2. Antimycobacterial Activity
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Krátký, M.; Mandíková, J.; Trejtnar, F.; Buchta, V.; Stolaříková, J.; Vinšová, J. Synthesis and antimicrobial activity of sulphamethoxazole-based ureas and imidazolidin-2,4,5-triones. Chem. Pap. 2015, 69, 1108–1117. [Google Scholar] [CrossRef]
- Brown-Elliott, B.A.; Nash, K.A.; Wallace, R.J. Antimicrobial Susceptibility Testing, Drug Resistance Mechanisms, and Therapy of Infections with Nontuberculous Mycobacteria. Clin. Microbiol. Rev. 2012, 25, 545–582. [Google Scholar] [CrossRef] [PubMed]
- Ameen, S.M.; Drancourt, M. In Vitro Susceptibility of Mycobacterium tuberculosis to Trimethoprim and Sulfonamides in France. Antimicrob. Agents Chemother. 2013, 57, 6370–6371. [Google Scholar] [CrossRef] [PubMed]
- Ameen, S.M.; Drancourt, M. In vitro susceptibility of Mycobacterium avium complex mycobacteria to trimethoprim and sulfonamides. Int. J. Antimicrob. Agents 2013, 42, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Krátký, M.; Vinšová, J.; Volková, M.; Buchta, V.; Trejtnar, F.; Stolaříková, J. Antimicrobial activity of sulfonamides containing 5-chloro-2-hydroxybenzaldehyde and 5-chloro-2-hydroxybenzoic acid scaffold. Eur. J. Med. Chem. 2012, 50, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Chio, L.C.; Bolyard, L.A.; Nasr, M.; Queener, S.F. Identification of a Class of Sulfonamides Highly Active against Dihydropteroate Synthase from Toxoplasma gondii, Pneumocystis carinii, and Mycobacterium avium. Antimicrob. Agents Chemother. 1996, 40, 727–733. [Google Scholar] [PubMed]
- Ceruso, M.; Vullo, D.; Scozzafava, A.; Supuran, C.T. Sulfonamides incorporating fluorine and 1,3,5-triazine moieties are effective inhibitors of three β-class carbonic anhydrases from Mycobacterium tuberculosis. J. Enzyme Inhib. Med. Chem. 2014, 29, 686–689. [Google Scholar] [CrossRef] [PubMed]
- Maresca, A.; Scozzafava, A.; Vullo, D.; Supuran, C.T. Dihalogenated sulfanilamides and benzolamides are effective inhibitors of the three β-class carbonic anhydrases from Mycobacterium tuberculosis. J. Enzyme Inhib. Med. Chem. 2013, 28, 384–387. [Google Scholar] [CrossRef] [PubMed]
- Patil, V.; Kale, M.; Raichurkar, A.; Bhaskar, B.; Prahlad, D.; Balganesh, M.; Nandan, S.; Hameed, P.S. Design and synthesis of triazolopyrimidine acylsulfonamides as novel anti-mycobacterial leads acting through inhibition of acetohydroxyacid synthase. Bioorg. Med. Chem. Lett. 2014, 24, 2222–2225. [Google Scholar] [CrossRef] [PubMed]
- Abrahams, K.A.; Chung, C.W.; Ghidelli-Disse, S.; Rullas, J.; Rebollo-López, M.J.; Gurcha, S.S.; Cox, J.A.G.; Mendoza, A.; Jiménez-Navarro, E.; Martínez-Martínez, M.S.; et al. Identification of KasA as the cellular target of an anti-tubercular scaffold. Nat. Commun. 2016, 7, 12581. [Google Scholar] [CrossRef] [PubMed]
- Mishra, C.B.; Kumari, S.; Angeli, A.; Monti, S.M.; Buonanno, M.; Prakash, A.; Tiwari, M.; Supuran, C.T. Design, synthesis and biological evaluation of N-(5-methyl-isoxazol-3-yl/1,3,4-thiadiazol-2-yl)-4-(3-substitutedphenylureido) benzenesulfonamides as human carbonic anhydrase isoenzymes I, II, VII and XII inhibitors. J. Enzyme Inhib. Med. Chem. 2016, 31, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Luzina, E.L.; Popov, A.V. Synthesis, evaluation of anticancer activity and COMPARE analysis of N-bis(trifluoromethyl)alkyl-N′-substituted ureas with pharmacophoric moieties. Eur. J. Med. Chem. 2012, 53, 364–373. [Google Scholar] [CrossRef] [PubMed]
- Luzina, E.L.; Popov, A.V. Synthesis of 3,3,3-trifluoroethyl isocyanate, carbamate and ureas. Anticancer activity evaluation of N-(3,3,3-trifluoroethyl)-N′-substituted ureas. J. Fluorine Chem. 2015, 176, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Sunduru, N.; Salin, O.; Gylfe, A.; Elofsson, M. Design, synthesis and evaluation of novel polypharmacological antichlamydial agents. Eur. J. Med. Chem. 2015, 101, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Aly, M.R.E.; Gobouri, A.A.; Hafez, S.H.A.; Saad, H.A. Synthesis, Reactions, and Biological Activity of Some Triazine Derivatives Containing Sulfa Drug Moieties. Russ. J. Bioorg. Chem. 2015, 41, 437–450. [Google Scholar] [CrossRef]
- Brown, J.R.; North, E.J.; Hurdle, J.G.; Morisseau, C.; Scarborough, J.S.; Sun, D.; Kordulakova, J.; Scherman, M.S.; Jones, V.; Grzegorzewicz, A.; et al. The structure-activity relationship of urea derivatives as anti-tuberculosis agents. Bioorg. Med. Chem. 2011, 19, 5585–5595. [Google Scholar] [CrossRef] [PubMed]
- Medapi, B.; Renuka, J.; Saxena, S.; Sridevi, J.P.; Medishetti, R.; Kulkarni, P.; Yogeeswari, P.; Sriram, D. Design and synthesis of novel quinoline–aminopiperidine hybrid analogues as Mycobacterium tuberculosis DNA gyraseB inhibitors. Bioorg. Med. Chem. 2015, 23, 2062–2078. [Google Scholar] [CrossRef] [PubMed]
- Madaiah, M.; Prashanth, M.K.; Revanasiddappa, H.D.; Veeresh, B. Synthesis and evaluation of novel imidazo[4,5-c]pyridine derivatives as antimycobacterial agents against Mycobacterium tuberculosis. New J. Chem. 2016, 40, 9194–9204. [Google Scholar] [CrossRef]
- Brunner, K.; Maric, S.; Reshma, R.S.; Almqvist, H.; Seashore-Ludlow, B.; Gustavsson, A.L.; Poyraz, O.; Yogeeswari, P.; Lundback, T.; Vallin, M.; et al. Inhibitors of the Cysteine Synthase CysM with Antibacterial Potency against Dormant Mycobacterium tuberculosis. J. Med. Chem. 2016, 59, 6848–6859. [Google Scholar] [CrossRef] [PubMed]
- Dömling, A.; Achatz, S.; Beck, B. Novel anti-tuberculosis agents from MCR libraries. Bioorg. Med. Chem. Lett. 2007, 17, 5483–5486. [Google Scholar] [CrossRef] [PubMed]
- Chopra, S.; Koolpe, G.A.; Tambo-ong, A.A.; Matsuyama, K.N.; Ryan, K.J.; Tran, T.B.; Doppalapudi, R.S.; Riccio, E.S.; Iyer, L.V.; Green, C.E.; et al. Discovery and Optimization of Benzotriazine Di-N-Oxides Targeting Replicating and Nonreplicating Mycobacterium tuberculosis. J. Med. Chem. 2012, 55, 6047–6060. [Google Scholar] [CrossRef] [PubMed]
- Marrakchi, H.; Lanéelle, M.A.; Daffé, M. Mycolic Acids: Structures, Biosynthesis, and Beyond. Chem. Biol. 2014, 21, 67–85. [Google Scholar] [CrossRef] [PubMed]
- Talele, T.T. The “Cyclopropyl Fragment” is a Versatile Player that Frequently Appears in Preclinical/Clinical Drug Molecules. J. Med. Chem. 2016, 59, 8712–8756. [Google Scholar] [CrossRef] [PubMed]
- Rychtarčíková, Z.; Krátký, M.; Gazvoda, M.; Komlóová, M.; Polanc, S.; Kočevar, M.; Stolaříková, J.; Vinšová, J. N-Substituted 2-Isonicotinoylhydrazinecarboxamides—New Antimycobacterial Active Molecules. Molecules 2014, 19, 3851–3868. [Google Scholar] [CrossRef] [PubMed]
- Chiang, H.C.; Yao, K.M.; Huang, K.F. Synthesis of nitrosourea analogs of some sulfa drugs. Proc. Natl. Sci. Counc. Repub. China B 1984, 8, 18–22. [Google Scholar]
- Gluncic, B.; Junasevic-Holjevac, A.; Grguric, D.; Gustak, E. Note on the preparation on some disubstituted derivatives of p′p′-bis(sulfamoyl)carbanilides and their hydrolysis to corresponding sulphonamides. Croat. Chem. Acta 1965, 37, 111–114. [Google Scholar]
- Krátký, M.; Vinšová, J.; Novotná, E.; Mandíková, J.; Trejtnar, F.; Stolaříková, J. Antibacterial Activity of Salicylanilide 4-(Trifluoromethyl)benzoates. Molecules 2013, 18, 3674–3688. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds 2a–2o and 3 are available from the authors. |
Code | R | MIC (µM) | ClogP | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mycobacterium tuberculosis 331/88 | Mycobacterium avium 330/88 | Mycobacterium kansasii 235/80 | Mycobacterium kansasii 6509/96 | |||||||||
14 d | 21 d | 14 d | 21 d | 7 d | 14 d | 21 d | 7 d | 14 d | 21 d | |||
2a | Methyl | 16 | 32 | 62.5 | 125 | 32 | 62.5 | 125 | 8 | 16 | 32 | 0.48 |
2b | Ethyl | 62.5 | 62.5 | 1000 | 1000 | 125 | 250 | 250 | 250 | 500 | 500 | 0.82 |
2c | Propyl a | >1000 | >1000 | 1000 | 1000 | 500 | 1000 | 1000 | 250 | 500 | 500 | 1.31 |
2d | Butyl | 62.5 | 62.5 | 1000 | 1000 | 125 | 250 | 250 | 250 | 500 | 500 | 1.72 |
2e | Pentyl | 250 | 500 | 500 | 1000 | 250 | 250 | 500 | 250 | 500 | 500 | 2.14 |
2f | Hexyl | 250 | 250 * | 250 | 250 | 250 | 250 | 500 | 125 | 250 | 250 | 2.56 |
2g | Heptyl a | 250 | 500 | 32 | 62.5 | 4 | 8 | 16 | 4 | 4 | 8 | 2.97 |
2h | Octyl | 125 * | 125 * | 125 * | 125 * | 125 * | 125 * | 125 * | 125 * | 125 * | 125 * | 3.39 |
2i | Nonyl | 125 * | 125 * | 125 * | 125 * | 125 * | 125 * | 125 * | 125 * | 125 * | 125 * | 3.81 |
2j | Decyl | 125 | 125 | 125 | 125 | 125 | 125 | 125 | 125 | 125 | 125 | 4.23 |
2k | Undecyl | 125 * | 125 * | 125 * | 125 * | 125 * | 125 * | 125 * | 125 * | 125 * | 125 * | 4.64 |
2l | Dodecyl | 125 * | 125 * | 125 * | 125 * | 125 * | 125 * | 125 * | 125 * | 125 * | 125 * | 5.06 |
2m | Cyclopropyl | 2 | 4 | 125 | 125 | 4 | 4 | 8 | 8 | 16 | 16 | 0.78 |
2n | - | 2 | 2 | 32 | 62.5 | 2 | 2 | 2 | 2 | 4 | 4 | 1.78 |
2o | - | 125 | 250 | >1000 | >1000 | 250 | 250 | 250 | 500 | 500 | 500 | 2.03 |
3 | H | 4 | 4 | 125 * | 125 * | 8 | 8 | 8 | 8 | 8 | 8 | 1.23 |
SMX (1) a | 32 | 32 | 32 | 62.5 | 8 | 16 | 16 | 4 | 4 | 4 | 1.5 | |
INH | 1 | 1 | >250 | >250 | >250 | >250 | >250 | 8 | 8 | 8 | −0.64 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krátký, M.; Stolaříková, J.; Vinšová, J. Novel Sulfamethoxazole Ureas and Oxalamide as Potential Antimycobacterial Agents. Molecules 2017, 22, 535. https://doi.org/10.3390/molecules22040535
Krátký M, Stolaříková J, Vinšová J. Novel Sulfamethoxazole Ureas and Oxalamide as Potential Antimycobacterial Agents. Molecules. 2017; 22(4):535. https://doi.org/10.3390/molecules22040535
Chicago/Turabian StyleKrátký, Martin, Jiřina Stolaříková, and Jarmila Vinšová. 2017. "Novel Sulfamethoxazole Ureas and Oxalamide as Potential Antimycobacterial Agents" Molecules 22, no. 4: 535. https://doi.org/10.3390/molecules22040535
APA StyleKrátký, M., Stolaříková, J., & Vinšová, J. (2017). Novel Sulfamethoxazole Ureas and Oxalamide as Potential Antimycobacterial Agents. Molecules, 22(4), 535. https://doi.org/10.3390/molecules22040535