Effective Subcritical Butane Extraction of Bifenthrin Residue in Black Tea
Abstract
:1. Introduction
2. Results
2.1. Optimization of Subcritical Fluid Extraction Condition
2.2. The Effect of Crushing of Tea Leaves on Bifenthrin Removal
2.3. Content Changes of Catechins, Theanine and Caffeine in Tea Leaves after Subcritical Butane Extraction
2.4. Aroma Components in Tea Leaves after SBE Processing
3 Discussion
3.1. SBE Is a More Efficient Method to Reduce Pesticide Residues
3.2. SBE Had Very Little Effect on Parts of Tea Taste
3.3. SBE Had Some Effect on Parts of the Aroma Components
4. Materials and Methods
4.1. Sample
4.2. Chemicals and Instrument
4.3. Sample Processing by Subcritical Butane Extraction (SBE)
4.4. Determination of Bifenthrin Level in the Processed Samples Using GC-MS/MS
4.4.1. Bifenthrin Standard Curves
4.4.2. Sample Preparation
4.4.3. GC-MS/MS Analysis
4.5. Determination of Aroma Components Using GC-MS/MS
4.5.1. Sample Preparation
4.5.2. GC-MS Analysis
4.6. Determination of Catechins, Theanine, Caffeine Using HPLC
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Vasisht, K.; Sharma, P.D.; Karan, M.; Rakesh, D.; Vyas, S.; Sethi, S.; Manktala, R. Study to promote the industrial exploitation of green tea poly-phenols in India. Int. J. Tea Sci. 2004, 2, 133–136. [Google Scholar]
- Bel Rhlid, R.; Blank, I.; Steen, C.G. Process for the Preparation of Flavoring Compositions and Use of These Compositions in Bakery Products. U.S. 6432459, 13 August 2002. [Google Scholar]
- Kottiappan, M.; Dhanakodi, K.; Annamalai, S.; Anandhan, S.V. Monitoring of pesticide residues in South Indian tea. Environ. Monit. Assess. 2013, 185, 6413–6417. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, G.; Thapa, R.B. Tea pests and pesticide problems and integrated management. J. Agric. Environ. 2015, 16, 188–200. [Google Scholar]
- Boxstael, S.V.; Habib, I.; Jacxsens, L.; de Vocht, M.; Baert, L.; van de Perre, E.; Rajkovic, A.; Lopez-Galvez, F.; Sampers, I.; Spanoghe, P.; et al. Food safety issues in fresh produce: Bacterial pathogens, viruses and pesticide residues indicated as major concerns by stakeholders in the fresh produce chain. Food Control 2013, 32, 190–197. [Google Scholar] [CrossRef]
- Łozowicka, B.; Jankowska, M. Comparison of the effects of water and thermal processing on pesticide removal in selected fruit and vegetables. J. Elementol. 2016, 21, 99–111. [Google Scholar]
- Wu, J.; Luan, T.; Lan, C.; Lo, T.W.H.; Chan, G.Y.S. Removal of residual pesticides on vegetable using ozonated water. Food Control 2007, 18, 466–472. [Google Scholar] [CrossRef]
- Ikeura, H.; Kobayashi, F.; Tamaki, M. Removal of residual pesticide, fenitrothion, in vegetables by using ozone microbubbles generated by different methods. J. Food Eng. 2011, 103, 345–349. [Google Scholar] [CrossRef]
- Bajwa, U.; Sandhu, K.S. Effect of handling and processing on pesticide residues in food—A review. J. Food Sci. Technol. 2014, 51, 201–220. [Google Scholar] [CrossRef] [PubMed]
- Ong, K.; Cash, J.; Zabik, M.; Siddiq, M.; Jones, A. Chlorine and ozone washes for pesticide removal from apples and processed apple sauce. Food Chem. 1996, 55, 153–160. [Google Scholar] [CrossRef]
- Pugliese, P.; Molto, J.; Damiani, P.; Marin, R.; Cossignani, L.; Manes, J. Gas chromatographic evaluation of pesticide residue contents in nectarines after non-toxic washing treatments. J. Chromatogr. A 2004, 1050, 185–191. [Google Scholar] [PubMed]
- Wu, J.; Luan, T.; Lan, C.; Lo, W.; Chan, G. Efficacy evaluation of low-concentration of ozonated water in removal of residual diazinon, parathion, methyl-parathion and cypermethrin on vegetable. J. Food Eng. 2007, 79, 803–809. [Google Scholar] [CrossRef]
- Zohair, A. Behaviour of some organophosphorus and organochlorine pesticides in potatoes during soaking in different solutions. Food Chem. Toxicol. 2001, 39, 751–755. [Google Scholar] [CrossRef]
- Iizuka, T.; Shimizu, A. Removal of pesticide residue from Brussels sprouts by hydrostatic pressure. Innov. Food Sci. Emerg. Technol. 2014, 22, 70–75. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, G.; Pang, Y.; Lei, Y.; Gao, J.; Liu, M. Integrated biological and electrochemical oxidation treatment for high toxicity pesticide pollutant. Ind. Eng. Chem. Res. 2010, 49, 5496–5503. [Google Scholar] [CrossRef]
- Lin, L.; Xie, M.; Liang, Y.; He, Y.; Chan, G.Y.S.; Luan, T. Degradation of cypermethrin, malathion and dichlorovos in water and on tea leaves with O3/UV/TiO2 treatment. Food Control 2012, 28, 374–379. [Google Scholar] [CrossRef]
- Yue, T.; Zhou, Z.; Yuan, Y.; Gao, Z.; Zhang, X. Optimization of conditions for organochlorine pesticide residues removal in apples using ultrasonic. Trans. Chin. Soc. Agric. Eng. 2009, 25, 324–330. [Google Scholar]
- Yamashita, M.; Noma, Y.; Honda, K. Removal of pesticide residues in farm products by ultrasonic washing. J. Environ. Chem. 2009, 19, 389–393. [Google Scholar] [CrossRef]
- Lozowicka, B.; Jankowska, M.; Hrynko, I.; Kaczynski, P. Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling. Environ. Monit. Assess. 2016, 188, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, A.; Brotons, M.; Rodríguez, M.; Valverde, A. Supercritical fluid extraction of pesticides from a table-ready food composite of plant origin (gazpacho). J. Agric. Food Chem. 2003, 51, 5616–5621. [Google Scholar] [CrossRef] [PubMed]
- Bicchi, C.; Cordero, C.; Iori, C.; Rubiolo, P.; Sandra, P.; Yariwake, J.H.; Zuin, V.G. SBSE-GC-ECD/FPD in the analysis of pesticide residues in Passiflora alata Dryander herbal teas. J. Agric. Food Chem. 2003, 51, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, H.-X.; Zou, W.-L.; Liu, S.-B.; Xie, C.-M. Determination of organophosphrous pesticides residue in tea using ASE extraction-GPC/SPE purification GC-MS analysis. Food Res. Dev. 2011, 3, 037. [Google Scholar]
- Adou, K.; Bontoyan, W.R.; Sweeney, P.J. Multiresidue method for the analysis of pesticide residues in fruits and vegetables by accelerated solvent extraction and capillary gas chromatography. J. Agric. Food Chem. 2001, 49, 4153–4160. [Google Scholar] [CrossRef] [PubMed]
- Özkal, S.; Yener, M.; Bayındırlı, L. Mass transfer modeling of apricot kernel oil extraction with supercritical carbon dioxide. J. Supercrit. Fluids 2005, 35, 119–127. [Google Scholar] [CrossRef]
- Pramote, K.; Nucha, S.; Suched, S.; Parinda, P.; Prasong, S. Subcritical water extraction of flavoring and phenolic compounds from cinnamon bark (Cinnamomum zeylanicum). J. Oleo Sci. 2012, 61, 349–355. [Google Scholar]
- Santos, K.A.; Bariccatti, R.A.; Cardozo-Filho, L.; Schneider, R.; Palú, F.; da Silva, C.; da Silva, E.A. Extraction of crambe seed oil using subcritical propane: Kinetics, characterization and modeling. J. Supercrit. Fluids 2015, 104, 54–61. [Google Scholar] [CrossRef]
- Chiou, T.Y.; Neoh, T.L.; Kobayashi, T.; Adachi, S. Extraction of defatted rice bran with subcritical aqueous acetone. Biosci. Biotechnol. Biochem. 2011, 76, 1535–1539. [Google Scholar] [CrossRef] [PubMed]
- Adil, İ.H.; Yener, M.E.; Bayındırlı, A. Extraction of total phenolics of sour cherry pomace by high pressure solvent and subcritical fluid and determination of the antioxidant activities of the extracts. Sep. Sci. Technol. 2008, 43, 1091–1110. [Google Scholar] [CrossRef]
- Herrero, M.; Cifuentes, A.; Ibanez, E. Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A review. Food Chem. 2006, 98, 136–148. [Google Scholar] [CrossRef]
- Ayala, R.S.; de Castro, M.D.L. Continuous subcritical water extraction as a useful tool for isolation of edible essential oils. Food Chem. 2001, 75, 109–113. [Google Scholar] [CrossRef]
- Zeng, F.T.; Liu, R.K.; Xiao, Z.H.; Ye, H.Q. Castor Oil Extraction from Cold Pressed Cake Using Subcritical n-Butane Under Low Temperature and Refining Process of Oil. J. Bioprocess Eng. Biorefin. 2014, 3, 196–201. [Google Scholar] [CrossRef]
- Xu, B.; Han, J.; Zhou, S.; Wu, Q.; Ding, F. Quality Characteristics of Wheat Germ Oil Obtained by Innovative Subcritical Butane Experimental Equipment. J. Food Process Eng. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Naldi, M.; Fiori, J.; Gotti, R.; Périat, A.; Veuthey, J.L.; Guillarme, D.; Andrisano, V. UHPLC determination of catechins for the quality control of green tea. J. Pharm. Biomed. Anal. 2014, 88, 307. [Google Scholar] [CrossRef] [PubMed]
- Hougard, J.M.; Duchon, S.M.; Guillet, P. Bifenthrin: A useful pyrethroid insecticide for treatment of mosquito nets. J. Med. Entomol. 2002, 39, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Holldorff, H.; Knapp, H. Vapor pressures of n-butane, dimethyl ether, methyl chloride, methanol and the vapor-liquid equilibrium of dimethyl ether-methanol: Experimental apparatus, results and data reduction. Fluid Phase Equilib. 1988, 40, 113–125. [Google Scholar] [CrossRef]
- Li, J.W.; Sun, D.W.; Qian, L.G.; Liu, Y.F. Subcritical Butane Extraction of Wheat Germ Oil and Its Deacidification by Molecular Distillation. Molecules 2016, 21, 1675–1683. [Google Scholar] [CrossRef] [PubMed]
- Iizuka, T.; Maeda, S.; Shimizu, A. Removal of pesticide residue in cherry tomato by hydrostatic pressure. J. Food Eng. 2013, 116, 796–800. [Google Scholar] [CrossRef]
- Chen, J.; Lin, Y.; Kuo, W. Pesticide residue removal from vegetables by ozonation. J. Food Eng. 2013, 114, 404–411. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Y.; Chen, F.; Zhang, Y.; Liao, X. Chlorine dioxide treatment for the removal of pesticide residues on fresh lettuce and in aqueous solution. Food Control 2014, 40, 106–112. [Google Scholar] [CrossRef]
- Joshi, R.; Poonam; Saini, R.; Guleria, S.; Babu, G.D.; Kumari, M.; Gulati, A. Characterization of volatile components of tea flowers (Camellia sinensis) growing in Kangra by GC/MS. Nat. Prod. Commun. 2011, 6, 1155–1158. [Google Scholar] [PubMed]
Sample Availability: The tea leaves were picked from one plantation, located at Xinyang, China, and the black teas are available from the authors. |
No. | A (Temperature) (°C) | B (Time) (min) | C (Extraction Cycles) | Bifenthrin | |
---|---|---|---|---|---|
Y (Extraction Content) (μg/g) | Extraction Efficiency (%) | ||||
1 | 30 | 30 | 1 | 3.01 | 59 |
2 | 45 | 20 | 1 | 4.58 | 89 |
3 | 30 | 10 | 3 | 2.82 | 55 |
4 | 30 | 30 | 3 | 3.23 | 63 |
5 | 15 | 20 | 3 | 3.03 | 59 |
6 | 30 | 10 | 1 | 3.21 | 63 |
7 | 30 | 20 | 2 | 2.91 | 57 |
8 | 15 | 30 | 2 | 2.58 | 50 |
9 | 15 | 20 | 1 | 2.07 | 40 |
10 | 15 | 10 | 2 | 2.54 | 50 |
11 | 30 | 20 | 2 | 3.05 | 60 |
12 | 30 | 20 | 2 | 2.87 | 56 |
13 | 45 | 30 | 2 | 4.67 | 91 |
14 | 45 | 20 | 3 | 3.69 | 72 |
15 | 30 | 20 | 2 | 2.83 | 55 |
16 | 30 | 20 | 2 | 2.76 | 54 |
17 | 45 | 10 | 2 | 4.31 | 84 |
18 (control sample *) | - | - | - | 5.12 | 100 |
Source | Sum of Squares | Df 1 | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 8.27 | 9 | 0.92 | 54.53 | <0.0001 | ** |
A-temperature | 6.18 | 1 | 6.18 | 366.64 | <0.0001 | ** |
B-time | 0.047 | 1 | 0.047 | 2.76 | 0.1406 | |
C-extraction cycles | 1.25 × 10−3 | 1 | 1.25 × 10−3 | 0.074 | 0.7932 | |
AB | 0.026 | 1 | 0.026 | 1.52 | 0.2575 | |
AC | 0.86 | 1 | 0.86 | 50.78 | 0.0002 | ** |
BC | 0.093 | 1 | 0.093 | 5.52 | 0.0511 | |
A2 | 0.88 | 1 | 0.88 | 52.42 | 0.0002 | ** |
B2 | 0.14 | 1 | 0.14 | 8.37 | 0.0232 | * |
C2 | 1.05 × 10−6 | 1 | 1.05 × 10−6 | 6.25 × 10−5 | 0.9939 | |
Residual | 0.12 | 7 | 1.70 × 10−2 | |||
Lack of Fit | 0.071 | 3 | 2.40 × 10−2 | 2.03 | 0.2519 | |
Pure Error | 4.70 × 10−2 | 4 | 1.20 × 10−2 | |||
Cor Total | 8.39 | 16 |
Analytes | Linear Regression Equation | R2 | Treated Samples (%) | Control Samples (%) | Loss Rate (%) | |
---|---|---|---|---|---|---|
Catechins (six kinds) | Gallic acid | Y = − 13.105x + 72.313 | 0.9940 | 0.43 | 0.46 | 6.52 |
(−)-epigallocatechin | Y = − 170.28x + 902.70 | 0.9926 | 2.67 | 2.86 | 6.64 | |
Catechin | Y = 155.17x − 40.97 | 0.9963 | 0.41 | 0.48 | 14.58 | |
(−)-Epigallocatechin gallate | Y = 956.38x − 9.84 | 0.9995 | 4.08 | 4.20 | 2.86 | |
(−)-Epicatechin | Y = 220.80x − 123.50 | 0.9928 | 1.43 | 1.53 | 6.53 | |
(−)-Epicatechin gallate | Y = 26.590x − 28.09 | 0.9989 | 1.68 | 1.76 | 4.55 | |
Theanine | Y = 268.67x + 5.75 | 0.9991 | 1.47 | 1.54 | 4.54 | |
Caffeine | Y = 44.24x − 3.26 | 0.9978 | 3.58 | 3.63 | 1.37 |
Analytes | Relative Content of Intact Samples | Relative Content of Crushed Samples | ||||
---|---|---|---|---|---|---|
Control Sample (%) 1 | Treated Sample (%) 2 | Variation (%) 3 | Control Sample (%) 4 | Treated Sample (%) 5 | Variation (%) | |
Linalool | 0.0019 | 0.0018 | 3.48% | 0.0057 | 0.0027 | 52.73% |
Linaloloxide | 0.0201 | 0.0183 | 8.73% | 0.0427 | 0.0229 | 46.44% |
Nerol | 0.0069 | 0.0063 | 8.54% | 0.0209 | 0.0084 | 60.06% |
β-ionone | 0.0748 | 0.0266 | 64.49% | 0.1847 | 0.0960 | 48.04% |
2-(E)-hexenal | 0.0079 | 0.0078 | 2.22% | 0.0213 | 0.0100 | 53.05% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Gu, L.; Wang, F.; Kong, L.; Qin, G. Effective Subcritical Butane Extraction of Bifenthrin Residue in Black Tea. Molecules 2017, 22, 560. https://doi.org/10.3390/molecules22040560
Zhang Y, Gu L, Wang F, Kong L, Qin G. Effective Subcritical Butane Extraction of Bifenthrin Residue in Black Tea. Molecules. 2017; 22(4):560. https://doi.org/10.3390/molecules22040560
Chicago/Turabian StyleZhang, Yating, Lingbiao Gu, Fei Wang, Lingjun Kong, and Guangyong Qin. 2017. "Effective Subcritical Butane Extraction of Bifenthrin Residue in Black Tea" Molecules 22, no. 4: 560. https://doi.org/10.3390/molecules22040560
APA StyleZhang, Y., Gu, L., Wang, F., Kong, L., & Qin, G. (2017). Effective Subcritical Butane Extraction of Bifenthrin Residue in Black Tea. Molecules, 22(4), 560. https://doi.org/10.3390/molecules22040560