TCS2 Increases Olaquindox-Induced Apoptosis by Upregulation of ROS Production and Downregulation of Autophagy in HEK293 Cells
Abstract
:1. Introduction
2. Results
2.1. Effect of Olaquindox on HEK293 Cell Viability and Apoptosis
2.2. Effects of Olaquindox on ROS Generation and Oxidative Stress in HEK293 Cells
2.3. Effect of Olaqindox on Autophagy in HEK293 Cells
2.4. Effect of Reduced ROS Level on Olaquindox Induced Autophagy
2.5. Effect of TSC2 on Olaquindox-Induced Autophagy
2.6. Effects of TSC2 on Olaquindox-Induced ROS Generation and Oxidative Stress in HEK293 Cells
2.7. Effect of TSC2 on Olaquindox-Induced Apoptosis
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Cell Culture
4.3. Plasmid Transfection
4.4. Cell Viability Assay
4.5. Analysis of Apoptosis
4.6. Caspase-3/7 Activity Examination
4.7. Intracellular ROS Examination
4.8. Intracellular Glutathione (GSH), Catalase (CAT) and Malondialdehyde (MDA) Examination
4.9. Monodansylcadaverine (MDC) Staining Assay
4.10. Western Blotting Analysis
4.11. Statistical Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liu, Z.Y.; Sun, Z.L. The Metabolism of Carbadox, Olaquindox, Mequindox, Quinocetone and Cyadox: An Overview. Med. Chem. 2013, 9, 1017–1027. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Tang, S.S.; Jin, X.; Zou, J.J.; Chen, K.P.; Zhang, T.; Xiao, X.L. Investigation of the genotoxicity of quinocetone, carbadox and olaquindox in vitro using Vero cells. Food Chem. Toxicol. 2009, 47, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.J.; Chen, Q.; Tang, S.S.; Jin, X.; Chen, K.P.; Zhang, T.; Xiao, X.L. Olaquindox-induced genotoxicity and oxidative DNA damage in human hepatoma G2 (HepG2) cells. Mutat. Res. Gen. Tox. Environ. Mutagen. 2009, 676, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Cihak, R.; Vontorkova, M. Cytogenetic Effects Of Quinoxaline-1,4-Dioxide-Type Growth-Promoting Agents. 2. Metaphase Analysis In Mice. Mutat. Res. Genet. Toxicol. 1983, 117, 311–316. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Huang, L.L.; Zhou, X.N.; Chen, D.M.; Tao, Y.F.; Zhang, H.H.; Yuan, Z.H. The metabolism of olaquindox in rats, chickens and pigs. Toxicol. Lett. 2011, 200, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.H.; Chen, Q.; Xiao, X.L. Molecular mechanism of mutagenesis induced by olaquindox using a shuttle vector pSP189/mammalian cell system. Mutat. Res. Fund. Mol. Mech. 2006, 599, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Martinez, M.A.; Cheng, G.Y.; Liu, Z.Y.; Huang, L.L.; Dai, M.H.; Chen, D.M.; Martinez-Larranaga, M.R.; Anadon, A.; Yuan, Z.H. The critical role of oxidative stress in the toxicity and metabolism of quinoxaline 1,4-di-N-oxides in vitro and in vivo. Drug Metab. Rev. 2016, 48, 159–182. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.X.; Tang, S.S.; Jin, X.; Zhang, C.M.; Zhang, T.; Wang, C.C.; Sun, Y.; Xiao, X.L. Olaquindox-induced apoptosis is suppressed through p38 MAPK and ROS-mediated JNK pathways in HepG2 cells. Cell Biol. Toxicol. 2013, 29, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Li, D.W.; Dai, C.S.; Zhou, Y.; Yang, X.Y.; Zhao, K.N.; Xiao, X.L.; Tang, S.S. Effect of GADD45a on olaquindox-induced apoptosis in human hepatoma G2 cells: Involvement of mitochondrial dysfunction. Environ. Toxicol. Pharmacol. 2016, 46, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.X.; Wang, C.C.; Tang, S.S.; Zhang, C.M.; Zhang, S.; Zhou, Y.; Xiao, X.L. Reactive oxygen species-dependent JNK downregulated olaquindox-induced autophagy in HepG2 cells. J. Appl. Toxicol. 2015, 35, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.D.; Zhang, W.M.; Li, D.; Fu, M.; Chen, R.S.; Zhan, Q.M. GADD45A inhibits autophagy by regulating the interaction between BECN1 and PIK3C3. Autophagy 2015, 11, 2247–2258. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Fan, Q.L.; Wang, X.; Zhao, X.; Wang, L.N. Inhibition of autophagy increased AGE/ROS-mediated apoptosis in mesangial cells. Cell Death Dis. 2016, 7, e2445. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Kim, J.K.; Il Kim, S.; Na, H.J.; Jun, S.Y.; Lee, S.J.; Choi, M.E. TGF-beta 1 Protects against Mesangial Cell Apoptosis via Induction of Autophagy. J. Biol. Chem. 2010, 285, 37909–37919. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Q.; Klionsky, D.J. The regulation of autophagy-unanswered questions. J. Cell Sci. 2011, 124, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, C.C.; Tang, S.S.; Deng, S.J.; Zhou, Y.; Dai, C.S.; Yang, X.Y.; Xiao, X.L. Inhibition of autophagy promotes caspase-mediated apoptosis by tunicamycin in HepG2 cells. Toxicol. Mech. Methods 2014, 24, 654–665. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.S.; Tang, S.S.; Velkov, T.; Xiao, X.L. Colistin-Induced Apoptosis of Neuroblastoma-2a Cells Involves the Generation of Reactive Oxygen Species, Mitochondrial Dysfunction, and Autophagy. Mol. Neurobiol. 2016, 53, 4685–4700. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, C.M.; Tang, S.S.; Deng, S.J.; Zhou, Y.; Dai, C.S.; Yang, X.Y.; Xiao, X.L. AKT/TSC2/p70S6K signaling pathway is involved in quinocetone-induced death-promoting autophagy in HepG2 cells. Toxicol. Mech. Methods 2016, 26, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Zarogiannis, S.; Hatzoglou, C.; Molyvdas, P.A.; Gourgoulianis, K. Lymphangioleiomyomatosis. Eur. Respir. J. 2006, 28, 1284. [Google Scholar] [CrossRef] [PubMed]
- Taneike, M.; Nishida, K.; Omiya, S.; Zarrinpashneh, E.; Misaka, T.; Kitazume-Taneike, R.; Austin, R.; Takaoka, M.; Yamaguchi, O.; Gambello, M.J.; et al. mTOR Hyperactivation by Ablation of Tuberous Sclerosis Complex 2 in the Mouse Heart Induces Cardiac Dysfunction with the Increased Number of Small Mitochondria Mediated through the Down-Regulation of Autophagy. PLoS ONE 2016, 11, e0152628. [Google Scholar] [CrossRef] [PubMed]
- Di Nardo, A.; Wertz, M.H.; Kwiatkowski, E.; Tsai, P.T.; Leech, J.D.; Greene-Colozzi, E.; Goto, J.; Dilsiz, P.; Talos, D.M.; Clish, C.B.; et al. Neuronal Tsc1/2 complex controls autophagy through AMPK-dependent regulation of ULK1. Hum. Mol. Genet. 2014, 23, 3865–3874. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, H.H.; Huang, L.L.; Pan, Y.H.; Li, J.; Chen, D.M.; Cheng, G.Y.; Hao, H.H.; Tao, Y.F.; Liu, Z.L.; et al. Deoxidation Rates Play a Critical Role in DNA Damage Mediated by Important Synthetic Drugs, Quinoxaline 1,4-Dioxides. Chem. Res. Toxicol. 2015, 28, 470–481. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Xu, M.J.; Liu, Y.; Yang, W.; Rong, Y.; Yao, P.; Yan, H.; Wang, D.; Liu, L.G. Nrf2/ARE is the potential pathway to protect Sprague-Dawley rats against oxidative stress induced by quinocetone. Regul. Toxicol. Pharm. 2013, 66, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Jiang, L.P.; She, Y.; Chen, M.; Li, Q.J.; Yang, G.; Geng, C.Y.; Tang, L.Y.; Zhong, L.F.; Jiang, L.J.; et al. Olaquindox induces DNA damage via the lysosomal and mitochondrial pathway involving ROS production and p53 activation in HEK293 cells. Environ. Toxicol. Pharmacol. 2015, 40, 792–799. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.S.; Tang, S.S.; Deng, S.J.; Zhang, S.; Zhou, Y.; Velkov, T.; Li, J.; Xiao, X.L. Lycopene Attenuates Colistin-Induced Nephrotoxicity in Mice via Activation of the Nrf2/HO-1 Pathway. Antimicrob. Agents Chemother. 2015, 59, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Feng, P.; Ku, B.; Dotan, I.; Canaani, D.; Oh, B.H.; Jung, J.U. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat. Cell Biol. 2006, 8, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Yue, Z.Y.; Jin, S.K.; Yang, C.W.; Levine, A.J.; Heintz, N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl. Acad. Sci. USA 2003, 100, 15077–15082. [Google Scholar] [CrossRef] [PubMed]
- Tavares, M.R.; Pavan, I.C.B.; Amaral, C.L.; Meneguello, L.; Luchessi, A.D.; Simabuco, F.M. The S6K protein family in health and disease. Life Sci. 2015, 131, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.Y.; Juhasz, G.; Goraksha-Hicks, P.; Arsham, A.M.; Mallin, D.R.; Muller, L.K.; Neufeld, T.P. Nutrient-dependent regulation of autophagy through the target of rapamycin pathway. Biochem. Soc. Trans. 2009, 37, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Dewaele, M.; Maes, H.; Agostinis, P. ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy. Autophagy 2010, 6, 838–854. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Y.; Yang, Y.; Ming, M.; Liu, B. Mitochondrial ROS generation for regulation of autophagic pathways in cancer. Biochem. Biophys. Res. Commun. 2011, 414, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Li, S.J.; Sun, S.J.; Gao, J.; Sun, F.B. Wogonin induces Beclin-1/PI3K and reactive oxygen species-mediated autophagy in human pancreatic cancer cells. Oncol. Lett. 2016, 12, 5059–5067. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Lin, C.P.; Guo, D.Q.; Qian, R.Z.; Li, X.B.; Shi, Z.Y.; Liu, J.J.; Li, X.; Fan, L.H. CLOCK Promotes Endothelial Damage by Inducing Autophagy through Reactive Oxygen Species. Oxid. Med. Cell Longev. 2016, 2016, 9591482. [Google Scholar] [CrossRef] [PubMed]
- Ha, J.Y.; Kim, J.S.; Kang, Y.H.; Bok, E.; Kim, Y.S.; Son, J.H. Tnfaip8 l1/Oxi-beta binds to FBXW5, increasing autophagy through activation of TSC2 in a Parkinson’s disease model. J. Neurochem. 2014, 129, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.; Wu, Y.T.; Chen, B.; Zhou, J.; Shen, H.M. Impaired autophagy due to constitutive mTOR activation sensitizes TSC2-null cells to cell death under stress. Autophagy 2011, 7, 1173–1186. [Google Scholar] [CrossRef] [PubMed]
- Tee, A.R.; Fingar, D.C.; Manning, B.D.; Kwiatkowski, D.J.; Cantley, L.C.; Blenis, J. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc. Natl. Acad. Sci. USA 2002, 99, 13571–13576. [Google Scholar] [CrossRef] [PubMed]
- Alexander, A.; Cai, S.L.; Kim, J.; Nanez, A.; Sahin, M.; MacLean, K.H.; Inoki, K.; Guan, K.L.; Shen, J.J.; Person, M.D.; et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 and autophagy in response to ROS. In Proceedings of the AACR 101st Annual Meeting, Washington, DC, USA, 17–21 April 2010; Volume 70. [Google Scholar]
- Zhang, J.W.; Kim, J.; Alexander, A.; Cai, S.L.; Tripathi, D.N.; Dere, R.; Tee, A.R.; Tait-Mulder, J.; Di Nardo, A.; Han, J.M.; et al. A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. Nat. Cell Biol. 2013, 15, 1186–1196. [Google Scholar] [CrossRef] [PubMed]
- Rhee, S.G.; Bae, S.H. The antioxidant function of sestrins is mediated by promotion of autophagic degradation of Keap1 and Nrf2 activation and by inhibition of mTORC1. Free Radic. Biol. Med. 2015, 88, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, X.; Liu, J.; Guo, W.; Zhang, H.C.; Wang, J.C. Enhanced Rb/E2F and TSC/mTOR Pathways Induce Synergistic Inhibition in PDGF-Induced Proliferation in Vascular Smooth Muscle Cells. PLoS ONE 2017, 12, e0170036. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.S.; Li, D.W.; Gong, L.J.; Xiao, X.L.; Tang, S.S. Curcumin Ameliorates Furazolidone-Induced DNA Damage and Apoptosis in Human Hepatocyte L02 Cells by Inhibiting ROS Production and Mitochondrial Pathway. Molecules 2016, 21, 1061. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.S.; Li, B.; Zhou, Y.; Li, D.W.; Zhang, S.; Li, H.; Xiao, X.L.; Tang, S.S. Curcumin attenuates quinocetone induced apoptosis and inflammation via the opposite modulation of Nrf2/HO-1 and NF-kB pathway in human hepatocyte L02 cells. Food Chem. Toxicol. 2016, 95, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.J.; Tang, S.S.; Dai, C.S.; Zhou, Y.; Yang, X.Y.; Li, D.W.; Xiao, X.L. P21(waf1/ciP1) plays a critical role in furazolidone-induced apoptosis in HepG2 cells through influencing the caspase-3 activation and ROS generation. Food Chem. Toxicol. 2016, 88, 1–12. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Zhao, K.; Yang, X.; Xiao, X.; Tang, S. TCS2 Increases Olaquindox-Induced Apoptosis by Upregulation of ROS Production and Downregulation of Autophagy in HEK293 Cells. Molecules 2017, 22, 595. https://doi.org/10.3390/molecules22040595
Li D, Zhao K, Yang X, Xiao X, Tang S. TCS2 Increases Olaquindox-Induced Apoptosis by Upregulation of ROS Production and Downregulation of Autophagy in HEK293 Cells. Molecules. 2017; 22(4):595. https://doi.org/10.3390/molecules22040595
Chicago/Turabian StyleLi, Daowen, Kena Zhao, Xiayun Yang, Xilong Xiao, and Shusheng Tang. 2017. "TCS2 Increases Olaquindox-Induced Apoptosis by Upregulation of ROS Production and Downregulation of Autophagy in HEK293 Cells" Molecules 22, no. 4: 595. https://doi.org/10.3390/molecules22040595
APA StyleLi, D., Zhao, K., Yang, X., Xiao, X., & Tang, S. (2017). TCS2 Increases Olaquindox-Induced Apoptosis by Upregulation of ROS Production and Downregulation of Autophagy in HEK293 Cells. Molecules, 22(4), 595. https://doi.org/10.3390/molecules22040595