Optimization of Ionic Liquid-Assisted Extraction of Biflavonoids from Selaginella doederleinii and Evaluation of Its Antioxidant and Antitumor Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Screening Different ILs
2.2. Single Factor Experiment
2.2.1. Effect of Microwave Power
2.2.2. Effect of Solid-Liquid Ratio
2.2.3. Effect of Extraction Time
2.2.4. Effect of ILs Concentration
2.2.5. Effect of Extracting Temperature
2.3. Analysis of Response Surfaces
2.3.1. Fitting the Model
2.3.2. Effect of Extraction Parameters
2.3.3. The Relationship between Total Biflavonoids Content and IC50 Value
2.4. Comparison of Three Extraction Methods
2.5. Antioxidant of Total Biflavones
2.6. Anticancer Activity
3. Experimental Section
3.1. Chemicals and Materials
3.2. Sample Treatment
3.3. Determination of Total Biflavonoid Content
3.4. Experimental Design
3.4.1. Single-Factor Experiments
3.4.2. Response Surface Methodology Experiments
3.5. Comparison of Various Extracting Methods
3.5.1. Microwave-Assisted Extraction
3.5.2. Soxhlet Extraction
3.6. Evaluation of Antioxidant Properties
3.6.1. ABTS Radical-Scavenging Activity
3.6.2. DPPH Radical-Scavenging Activity
3.6.3. Evaluation for Reducing Power
3.6.4. Evaluation for Chelation of Ferrous Ions
3.7. Evaluation for Anticancer Activity
4. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Priscilla, J.T.; Geethaa, S.; Sreeramanan, S. Brine Shrimplethalith Test and Anti-Proliferation Test against Human Cancer-Orign Cell lines Using Ethanolic and Water Extracts of Selaginella Doederleinii Hieron. J. Chromatogr. B Trop. J. Pharm. Res. 2014, 34, 63–69. [Google Scholar]
- Dai, W.B.; Mei, Q.X.; Zeng, C.Y. Research advances on chemical compositions, pharmacological effects and clinical applications of Selaginella doederleinii. China Pharm. 2011, 13, 172–179. [Google Scholar]
- Li, S.; Huang, K.L. Study Advances on Selaginella doederleinii. Lishizhen Med. Mater. Med. Res. 2010, 5, 2637–2639. [Google Scholar]
- Lin, R.C.; Skaltsounis, A.L.; Seguin, E.; Tillequin, F. Phenolic constituents of Selaginella doederleinii. Planta Med. 1994, 12, 168–170. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Chen, Y.; Wen, Y. A New Biflavone from Selaginella doederleinii. Acta Bot. Yunnanica. 2004, 26, 226–228. [Google Scholar]
- Lee, N.Y.; Min, H.Y.; Lee, J.; Nam, J.W.; Lee, Y.J.; Han, A.R.; Wiryawan, A.; Suprapto, W.; Lee, S.K.; Seo, E.K. Identification of a new cytotoxic biflavanone from Selaginella doederleinii. Chem. Pharm. Bull. 2008, 56, 1360–1361. [Google Scholar] [CrossRef] [PubMed]
- Chao, L.R.; Seguin, E.; Skaltsounis, A.L.; Koch, M. Synthesis of the Glycoalkaloids of Sellaginella doederleinii and Structure Revision of One of Them. J. Nat. Prod. 1990, 53, 882–893. [Google Scholar] [CrossRef]
- Huang, J.Y.; Li, S.-G.; Zhao, M.F.; Li, Y.X.; Lin, X.H.; Yao, H. Simultaneous determination of four biflavonoids in Selaginella doederleinii Hieron by HPLC. Chin. J. Hosp. Pharm. 2013, 33, 1945–1951. [Google Scholar]
- Wang, G.; Yao, S.; Zhang, X.X.; Song, H. Rapid Screening and Structural Characterization of Antioxidants from The Extract of Selaginella doederleinii Hieron with DPPH-UPLC-Q-TOF/MS method. Int. J. Anal. Chem. 2015, 2015, 1–9. [Google Scholar]
- Kappler, M.; Bache, M.; Bartel, F.; Kotzsch, M.; Panian, M.; Wurl, P.; Blumke, K.; Schmidt, H.; Meye, A.; Taubert, H. Knockdown of survivin expression by small interfering RNA reduces the clonogenic survival of human sarcoma cell lines independently of p53. Cancer Gene Ther. 2004, 11, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.G.; Kim, H.S.; Yu, K.A.; Choe, Y.K.; Lim, J.K.; Yoon, D.Y. Identification of p7F, a bioflavonoid from natural product and analysis of its anti-inflammatory effects. FASEB J. 2002, 16, A1054. [Google Scholar]
- Ramaswamy, A.S.; Jayaraman, S.; Sirsi, M.; Rao, K.H. Antibacterial action of some naturally occurring citrus bioflavonoids. Indian J. Exp. Biol. 1972, 10, 72–73. [Google Scholar] [PubMed]
- Lee, J.Y.; Choi, E.; Woo, R.; Lee, D.G. Antibacterial and Synergistic Activity of Isocryptomerin Isolated from Selaginella tamariscina. J. Microbiol. Biotechnol. 2009, 19, 204–207. [Google Scholar] [CrossRef] [PubMed]
- Farombi, E.O.; Owoeye, O. Antioxidative and Chemopreventive Properties of Vernonia amygdalin and Garcinia biflavonoid. Int. J. Environ. Res. Public Health. 2011, 8, 2533–2555. [Google Scholar] [CrossRef] [PubMed]
- Ota, M.; Kobayashi, K.; Kusakari, K.; Tsunenaga, M.; Takakura, N. Agents for Maturing, Normalizing or Stabilizing Blood Vessels and Wrinkle-Preventing and Improving Agents. EP2269621, 5 January 2011. [Google Scholar]
- Lee, K.I.; Rhee, S.H.; Park, K.Y. The Antimutagenic Activity and the Growth Inhibition Effect of Cancer Cells on Methanol Extracts from Small Water Dropwort. J. Micro. Biotech. 2005, 16, 12–18. [Google Scholar]
- Ayaz, M.; Junaid, M.; Ahmed, J.; Ullah, F.; Abdul, S.; Ahmad, S.; Imran, M. Phenolic contents, antioxidant and anticholinesterase potentials of crude extract, subsequent fractions and crude saponins from Polygonum hydropiper L. BMC Complement. Altern. Med. 2014, 14, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Leiter, J. Method of enhancing the biodistribution and tissue targeting properties of therapeutic ceco2 particles via nano-encapsulation and coating. J. Micro. Biotech. 2014, 26, 232–239. [Google Scholar]
- Florence, T.M. The role of free radicals in disease. J. Ophthalmol. 1995, 23, 3–7. [Google Scholar] [CrossRef]
- Wu, D.; Wu, S. Comprehensive Solvent System for Counter-Current Chromatographic Separation of Natural Antioxidant Flavonoids from Traditional Chinese Medicines. J. Med. Res. Dev. 2013, 2, 335–350. [Google Scholar]
- Ali, N.; Shah, I.; Shah, S.W.A.; Ahmed, G.; Shoaib, M.; Junaid, M.; Ali, W.; Ahmed, Z. Antioxidant and relaxant activity of fractions of crude methanol extract and essential oil of Artemisia macrocephala Jacquem. BMC Complement. Altern. Med. 2013, 13, 96. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Xia, S.; Ma, P. Use of ionic liquids as ‘green’ solvents for extractions. J. Chem. Technol. Biotechnol. 2005, 80, 1089–1096. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, S.; Wang, J.; Teng, B.; Zhang, T.; Fan, M. Synthesis and Applications of Ionic Liquids in Clean Energy and Environment: A Review. J. Curr. Org. Chem. 2015, 19, 455–468. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, D.; Cai, P.; Cheng, G.; Huang, C.; Pan, Y. Special Effect of Ionic Liquids on the Extraction of Flavonoid Glycosides from Chrysanthemum morifolium Ramat by Microwave Assistance. Molecules 2015, 20, 7683–7699. [Google Scholar] [CrossRef] [PubMed]
- Branco, S.I.P. Aqueous biphasic system based on cholinium ionic liquids: extraction of biologically active phenolic acids. Faculdade de Ciências e Tecnologia 2014, 9, 390–399. [Google Scholar]
- Berthod, A.; Ruiz-Ángel, M.J.; Carda-Broch, S. Ionic liquids in separation techniques. J. Chromatogr. A 2008, 1184, 6–18. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.A.R.; Domańska, U.; Schröder, B.; Coutinho, J.A.P.; Pinho, S.P. Selection of Ionic Liquids to be Used as Separation Agents for Terpenes and Terpenoids. ACS Sustain. Chem. Eng. 2016, 16, 548–556. [Google Scholar] [CrossRef]
- Bonny, S.; Paquin, L.; Carrié, D.; Boustie, J.; Tomasi, S. Ionic liquids based microwave-assisted extracti-on of lichen compounds with quantitative spectrophotodensitometry analysis. Anal. Chim. Acta 2011, 707, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Wang, Y.; Liu, X.; Huang, S.; Zeng, Q. ILs-based microwave-assisted extraction coupled with aquous two-phase for the extraction of useful compounds from Chinese medicine. Analyst 2012, 137, 4076–4085. [Google Scholar] [CrossRef] [PubMed]
- Du, F.Y.; Xiao, X.H.; Li, G.K. Application of ionic liquids in the microwave-assisted extraction of transresveratrol from Rhizma Polygoni Cuspidati. J. Chromatogr. A. 2007, 1140, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Lin, G.; Xiao, X.; Li, G. Kinetic Mechanisms for the Extraction of Active Constituents in Lycoris Radiata and Rhizma Polygoni Cuspidati by Microwave-assisted Extraction. Chin. J. Anal. Chem. 2006, 34, 1260–1264. [Google Scholar]
- Tan, Z.; Yi, Y.; Wang, H.; Zhou, W.; Wang, C. Extraction, Preconcentration and Isolation of Flavonoids from Apocynum venetum L. Leaves Using Ionic Liquid-Based Ultrasonic-Assisted Extraction Coupled with an Aqueous Biphasic System. Molecules 2016, 21, 262. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, J.; Tag, L. Optimisation of total phenolic acids extraction from mandarin peels using microwave energy: The importance of the Maillard reaction. J. Food Eng. 2012, 109, 162–174. [Google Scholar] [CrossRef]
- Krishnan, R.Y.; Rajan, K.S. Microwave assisted extraction of flavonoids from Terminalia bellerica: Study of kinetics and thermodynamics. Sep. Purif. Technol. 2015, 157, 169–178. [Google Scholar] [CrossRef]
- Hui-Min, B.I.; Zhang, S.Q.; Liu, C.J.; Wang, C.Z. High Hydrostatic Pressure Extraction of Salidrpsid from Rhodiolasa Chalinensis. J. Food Process Eng. 2009, 32, 53–63. [Google Scholar]
- Yin, Q. Polyoxometalates as Water Oxidation Catalysts and Their Use inLight-Driven Water Splitting. Emory Univ. 2010, 27, 111–118. [Google Scholar]
- Laoutid, F.; Bonnaud, L.; Alexandre, M.; Lopez-Cuesta, J.M.; Dubois, P. New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Mater. Sci. Eng. R Rep. 2009, 63, 100–125. [Google Scholar] [CrossRef]
- Birasuren, B.; Na, Y.K.; Jeon, H.L.; Kim, M.R. Evaluation of the Antioxidant Capacity and Phenolic Content of Agriophyllum pungens Seed Extracts from Mongolia. Prev. Nutr. J. Food. Sci. 2013, 18, 188. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.K. Bioprospecting for drug research and functional foods for the prevention of diseases—Role of flavonoids in drug development. J. Sci. Ind. Res. 2006, 65, 391–401. [Google Scholar]
- Mohd Esa, N.; Phuah, S.C. Rhaphidophora decursiva leaves: Phenolic content and antioxidant activity. J. Trop. Agric. Food. Sci. 2009, 37, 61–66. [Google Scholar]
- You, O.H.; Kim, S.H.; Kim, B.; Sohn, E.J.; Lee, H.J.; Shim, B.M.; Yun, M.; Kwon, B.M.; Kim, S.H.; et al. Ginkgetin induces apoptosis via activation of caspase and inhibitionof survival genes in PC-3 prostate cancer cells. Bioorg. Med. Chem. Lett. 2013, 23, 2692–2695. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Oh, W.K.; Kim, B.Y.; et al. Inhibition of phospholipase C gamma 1 activity by amentoflavone isolated from Selaginella tamariscina. Planta Med. 1996, 62, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Dey, Y.N.; Mahor, S.; Kumar, D.; Wanjari, M.; Gaidhani, S.; Jadhav, A. Gastrokinetic activity of Amorph-ophallus paeoniifolius tuber in rats. J. Intercul. Ethnopharmcol 2015, 5, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yuan, J.; Zhang, Z. Microwave-assisted extraction optimised with response surface methodology and antioxidant activity of polyphenols from hawthorn (Crataegus pinnatifida Bge.) fruit. Int. J. Food. Sci. Technol. 2010, 45, 2400–2406. [Google Scholar] [CrossRef]
- Lian, R.; Li, J.; Ma, H.; Zhang, G.Z.; Guo, X.A.; Li, X.; Yang, J.B. Effect of ethanol extract of Selaginella doederleinii Hieron on the proliferat-ion of nasopharyngeal carcinoma CNE-1 and C666-1 cells. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 490–493. [Google Scholar] [CrossRef] [PubMed]
- Hossain, J.; Sultana, M.S.; Taleb, M.A.; Basar, M.H.; Sarower, M.G.; Hossain, S.A. Antioxidant Activity of Ethanol and Lipophilic Extracts of Common Fruity Vegetables in Bangladesh. Int. J. Food Prop. 2014, 17, 2089–2099. [Google Scholar] [CrossRef]
- De Beer, D.; Joubert, E.; Gelderblom, W.C.A. Antioxidant activity of South African red and white cultiv-arwines: Free radical scavenging. J. Agric. Food Chem. 2003, 51, 902–909. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, M.F.; Rosen, R.T. 2,2-Odiphenyl-1-picrylhydrazyl radical-scavenging active compo-nents from Polygonum multiflorum Thunb. J. Agric. Food. Chem. 1999, 47, 226–228. [Google Scholar] [CrossRef]
- Uchida, K.; Enomoto, N.; Itakura, K. The Hydroxyl Radical Generated by an Iron(II)/ED-TA/Ascorbate System Preferentially Attacks Tryptophan Residues of the Protein. Agric. Biol. Chem. 1989, 53, 3285–3292. [Google Scholar]
- Priscilla, J.T.; Geethaa, S.; Sreeramanan, S.; Ong, M.T. Brine Shrimp Lethality Test and Anti-Proliferation Test against Human Cancer-Origin Cell Lines Using Ethanolic and Water Extracts of Selaginella Doeder-leinii Hieron. J. Biomed. Pharm. Res. 2014, 3, 63–69. [Google Scholar]
- Wang, G.; Yao, S.; Cheng, L; Luo, Y.F.; Song, H. Antioxidant and anticancer effection of the Volatile Oil from Various Habitats of Selaginella doederleinii Hieron. Technol. Health. Care 2015, 23 (Suppl 1), S21–S27. [Google Scholar] [CrossRef] [PubMed]
- Heoa, B.G.; Parkb, Y.J.; Parkc, Y.S.; Baeb, J.H.; Chod, C.H.; Parke, K. Anticancer and antioxidant effects of extracts from different parts of indigo plant. Ind. Crop Prod. 2014, 56, 9–16. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Source | Sum of Squares | df | F | P | R2 | R2 (Adj) |
---|---|---|---|---|---|---|
Model | 54.55 | 9 | 55.39 | <0.0001 | 0.9862 | 0.9684 |
X1 | 2.76 | 1 | 25.23 | 0.0015 | ||
X2 | 0.59 | 1 | 5.43 | 0.0526 | ||
X3 | 10.58 | 1 | 96.69 | <0.0001 | ||
X1X2 | 2.250 × 10−4 | 1 | 2.056 × 10−3 | 0.0304 | ||
X1X3 | 0.80 | 1 | 7.32 | 0.6743 | ||
X2X3 | 0.021 | 1 | 0.19 | 0.0165 | ||
X12 | 13.05 | 1 | 119.29 | <0.0001 | ||
X22 | 8.20 | 1 | 74.96 | <0.0001 | ||
X32 | 14.42 | 1 | 131.80 | <0.0001 | ||
Residual | 0.77 | 7 | ||||
Lack of Fit | 0.65 | 3 | 7.71 | 0.0387 | ||
Pure Error | 0.11 | 4 | ||||
Cor Total | 55.32 | 16 |
Source | Sum of Squares | df | F | P | R2 | R2 (Adj) |
---|---|---|---|---|---|---|
Model | 1659.94 | 9 | 36.07 | <0.0001 | 0.9879 | 0.9518 |
X1 | 13.49 | 1 | 2.64 | 0.1483 | ||
X2 | 3.91 | 1 | 0.77 | 0.4107 | ||
X3 | 243.49 | 1 | 47.62 | 0.0002 | ||
X1X2 | 63.64 | 1 | 12.45 | 0.0096 | ||
X1X3 | 88.03 | 1 | 17.22 | 0.0043 | ||
X2X3 | 1.68 | 1 | 0.33 | 0.5848 | ||
X12 | 469.26 | 1 | 91.77 | <0.0001 | ||
X22 | 509.31 | 1 | 99.60 | <0.0001 | ||
X32 | 146.11 | 1 | 28.57 | 0.0011 | ||
Residual | 35.79 | 7 | ||||
Lack of fit | 19.97 | 3 | 1.68 | 0.3070 | ||
Pure Error | 15.83 | 4 | ||||
Cor Total | 1695.73 | 16 |
Extraction Method | ILs-MAE | MAE | Soxhlet Extraction |
---|---|---|---|
Relative extraction rate a (mean ± SD, %) | 100.00 ± 9.13 | 53.69 ± 1.49 | 29.51 ± 1.06 |
IC50 (mg/g) | 56.17 ± 2.21 | 68.35 ± 1.77 | 81.09 ± 3.92 |
Extraction time (min) | 40 | 45 | 120 |
Treatment | A549 Cell Line | 7721 Cell Line |
---|---|---|
TBE | 120.51 ± 8.09 | 131.74 ± 6.31 |
Cis | 20.89 ± 6.31 | 6.27 ± 1.53 |
Level | Factors | ||
---|---|---|---|
Microwave Power (W) | Extract Time (min) | Extract Temper (°C) | |
−1 | 300 | 30 | 40 |
0 | 500 | 40 | 50 |
1 | 700 | 50 | 60 |
Run | X1 (Microwave Power/W) | X2 (Extraction Time/min) | X3 (Extraction Temper/°C) | Y1 (mg/g) | IC50 (μg/mL) |
---|---|---|---|---|---|
1 | 700 | 40 | 60 | 12.07 | 78.82 |
2 | 500 | 40 | 50 | 16.52 | 61.11 |
3 | 500 | 40 | 50 | 16.83 | 59.24 |
4 | 500 | 40 | 50 | 16.52 | 56.25 |
5 | 500 | 40 | 50 | 16.83 | 60.46 |
6 | 300 | 40 | 40 | 15.01 | 63.83 |
7 | 500 | 50 | 40 | 14.73 | 70.22 |
8 | 500 | 30 | 60 | 12.33 | 81.41 |
9 | 500 | 30 | 40 | 15.06 | 70.82 |
10 | 500 | 40 | 50 | 16.82 | 60.78 |
11 | 700 | 50 | 50 | 12.67 | 75.58 |
12 | 300 | 30 | 50 | 14.44 | 78.69 |
13 | 700 | 30 | 50 | 13.28 | 87.05 |
14 | 300 | 50 | 50 | 13.80 | 83.17 |
15 | 300 | 40 | 60 | 12.38 | 83.40 |
16 | 700 | 40 | 40 | 12.91 | 78.02 |
17 | 500 | 50 | 60 | 11.72 | 83.39 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Qian, Y.; Tian, Y.-J.; Yuan, S.-M.; Wei, W.; Wang, G. Optimization of Ionic Liquid-Assisted Extraction of Biflavonoids from Selaginella doederleinii and Evaluation of Its Antioxidant and Antitumor Activity. Molecules 2017, 22, 586. https://doi.org/10.3390/molecules22040586
Li D, Qian Y, Tian Y-J, Yuan S-M, Wei W, Wang G. Optimization of Ionic Liquid-Assisted Extraction of Biflavonoids from Selaginella doederleinii and Evaluation of Its Antioxidant and Antitumor Activity. Molecules. 2017; 22(4):586. https://doi.org/10.3390/molecules22040586
Chicago/Turabian StyleLi, Dan, Yan Qian, Yu-Jia Tian, Shi-Meng Yuan, Wei Wei, and Gang Wang. 2017. "Optimization of Ionic Liquid-Assisted Extraction of Biflavonoids from Selaginella doederleinii and Evaluation of Its Antioxidant and Antitumor Activity" Molecules 22, no. 4: 586. https://doi.org/10.3390/molecules22040586
APA StyleLi, D., Qian, Y., Tian, Y. -J., Yuan, S. -M., Wei, W., & Wang, G. (2017). Optimization of Ionic Liquid-Assisted Extraction of Biflavonoids from Selaginella doederleinii and Evaluation of Its Antioxidant and Antitumor Activity. Molecules, 22(4), 586. https://doi.org/10.3390/molecules22040586