A Cost-Efficient Method for Unsymmetrical Meso-Aryl Porphyrin Synthesis Using NaY Zeolite as an Inorganic Acid Catalyst
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of Unsymmetrically Substituted Porphyrins
2.2. The Determination of Method’s Sustainability and Cost-Efficiency
2.3. Scope
3. Materials and Methods
3.1. General Procedure
3.1.1. 5-(4-Acetylaminophenyl)-10,15,20-tris(2,6-difluorophenyl) Porphyrin (5)
3.1.2. 5-(4-Acetylaminophenyl)-10,15,20-tris(2,6-dichlorophenyl) Porphyrin (6)
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Calvete, M.J.F.; Pinto, S.M.A.; Pereira, M.M.; Geraldes, C.F.G.C. Metal coordinated pyrrole-based macrocycles as contrast agents for magnetic resonance imaging technologies: Synthesis and applications. Coord. Chem. Rev. 2017, 333, 82–107. [Google Scholar] [CrossRef]
- Pereira, M.M.; Arnaut, L.G.; Simoes, S.J.F.; Monteiro, C. Novel Derivatives of Porphyrin, Particularly Chlorins and/or Bacteriochlorins, and Uses Thereof in Photodynamic Therapy. US Patent WO/2006/053707, 26 June 2006. [Google Scholar]
- Giuntini, F.; Boyle, R.; Sibrian-Vazquez, M.; Vicente, M.G.H. Porphyrin conjugates for cancer therapy. In Handbook of Porphyrin Science; Ferreira, G., Ed.; World Scientific Publishers: Singapore, 2013; Volume 27, pp. 303–416. [Google Scholar]
- Sekkat, N.; Van den Bergh, H.; Nyokong, T.; Lange, N. Like a bolt from the blue: Phthalocyanines in biomedical optics. Molecules 2012, 17, 98–144. [Google Scholar] [CrossRef] [PubMed]
- Calvete, M.J.F.; Simões, A.V.C.; Henriques, C.A.; Pinto, S.M.A.; Pereira, M.M. Tetrapyrrolic macrocycles: Potentialities in medical imaging technologies. Curr. Org. Synth. 2014, 11, 127–140. [Google Scholar] [CrossRef]
- Simões, A.V.C.; Adamowicz, A.; Dabrowski, J.M.; Calvete, M.J.F.; Abreu, A.R.; Stochel, G.; Arnaut, L.G.; Pereira, M.M. Amphiphilic meso(sulfonate ester fluoroaryl)porphyrins: Refining the substituents of porphyrin derivatives for phototherapy and diagnostics. Tetrahedron 2012, 68, 8767–8772. [Google Scholar] [CrossRef]
- Pinto, S.M.A.; Tome, V.A.; Calvete, M.J.F.; Pereira, M.M.; Burrows, H.D.; Cardoso, A.M.S.; Pallier, A.; Castro, M.M.C.A.; Toth, E.; Geraldes, C.F.G.C. The quest for biocompatible phthalocyanines for molecular imaging: Photophysics, relaxometry and cytotoxicity studies. J. Inorg. Biochem. 2016, 154, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Simões, A.V.C.; Pinto, S.M.A.; Calvete, M.J.F.; Gomes, C.M.F.; Ferreira, N.C.; Castelo-Branco, M.; Llop, J.; Pereira, M.M.; Abrunhosa, A.J. Synthesis of a new F-18 labeled porphyrin for potential application in positron emission tomography. In vivo imaging and cellular uptake. RSC Adv. 2015, 5, 99540–99546. [Google Scholar] [CrossRef]
- Mansuy, D. A brief history of the contribution of metalloporphyrin models to cytochrome p450 chemistry and oxidation catalysis. CR Chim. 2007, 10, 392–413. [Google Scholar] [CrossRef]
- Lu, H.J.; Zhang, X.P. Catalytic C-H functionalization by metalloporphyrins: Recent developments and future directions. Chem. Soc. Rev. 2011, 40, 1899–1909. [Google Scholar] [CrossRef] [PubMed]
- Calvete, M.J.F.; Silva, M.; Pereira, M.M.; Burrows, H.D. Inorganic helping organic: Recent advances in catalytic heterogeneous oxidations by immobilised tetrapyrrolic macrocycles in micro and mesoporous supports. RSC Adv. 2013, 3, 22774–22789. [Google Scholar] [CrossRef]
- Cuesta-Aluja, L.; Castilla, J.; Masdeu-Bulto, A.M.; Henriques, C.A.; Calvete, M.J.F.; Pereira, M.M. Halogenated meso-phenyl mn(iii) porphyrins as highly efficient catalysts for the synthesis of polycarbonates and cyclic carbonates using carbon dioxide and epoxides. J. Mol. Catal. A 2016, 423, 489–494. [Google Scholar] [CrossRef]
- Tanaka, T.; Osuka, A. Conjugated porphyrin arrays: Synthesis, properties and applications for functional materials. Chem. Soc. Rev. 2015, 44, 943–969. [Google Scholar] [CrossRef] [PubMed]
- Li, L.L.; Diau, E.W.G. Porphyrin-sensitized solar cells. Chem. Soc. Rev. 2013, 42, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Dini, D.; Calvete, M.J.F.; Hanack, M. Nonlinear optical materials for the smart filtering of optical radiation. Chem. Rev. 2016, 116, 13043–13233. [Google Scholar] [CrossRef] [PubMed]
- Calvete, M.J.F. Near-infrared absorbing organic materials with nonlinear transmission properties. Int. Rev. Phys. Chem. 2012, 31, 319–366. [Google Scholar] [CrossRef]
- Pinto, S.M.A.; Neves, A.C.B.; Calvete, M.J.F.; Abreu, A.R.; Rosado, M.T.S.; Costa, T.; Burrows, H.D.; Pereira, M.M. Metalloporphyrin triads: Synthesis and photochemical characterization. J. Photochem. Photobiol. A 2012, 242, 59–66. [Google Scholar] [CrossRef]
- Marques, A.T.; Pinto, S.M.A.; Monteiro, C.J.P.; de Melo, J.S.S.; Burrows, H.D.; Scherf, U.; Calvete, M.J.F.; Pereira, M.M. Energy transfer from fluorene-based conjugated polyelectrolytes to on-chain and self-assembled porphyrin units. J. Polym. Sci. Pol. Chem. 2012, 50, 1408–1417. [Google Scholar] [CrossRef]
- Nardis, S. Synthetic Routes to Unsymmetrical Porphyrin. In Topics in Heterocyclic Chemistry; Paolesse, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 33, pp. 203–229. [Google Scholar]
- Henriques, C.A.; Fernandes, A.; Rossi, L.M.; Ribeiro, M.F.; Calvete, M.J.F.; Pereira, M.M. Biologically inspired and magnetically recoverable copper porphyrinic catalysts: A greener approach for oxidation of hydrocarbons with molecular oxygen. Adv. Funct. Mater. 2016, 26, 3359–3368. [Google Scholar] [CrossRef]
- Nakagaki, S.; Ferreira, G.K.B.; Marcal, A.L.; Ciuffi, K.J. Metalloporphyrins immobilized on silica and modified silica as catalysts in heterogeneous processes. Curr. Org. Synth. 2014, 11, 67–88. [Google Scholar] [CrossRef]
- Welch, C.; Archibald, S.J.; Boyle, R.W. Reductive amination—A convenient method for generating diverse, mono-functionalised 5,10,15,20-tetraphenyl porphyrins. Synthesis-Stuttgart 2009, 551–556. [Google Scholar]
- Roales, J.; Pedrosa, J.M.; Guillen, M.G.; Lopes-Costa, T.; Pinto, S.M.A.; Calvete, M.J.F.; Pereira, M.M. Optical detection of amine vapors using zntriad porphyrin thin films. Sens. Actuators B Chem. 2015, 210, 28–35. [Google Scholar] [CrossRef]
- Henriques, C.A.; Goncalves, N.P.F.; Abreu, A.R.; Calvete, M.J.F.; Pereira, M.M. Unsymmetrical porphyrins: The role of meso-substituents on their physical properties. J. Porphyr. Phthalocyanines 2012, 16, 290–296. [Google Scholar] [CrossRef]
- Ooyama, Y.; Harima, Y. Photophysical and electrochemical properties, and molecular structures of organic dyes for dye-sensitized solar cells. ChemPhysChem 2012, 13, 4032–4080. [Google Scholar] [CrossRef] [PubMed]
- Tome, J.P.C.; Neves, M.G.P.M.S.; Tome, A.C.; Cavaleiro, J.A.S.; Soncin, M.; Magaraggia, M.; Ferro, S.; Jori, G. Synthesis and antibacterial activity of new poly-s-lysine-porphyrin conjugates. J. Med. Chem. 2004, 47, 6649–6652. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.L.N.; Johnson, A.W.; Kay, I.T. A stepwise synthesis of unsymmetrical porphyrins. J. Chem. Soc. C 1966, 22–29. [Google Scholar] [CrossRef]
- Lash, T.D. Porphyrin synthesis by the “3+1” approach: New applications for an old methodology. Chem. Eur. J. 1996, 2, 1197–1200. [Google Scholar] [CrossRef]
- Boudif, A.; Momenteau, M. A new convergent method for porphyrin synthesis based on a “3+1” condensation. J. Chem. Soc. Perkin Trans. 1 1996, 1235–1242. [Google Scholar] [CrossRef]
- Arsenault, G.P.; Bullock, E.; Macdonald, S.F. Pyrromethanes and porphyrins therefrom. J. Am. Chem. Soc. 1960, 82, 4384–4389. [Google Scholar] [CrossRef]
- Bauer, V.J.; Clive, D.L.J.; Dolphin, D.; Paine, J.B.; Harris, F.L.; King, M.M.; Loder, J.; Wang, S.W.C.; Woodward, R.B. Sapphyrins-Novel aromatic pentapyrrolic macrocycles. J. Am. Chem. Soc. 1983, 105, 6429–6436. [Google Scholar] [CrossRef]
- Sessler, J.L.; Johnson, M.R.; Lynch, V. Synthesis and crystal-structure of a novel tripyrrane-containing porphyrinogen-like macrocycle. J. Org. Chem. 1987, 52, 4394–4397. [Google Scholar] [CrossRef]
- Sessler, J.L.; Genge, J.W.; Urbach, A.; Sanson, P. A “3+1” approach to monofuntionalized alkyl porphyrins. Synlett 1996, 187–188. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Senge, M.O.; Smith, K.M. Simple methodology for syntheses of porphyrins possessing multiple peripheral substituents with an element of symmetry. J. Org. Chem. 1996, 61, 998–1003. [Google Scholar] [CrossRef]
- Lindsey, J.S. Synthetic routes to meso-patterned porphyrins. Accounts Chem. Res. 2010, 43, 300–311. [Google Scholar] [CrossRef] [PubMed]
- Ryppa, C.; Senge, M.O.; Hatscher, S.S.; Kleinpeter, E.; Wacker, P.; Schilde, U.; Wiehe, A. Synthesis of mono- and disubstituted porphyrins: A- and 5,10-a(2)-type systems. Chem. Eur. J. 2005, 11, 3427–3442. [Google Scholar] [CrossRef] [PubMed]
- Senge, M.O. Nucleophilic substitution as a tool for the synthesis of unsymmetrical porphyrins. Accounts Chem. Res. 2005, 38, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, S.H.H.; Loewe, R.S.; Clark, B.A.; Jacob, M.J.; Lindsey, J.S. Nearly chromatography-free synthesis of the a(3)b-porphyrin 5-(4-hydroxymethylphenyl)-10,15,20-tri-p-tolylporphinatozinc(ii). Org. Process Res. Dev. 2006, 10, 304–314. [Google Scholar] [CrossRef]
- Zaidi, S.H.H.; Fico, F.M.; Lindsey, J.S. Investigation of streamlined syntheses of porphyrins bearing distinct meso substituents. Org. Process Res. Dev. 2006, 10, 118–134. [Google Scholar] [CrossRef]
- Silva, M.; Fernandes, A.; Bebiano, S.S.; Calvete, M.J.F.; Ribeiro, M.F.; Burrows, H.D.; Pereira, M.M. Size and ability do matter! Influence of acidity and pore size on the synthesis of hindered halogenated meso-phenyl porphyrins catalysed by porous solid oxides. Chem. Commun. 2014, 50, 6571–6573. [Google Scholar] [CrossRef] [PubMed]
- Henriques, C.A.; Pinto, S.M.A.; Pina, J.; Serpa, C.; Fernandes, A.; Rossi, L.M.; Ribeiro, M.F.; Pereira, M.M.; Calvete, M.J.F. Cost-efficient method for unsymmetrical meso-aryl porphyrins and iron oxide-porphyrin hybrids prepared thereof. Dalton Trans. 2016, 45, 16211–16220. [Google Scholar] [CrossRef] [PubMed]
- Henriques, C.A.; Pinto, S.M.A.; Canotilho, J.; Eusébio, M.E.S.; Calvete, M.J.F. Synthesis of low melting point porphyrins: A quest for new materials. J. Porphyr. Phthalocyanines 2016, 20, 843–854. [Google Scholar] [CrossRef]
- Adler, A.D.; Longo, F.R.; Finarelli, J.D.; Goldmach, J.; Assour, J.; Korsakof, L. A simplified synthesis for meso-tetraphenylporphin. J. Org. Chem. 1967, 32, 476. [Google Scholar] [CrossRef]
- Gonsalves, A.M.A.R.; Varejao, J.M.T.B.; Pereira, M.M. Some new aspects related to the synthesis of mesosubstituted porphyrins. J. Heterocyclic Chem. 1991, 28, 635–640. [Google Scholar] [CrossRef]
- Lindsey, J.S.; Schreiman, I.C.; Hsu, H.C.; Kearney, P.C.; Marguerettaz, A.M. Rothemund and AdlerLongo reactions revisited—Synthesis of tetraphenylporphyrins under equilibrium conditions. J. Org. Chem. 1987, 52, 827–836. [Google Scholar] [CrossRef]
- Shinoda, T.; Izumi, Y.; Onaka, M. Fsm-16—A recyclable mesoporous acid promoter for meso-tetraarylporphyrin synthesis. J. Chem. Soc. Chem. Comm. 1995, 1801–1802. [Google Scholar] [CrossRef]
- Kishan, M.R.; Rani, V.R.; Murty, M.R.V.S.; Devi, P.S.; Kulkarni, S.J.; Raghavan, K.V. Synthesis of calixpyrroles and porphyrins over molecular sieve catalysts. J. Mol. Catal. A 2004, 223, 263–267. [Google Scholar] [CrossRef]
- Petit, A.; Loupy, A.; Maillard, P.; Momenteau, M. Microwave irradiation in dry media - a new and easy method for synthesis of tetrapyrrolic compounds. Synth. Commun. 1992, 22, 1137–1142. [Google Scholar] [CrossRef]
- Lucas, R.; Vergnaud, J.; Teste, K.; Zerrouki, R.; Sol, V.; Krausz, P. A facile and rapid iodine-catalyzed meso-tetraphenylporphyrin synthesis using microwave activation. Tetrahedron Lett. 2008, 49, 5537–5539. [Google Scholar] [CrossRef]
- Nascimento, B.F.O.; Gonsalves, A.M.D.R.; Pineiro, M. Mno2 instead of quinones as selective oxidant of tetrapyrrolic macrocycles. Inorg. Chem. Commun. 2010, 13, 395–398. [Google Scholar] [CrossRef]
- Henriques, C.A.; Pinto, S.M.A.; Aquino, G.L.B.; Pineiro, M.; Calvete, M.J.F.; Pereira, M.M. Ecofriendly porphyrin synthesis by using water under microwave irradiation. ChemSusChem 2014, 7, 2821–2824. [Google Scholar] [CrossRef] [PubMed]
- Henriques, C.A.; Pinto, S.M.A.; Pineiro, M.; Canotilho, J.; Eusébio, M.E.S.; Pereira, M.M.; Calvete, M.J.F. Solventless metallation of low melting porphyrins synthesized by the water/microwave method. RSC Adv. 2015, 5, 64916–64924. [Google Scholar] [CrossRef]
- Adler, A.D.; Shergali, W.; Longo, F.R. Mechanistic investigations of porphyrin syntheses. I. Preliminary studies on ms-tetraphenylporphin. J. Am. Chem. Soc. 1964, 86, 3145–3149. [Google Scholar] [CrossRef]
- Tome, J.P.C.; Neves, M.G.P.M.S.; Tome, A.C.; Cavaleiro, J.A.S.; Mendonça, A.F.; Pegado, L.S.N.; Duarte, R.; Valdeira, M.L. Synthesis of glycoporphyrin derivatives and their antiviral activity against herpes simplex virus types 1 and 2. Bioorg. Med. Chem. 2005, 13, 3878–3888. [Google Scholar] [CrossRef] [PubMed]
- Cairon, O. Construction of quantitative molecular isotherms from ftir analysis of dinitrogen (n-2) adsorption on a microporous nay zeolite. Phys. Chem. Chem. Phys. 2012, 14, 12083–12085. [Google Scholar] [CrossRef] [PubMed]
- Green chemistry metrics. In Measuring and Monitoring Sustainable Processes; Lapkin, A.; Constable, D. (Eds.) Wiley-Blackwell Publishing: Singapore, 2009. [Google Scholar]
- Sheldon, R.A. Catalysis: The key to waste minimization. J. Chem. Technol. Biotechnol. 1997, 68, 381–388. [Google Scholar] [CrossRef]
- Lindsey, J.S.; Maccrum, K.A.; Tyhonas, J.S.; Chuang, Y.Y. Investigation of a synthesis of meso-porphyrins employing high-concentration conditions and an electron-transport chain for aerobic oxidation. J. Org. Chem. 1994, 59, 579–587. [Google Scholar] [CrossRef]
- Lipshutz, B.H.; Isley, N.A.; Fennewald, J.C.; Slack, E.D. On the way towards greener transition-metal-catalyzed processes as quantified by e factors. Angew. Chem. Int. Ed. 2013, 52, 10952–10958. [Google Scholar] [CrossRef] [PubMed]
- Matile, S.; Berova, N.; Nakanishi, K.; Fleischhauer, J.; Woody, R.W. Structural studies by exciton coupled circular dichroism over a large distance: Porphyrin derivatives of steroids, dimeric steroids, and brevetoxin b. J. Am. Chem. Soc. 1996, 118, 5198–5206. [Google Scholar] [CrossRef]
- Kon, H.; Nagata, T. Syntheses, properties, and photoreactions of the hybrid molecules consisting of a coii mononuclear complex and porphyrins. Chem. Eur. J. 2012, 18, 1781–1788. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Viel, S.; Ziarelli, F.; Peng, L. F-19 NMR: A valuable tool for studying biological events. Chem. Soc. Rev. 2013, 42, 7971–7982. [Google Scholar] [CrossRef] [PubMed]
- Goslinski, T.; Piskorz, J. Fluorinated porphyrinoids and their biomedical applications. J. Photochem. Photobiol. C 2011, 12, 304–321. [Google Scholar] [CrossRef]
- Pandey, S.K.; Gryshuk, A.L.; Graham, A.; Ohkubo, K.; Fukuzumi, S.; Dobhal, M.P.; Zheng, G.; Ou, Z.P.; Zhan, R.Q.; Kadish, K.M.; et al. Fluorinated photosensitizers: Synthesis, photophysical, electrochemical, intracellular localization, in vitro photosensitizing efficacy and determination of tumor-uptake by f-19 in vivo nmr spectroscopy. Tetrahedron 2003, 59, 10059–10073. [Google Scholar] [CrossRef]
- Pires, S.M.G.; Simões, M.M.Q.; Santos, I.C.M.S.; Rebelo, S.L.H.; Pereira, M.M.; Neves, M.G.P.M.S.; Cavaleiro, J.A.S. Biomimetic oxidation of organosulfur compounds with hydrogen peroxide catalyzed by manganese porphyrins. Appl. Catal. A Gen. 2012, 439, 51–56. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds 1–6 are available from the authors. |
Method | Reagents (exc. aldehydes and pyrrole) | Temperature | Concentration (M) | Yield (%) |
---|---|---|---|---|
Adler-Longo | propionic acid | 140 °C | 0.30 | 6 |
Gonsalves-Pereira | acetic acid/nitrobenzene | 130 °C | 0.40 | 7 |
Lindsey | dichlorome thanetrifluoroacetic acid DDQ/triethylamine | 25 °C, then 45 °C | 0.03 | 15 |
This work | acetic acid/nitrobenzene NaY zeolite | 130 °C | 0.42 | 16 |
Method | E Factor | Price (10 mmol) | Price (10 mmol) b | Price (g) |
---|---|---|---|---|
Adler-Longo | 6793 | 1068 € | 652 € | 103 € |
Gonsalves-Pereira | 4233 | 1011 € | 741 € | 118 € |
Lindsey | 7090 | 2002 € | 995 € | 158 € |
NaY | 2350 | 750 € | 504 € | 80 € |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calvete, M.J.F.; Dias, L.D.; Henriques, C.A.; Pinto, S.M.A.; Carrilho, R.M.B.; Pereira, M.M. A Cost-Efficient Method for Unsymmetrical Meso-Aryl Porphyrin Synthesis Using NaY Zeolite as an Inorganic Acid Catalyst. Molecules 2017, 22, 741. https://doi.org/10.3390/molecules22050741
Calvete MJF, Dias LD, Henriques CA, Pinto SMA, Carrilho RMB, Pereira MM. A Cost-Efficient Method for Unsymmetrical Meso-Aryl Porphyrin Synthesis Using NaY Zeolite as an Inorganic Acid Catalyst. Molecules. 2017; 22(5):741. https://doi.org/10.3390/molecules22050741
Chicago/Turabian StyleCalvete, Mário J. F., Lucas D. Dias, César A. Henriques, Sara M. A. Pinto, Rui M. B. Carrilho, and Mariette M. Pereira. 2017. "A Cost-Efficient Method for Unsymmetrical Meso-Aryl Porphyrin Synthesis Using NaY Zeolite as an Inorganic Acid Catalyst" Molecules 22, no. 5: 741. https://doi.org/10.3390/molecules22050741
APA StyleCalvete, M. J. F., Dias, L. D., Henriques, C. A., Pinto, S. M. A., Carrilho, R. M. B., & Pereira, M. M. (2017). A Cost-Efficient Method for Unsymmetrical Meso-Aryl Porphyrin Synthesis Using NaY Zeolite as an Inorganic Acid Catalyst. Molecules, 22(5), 741. https://doi.org/10.3390/molecules22050741