Response Surface Optimized Infrared-Assisted Extraction and UHPLC Determination of Flavonoid Types from Flos Sophorae
Abstract
:1. Introduction
2. Results and Discussion
2.1. Single-Factor Experiment
2.1.1. Extraction Solvents
2.1.2. Solid-Liquid Ratio
2.1.3. Extraction Time
2.1.4. Extraction Power
2.2. Response Surface Methodology (RSM) Experiment
2.2.1. Box–Behnken Design (BBD)
2.2.2. Fitting Model
2.2.3. Analysis of Response Surfaces
2.2.4. Verification of the Models
2.3. Method Development and Validation
2.4. Comparison with Other Extraction Methods
3. Experimental and Section
3.1. Chemicals and Materials
3.2. Ultrasound-Assisted Extraction
3.3. Heating Reflux Extraction
3.4. Infrared-Assisted Extraction
3.5. Experimental Design for Infrared-Assisted Extraction
3.6. Identification and Quantification of Flavonoids
3.7. DPPH Radical Scavenging Assay
3.8. AAPH Radical Scavenging Assay
3.9. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mussatto, S.I.; Ballesteros, L.F.; Martins, S.; Teixeira, J.A. Extraction of antioxidant phenolic compounds from spent coffee grounds. Sep. Purif. Methods 2011, 83, 173–179. [Google Scholar] [CrossRef]
- Bomhard, E.M.; Bremmer, J.N.; Herbold, B.A. Review of the mutagenicity/genotoxicity of butylated hydroxytoluene. Mutat. Res. 2002, 277, 187–200. [Google Scholar] [CrossRef]
- Kim, J.M.; Yun-Choi, H.S. Anti-platelet effects of flavonoids and flavonoid-glycosides from Sophora japonica. Arch. Pharm. Res. 2008, 31, 886–890. [Google Scholar] [CrossRef] [PubMed]
- Abdelhady, M.I.S.; Kamal, A.M.; Othman, S.M.; Mubarak, M.S.; Hadda, T.B. Total polyphenolic content, antioxidant, cytotoxic, antidiabetic activities, and polyphenolic compounds of Sophora japonica grown in Egypt. Med. Chem. Res. 2015, 24, 482–495. [Google Scholar] [CrossRef]
- Shi, W.; Liu, L.; Li, J.; Qu, L.; Pang, X.; Yu, H.; Zhang, Y.; Wang, T. Bioactive flavonoids from Flos Sophorae. J. Nat. Med. 2017, 29, 1–10. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Bai, Y.; Zhao, Z.; Wang, X.; Fang, J.; Huang, L.; Zeng, M.; Zhang, Q.; Zhang, Y.; Zheng, X. Local and traditional uses, phytochemistry, and pharmacology of Sophora japonica L.: A review. J. Ethnopharmacol. 2016, 187, 160–182. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.L.; Li, L.Y.; He, G.H. Optimization of microwave-assisted extraction conditions for five major bioactive compounds from Flos Sophorae immaturus (cultivars of Sophora japonica L.) using response surface methodology. Molecules 2016, 21, 296. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.; Yan, L. Optimization of pressure-enhanced solid-liquid extraction of flavonoids from Flos Sophorae and evaluation of their antioxidant activity. Sep. Purif. Technol. 2017, 175, 170–176. [Google Scholar] [CrossRef]
- Chen, Y.L.; Zhu, X.; Yu, Y.J.; Cai, Y.; Li, Y.; Duan, G.L. Comparison of infrared-assisted extraction and other techniques for analysis of indigo and indirubin in leaves of Isatis indigotica fort. J. Liq. Chromatogr. Rel. Technol. 2012, 35, 362–374. [Google Scholar] [CrossRef]
- Tang, Z.X.; Zang, S.L.; Zhang, X.M. Detection of chlorogenic acid in honeysuckle using infrared-assisted extraction followed by capillary electrophoresis with UV detector. J. Chromatogr. Sci. 2012, 50, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Ling, L.; Zhu, J.; Long, J.; Duan, G.; Yu, Y. Ionic-Liquid-based Infrared-Assisted Extraction (IL-IRAE) coupled with HPLC–MS: A green and convenient tool for determination of TCMs. Chromatographia 2017, 80, 335–340. [Google Scholar] [CrossRef]
- Cai, Y.; Yu, Y.J.; Duan, G.L.; Li, Y. Study on infrared-assisted extraction coupled with high performance liquid chromatography (HPLC) for determination of catechin, epicatechin, and procyanidin B2 in grape seeds. Food Chem. 2011, 127, 1872–1877. [Google Scholar] [CrossRef]
- Chen, Y.L.; Duan, G.L.; Xie, M.F.; Chen, B.; Li, Y. Infrared-assisted extraction coupled with high-performance liquid chromatography for simultaneous determination of eight active compounds in Radix salviae miltiorrhizae. J. Sep. Sci. 2010, 33, 2888–2897. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.S.; Wu, Q.N.; Wu, Y.F.; Chen, G.Y.; Yue, W.; Liang, Q.L. Response surface optimized ultrasonic-assisted extraction of flavonoids from Sparganii rhizoma and evaluation of their in vitro antioxidant activities. Molecules 2012, 17, 6769–6783. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Q.; Wang, H.W.; Cai, X. Optimization of the extraction of total flavonoids from Scutellaria baicalensis Georgi using the response surface methodology. J. Food Sci. 2015, 52, 2336–2343. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Cao, Y.L.; Jiang, J.G.; Lin, Q.S.; Chen, J.; Zhu, L. Response surface optimization of ultrasound-assisted flavonoids extraction from the flower of Citrus aurantium L. var. amara Engl. J. Sep. Sci. 2010, 33, 1349–1355. [Google Scholar] [PubMed]
- Ma, F.W.; Zhao, Y.; Gong, X.J.; Xie, Y.; Zhou, X. Optimization of quercitrin and total flavonoids extraction from Herba Polygoni Capitati by response surface methodology. Philos. Mag. 2014, 10, 57–64. [Google Scholar]
- Xu, D.P.; Zhou, Y.; Zheng, J.; Li, S.; Li, A.N.; Li, H.B. Optimization of ultrasound-assisted extraction of natural antioxidants from the flower of Jatropha integerrima by response surface methodology. Molecules 2016, 21, 18. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.-G.; Wang, X.D.; Hu, Q.-P.; Duan, J.L.; Hou, H. Study on extraction technology of rutin from Pagodatree flower by cellulase. Food Sci. 2006, 11, 315–318. [Google Scholar]
- Huang, T.M.; Chen, N.Z.; Wang, D.L.; Lai, Y.H. Infrared-assisted extraction coupled with high performance liquid chromatography (HPLC) for determination of liquiritin and glycyrrhizic acid in Licorice root. Anal. Methods 2014, 6, 5986–5991. [Google Scholar] [CrossRef]
- Li, F.; Yuan, Y.; Li, H.; Zhan, Z.; Kang, L.; Li, M.; Yang, B.; Huang, L. Infrared-assisted extraction of salidroside from the root of Rhodiola crenulata with a novel ionic liquid that dissolves cellulose. RSC Adv. 2015, 5, 47326–47333. [Google Scholar] [CrossRef]
- Suonan, Z.; Bao, X.Y.; Bao, J.Y. Orthogonal design and response surface optimization of extraction procss of flaonoids of radix scrophulariae. J. Mol. Sci. 2016, 32, 45–52. [Google Scholar]
- Krajnik, P.; Kopac, J.; Sluga, A. Design of grinding factors based on response surface methodology. J. Mater. Process. Technol. 2005, 162–163, 629–636. [Google Scholar] [CrossRef]
- Guan, S.; Deng, F.; Huang, S.Q.; Liu, S.Y.; Ai, L.X.; She, P.Y. Optimization of magnetic field-assisted ultrasonication for the disintegration of waste activated sludge using Box–Behnken design with response surface methodology. Ultrason. Sonochem. 2017, 38, 9–18. [Google Scholar] [CrossRef]
- Lei, N.F.; Sang, S.H.; Peng, S.M.; Song, L.-T. Study on extraction technology of rutin from Sophora japonica L. Lishizhen Med. Mater. Med. Res. 2008, 19, 860–861. [Google Scholar]
- Dong, J.-D.; Zhao, Q.; Wang, J.-F. Study on Orthogonal design mode and antioxidant activity of rutin from Sophora japonica. Anim. Husb. Feed Sci. 2010, 31, 11–13. [Google Scholar]
- Ann, G.J.; Raymond, H.M. Graphical assessment of the prediction capability of response surface designs. Technometrics 1989, 31, 159–171. [Google Scholar]
- Paniwnyk, L.; Beaufoy, E.; Lorimer, J.P.; Mason, T.J. The extraction of rutin from flower buds of Sophora japonica. Ultrason. Sonochem. 2001, 8, 299–301. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Committee. Chinese Pharmacopoeia; part 1; China Medical Science Press: Beijing, China, 2015; pp. 333–334. [Google Scholar]
- Asgarpanah, J.; Motamed, S.M.; Farzaneh, A.; Ghanizzadeh, B.; Tomraee, S. Antioxidant activity and total phenolic and flavonoid content of Astragalus squarrosus bunge. Afr. J. Biotechnol. 2011, 10, 19176–19180. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, R.Y.; Park, E. Antioxidant and alpha-glucosidase inhibitory activities of different solvent extracts of Skullcap (Scutellaria Baicalensis). Food Sci. Biotechnol. 2011, 20, 1107–1112. [Google Scholar] [CrossRef]
- Li, H.; Luo, S.L.; Su, J.C.; Ke, H.X.; Wang, W.H.; Yang, B. Optimization of extraction conditions for flavonoid composition and antioxidant activity of Radix Scutellaria. Anal. Lett. 2015, 48, 1234–1244. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds (rutin, quercetin, kaempferol, and isorhamnetin) are available from the authors. |
Run | Ethanol Concentration (X1, %) | Extraction Time (X2, min) | Solid-Liquid Ratio (X3, g/mL) | Yield of Rutin (mg/g) | Yield of Quercetin (mg/g) | Yield of Kaempferol (mg/g) | Yield of Isorhamnetin (mg/g) | Yield of Flavonoids (mg/g) |
---|---|---|---|---|---|---|---|---|
1 | 30 | 10 | 60 | 17.11 | 12.16 | 0.49 | 1.17 | 30.94 |
2 | 50 | 8 | 40 | 17.57 | 10.62 | 0.50 | 1.04 | 29.73 |
3 | 40 | 8 | 60 | 17.02 | 12.53 | 0.58 | 1.20 | 31.33 |
4 | 40 | 8 | 60 | 17.95 | 13.36 | 0.60 | 1.22 | 33.13 |
5 | 50 | 10 | 60 | 16.86 | 10.62 | 0.46 | 1.01 | 28.95 |
6 | 40 | 10 | 40 | 16.46 | 12.68 | 0.53 | 1.16 | 30.83 |
7 | 40 | 10 | 80 | 18.10 | 13.59 | 0.60 | 1.24 | 33.53 |
8 | 40 | 6 | 40 | 17.62 | 11.81 | 0.56 | 1.11 | 31.10 |
9 | 50 | 8 | 80 | 19.21 | 11.43 | 0.54 | 1.07 | 32.25 |
10 | 30 | 8 | 40 | 14.56 | 11.07 | 0.44 | 1.09 | 27.17 |
11 | 30 | 8 | 80 | 16.46 | 14.13 | 0.64 | 1.31 | 32.55 |
12 | 50 | 6 | 60 | 18.9 | 9.97 | 0.55 | 0.97 | 30.39 |
13 | 40 | 6 | 80 | 17.96 | 11.47 | 0.62 | 1.10 | 31.14 |
14 | 40 | 8 | 60 | 17.35 | 12.47 | 0.55 | 1.16 | 31.53 |
15 | 40 | 8 | 60 | 17.70 | 12.38 | 0.58 | 1.17 | 31.84 |
16 | 40 | 8 | 60 | 17.80 | 13.58 | 0.61 | 1.23 | 33.21 |
17 | 30 | 6 | 60 | 11.79 | 7.67 | 0.28 | 0.83 | 20.57 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value prob > F | Significant |
---|---|---|---|---|---|---|
Model | 131.63 | 9 | 14.63 | 6.31 | 0.012 | Significant |
X1 (ethanol concentration) | 12.73 | 1 | 12.73 | 5.49 | 0.0516 | |
X2 (extraction time) | 15.26 | 1 | 15.26 | 6.59 | 0.0372 | * |
X3 (solid liquid ratio) | 14.15 | 1 | 14.15 | 6.11 | 0.0428 | * |
X1 X2 | 34.87 | 1 | 34.87 | 15.05 | 0.0061 | ** |
X1 X3 | 2.04 | 1 | 2.04 | 0.88 | 0.3788 | |
X2 X3 | 1.77 | 1 | 1.77 | 0.76 | 0.4113 | |
X12 | 34.45 | 1 | 34.45 | 14.86 | 0.0062 | ** |
X22 | 11.26 | 1 | 11.26 | 4.86 | 0.0633 | |
X32 | 4.89 | 1 | 4.89 | 2.11 | 0.1898 | |
Residual | 16.22 | 7 | 2.32 | |||
Lack of fit | 13 | 3 | 4.33 | 5.38 | 0.0688 | not Significant |
Pure error | 3.22 | 4 | 0.81 | |||
Corrected total | 147.86 | 16 |
Analyte | Regression Equation | r | Rang (μg/mL) | LOD (μg/mL) | LOQ (μg/mL) |
---|---|---|---|---|---|
Quercetin | y = 10,237x − 8295.4 | 0.9994 | 4.60–149.50 | 0.097 | 0.339 |
Kaempferol | y = 9798.3x − 4322.7 | 0.9995 | 1.09–19.62 | 0.081 | 0.202 |
Rutin | y = 5298.0x + 4079.5 | 0.9995 | 40.80–612.00 | 0.106 | 0.508 |
Isorhamnetin | y = 8484.4x − 15,031 | 0.9998 | 1.02–122.40 | 0.049 | 0.292 |
Analytes | Intraday Precision (RSD, %, n = 6) | Interday Precision (RSD, %, n = 3) | Repeatibility (RSD, %, n = 6) | Recovery Rate ± (RSD, %, n = 5) |
---|---|---|---|---|
Rutin | 2.45 | 0.96 | 0.74 | 102.94 ± 1.80 |
Quercetin | 3.44 | 1.41 | 1.83 | 102.73 ± 0.87 |
Kaempferol | 1.24 | 1.82 | 1.56 | 100.68 ± 2.39 |
Isorhamnetin | 1.82 | 1.26 | 1.43 | 97.78 ± 4.19 |
Extraction Method | Extraction Time (min) | Solvent Volume (mL) | Yied of Rutin | Yied of Quercetin | Yied of Kaempferol | Yied of Isorhamnetin | Yied of Flavonoids |
---|---|---|---|---|---|---|---|
HRE | 120 | 50 | 18.980 ± 0.510 | 1.218 ± 0.166 | 0.050 ± 0.018 | 0.662 ± 0.066 | 20.112 ± 0.76 a |
UAE | 30 | 50 | 14.051 ± 0.425 | 13.803 ± 0.233 | 0.829 ± 0.016 | 1.534 ± 0.017 | 30.217 ± 0.88 b |
IRAE | 9 | 18 | 18.980 ± 0.140 | 12.518 ± 0.172 | 0.545 ± 0.009 | 1.156 ± 0.014 | 33.199 ± 0.24 c |
Extraction Method | Extraction Time (min) | Solvent Volume (mL) | Extraction Yield (mg/g) | IC50 for DPPH (μg/mL) | ORAC (μmol/g) |
---|---|---|---|---|---|
HRE | 120 | 50 | 20.112 ± 0.76 a | 88.85 ± 0.01 a | 2420.291 ± 35 a |
UAE | 30 | 50 | 30.217 ± 0.88 b | 72.03 ± 0.01 b | 2983.864 ± 23 b |
IRAE | 8.6 | 18 | 33.199 ± 0.24 c | 53.44 ± 0.01 c | 3785.827 ± 52 c |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mou, Q.; He, J.; Yin, R.; Yang, B.; Fu, M.; Fang, J.; Li, H. Response Surface Optimized Infrared-Assisted Extraction and UHPLC Determination of Flavonoid Types from Flos Sophorae. Molecules 2017, 22, 1000. https://doi.org/10.3390/molecules22061000
Mou Q, He J, Yin R, Yang B, Fu M, Fang J, Li H. Response Surface Optimized Infrared-Assisted Extraction and UHPLC Determination of Flavonoid Types from Flos Sophorae. Molecules. 2017; 22(6):1000. https://doi.org/10.3390/molecules22061000
Chicago/Turabian StyleMou, Qianqian, Jingxia He, Rongli Yin, Bin Yang, Meihong Fu, Jing Fang, and Hua Li. 2017. "Response Surface Optimized Infrared-Assisted Extraction and UHPLC Determination of Flavonoid Types from Flos Sophorae" Molecules 22, no. 6: 1000. https://doi.org/10.3390/molecules22061000
APA StyleMou, Q., He, J., Yin, R., Yang, B., Fu, M., Fang, J., & Li, H. (2017). Response Surface Optimized Infrared-Assisted Extraction and UHPLC Determination of Flavonoid Types from Flos Sophorae. Molecules, 22(6), 1000. https://doi.org/10.3390/molecules22061000