Solvent-Free Microwave-Assisted Extraction of Polyphenols from Olive Tree Leaves: Antioxidant and Antimicrobial Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Evaluation and Comparison of RSM and ANN Methodologies to Optimize Total Phenolic Compound and Oleuropein Extraction Yields under SFMAE
2.1.1. Modelling of SFMAE Using RSM
2.1.2. Modelling of SFMAE Using ANN
2.1.3. Antioxidant and Antimicrobial Activities of the Extracts Obtained from Olive Leaves at Optimal SFMAE Conditions
3. Material and Methods
3.1. Plant Material
3.2. Chemicals and Reagents
3.3. Solvent-Free Microwave-Assisted Extraction (SFMAE)
3.4. Identification and Quantification of Polyphenols
3.4.1. TPC
3.4.2. HPLC-DAD Identification and Quantification of Oleuropein
3.5. Antioxidant Activity
3.5.1. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Assay
3.5.2. 2,2′-Azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) Diammonium Salt (ABTS) Assay [40]
3.5.3. Cupric Ion Reducing Antioxidant Capacity (CUPRAC) Assay
3.6. Antimicrobial Activity
3.7. Experimental Design for Optimization and Statistical Analysis
3.7.1. Response Surface Methodology (RSM)
3.7.2. Artificial Neural Network (ANN)
4. Conclusions
Supplementary Materials
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ghazanfar, S.A. Handbook of Arabian Medicinal Plants; Ghazanfar, S.A., Ed.; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Roselló-Soto, E.; Koubaa, M.; Moubarik, A.; Lopes, R.P.; Saraiva, J.A.; Boussetta, N.; Grimi, N.; Barba, F.J. Emerging opportunities for the effective valorization of wastes and by-products generated during olive oil production process: Non-conventional methods for the recovery of high-added value compounds. Trends Food Sci. Technol. 2015, 45, 296–310. [Google Scholar] [CrossRef]
- Roselló-Soto, E.; Barba, F.J.; Parniakov, O.; Galanakis, C.M.; Lebovka, N.; Grimi, N.; Vorobiev, E. High Voltage Electrical Discharges, Pulsed Electric Field, and Ultrasound Assisted Extraction of Protein and Phenolic Compounds from Olive Kernel. Food Bioprocess Technol. 2015, 8, 885–894. [Google Scholar] [CrossRef]
- Granato, D.; Nunes, D.S.; Barba, F.J. An integrated strategy between food chemistry, biology, nutrition, pharmacology, and statistics in the development of functional foods: A proposal. Trends Food Sci. Technol. 2017, 62, 13–22. [Google Scholar] [CrossRef]
- Moudache, M.; Colon, M.; Nerín, C.; Zaidi, F. Phenolic content and antioxidant activity of olive by-products and antioxidant film containing olive leaf extract. Food Chem. 2016, 212, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Bouaziz, M.; Fki, I.; Jemai, H.; Ayadi, M.; Sayadi, S. Effect of storage on refined and husk olive oils composition: Stabilization by addition of natural antioxidants from Chemlali olive leaves. Food Chem. 2008, 108, 253–262. [Google Scholar] [CrossRef]
- Pereira, A.P.; Ferreira, I.C.; Marcelino, F.; Valentão, P.; Andrade, P.B.; Seabra, R.; Estevinho, L.; Bento, A.; Pereira, J.A. Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves. Molecules 2007, 12, 1153–1162. [Google Scholar] [CrossRef] [PubMed]
- Ahmad-Qasem, M.H.; Cánovas, J.; Barrajón-Catalán, E.; Micol, V.; Cárcel, J.A.; García-Pérez, J.V. Kinetic and compositional study of phenolic extraction from olive leaves (var. Serrana) by using power ultrasound. Innov. Food Sci. Emerg. Technol. 2013, 17, 120–129. [Google Scholar] [CrossRef]
- Barba, F.J.; Zhu, Z.; Koubaa, M.; Sant’Ana, A.S.; Orlien, V. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends Food Sci. Technol. 2016, 49, 96–109. [Google Scholar] [CrossRef]
- Roselló-Soto, E.; Parniakov, O.; Deng, Q.; Patras, A.; Koubaa, M.; Grimi, N.; Boussetta, N.; Tiwari, B.K.; Vorobiev, E.; Lebovka, N.; et al. Application of Non-conventional Extraction Methods: Toward a Sustainable and Green Production of Valuable Compounds from Mushrooms. Food Eng. Rev. 2016, 8, 214–234. [Google Scholar] [CrossRef]
- Koubaa, M.; Rosello-Sotó, E.; Šic Žlabur, J.; Režek Jambrak, A.; Brnčić, M.; Grimi, N.; Boussetta, N.; Barba, F.J. Current and new insights in the sustainable and green recovery of nutritionally valuable compounds from Stevia rebaudiana Bertoni. J. Agric. Food Chem. 2015, 63, 6835–6846. [Google Scholar] [CrossRef] [PubMed]
- Putnik, P.; Bursać Kovačević, D.; Dragović-Uzelac, V. Influence of Acidity and Extraction Time on the Recovery of Flavonoids from Grape Skin Pomace Optimized by Response Surface Methodology. Chem. Biochem. Eng. Q. 2016, 30, 455–464. [Google Scholar] [CrossRef]
- Chemat, F.; Fabiano-Tixier, A.S.; Abert Vian, M.; Allaf, T.; Vorobiev, E. Solvent-Free Extraction. Compr. Anal. Chem. 2017. [Google Scholar] [CrossRef]
- Baghdikian, B.; Filly, A.; Fabiano-Tixier, A.-S.; Petitcolas, E.; Mabrouki, F.; Chemat, F.; Ollivier, E. Extraction by solvent using microwave and ultrasound-assisted techniques followed by HPLC analysis of Harpagoside from Harpagophytum procumbens and comparison with conventional solvent extraction methods. C. R. Chim. 2016, 19, 692–698. [Google Scholar] [CrossRef]
- Bilgin, M.; Şahin, S. Effects of geographical origin and extraction methods on total phenolic yield of olive tree (Olea europaea) leaves. J. Taiwan Inst. Chem. Eng. 2013, 44, 8–12. [Google Scholar] [CrossRef]
- Putnik, P.; Kovačević, D.B.; Penić, M.; Fegeš, M.; Dragović-Uzelac, V. Microwave-assisted extraction (MAE) of dalmatian sage leaves for the optimal yield of polyphenols: HPLC-DAD identification and quantification. Food Anal. Methods 2016, 9, 2385–2394. [Google Scholar] [CrossRef]
- Périno, S.; Pierson, J.T.; Ruiz, K.; Cravotto, G.; Chemat, F. Laboratory to pilot scale: Microwave extraction for polyphenols lettuce. Food Chem. 2016, 204, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fabiano-Tixier, A.S.; Vian, M.A.; Chemat, F. Solvent-free microwave extraction of bioactive compounds provides a tool for green analytical chemistry. TrAC-Trends Anal. Chem. 2013, 47, 1–11. [Google Scholar] [CrossRef]
- Li, Y.; Skouroumounis, G.K.; Elsey, G.M.; Taylor, D.K. Microwave-assistance provides very rapid and efficient extraction of grape seed polyphenols. Food Chem. 2011, 129, 570–576. [Google Scholar] [CrossRef]
- Hayat, K.; Hussain, S.; Abbas, S.; Farooq, U.; Ding, B.; Xia, S.; Jia, C.; Zhang, X.; Xia, W. Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro. Sep. Purif. Technol. 2009, 70, 63–70. [Google Scholar] [CrossRef]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.H. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Putnik, P.; Bursać Kovačević, D.; Dragović-Uzelac, V. Optimizing Acidity and Extraction Time for Polyphenolic Recovery and Antioxidant Capacity in Grape Pomace Skin Extracts with Response Surface Methodology Approach. J. Food Process. Preserv. 2016, 40, 1256–1263. [Google Scholar] [CrossRef]
- Roselló-Soto, E.; Galanakis, C.M.; Brnćić, M.; Orlien, V.; Trujillo, F.J.; Mawson, R.; Knoerzer, K.; Tiwari, B.K.; Barba, F.J. Clean recovery of antioxidant compounds from plant foods, by-products and algae assisted by ultrasounds processing. Modeling approaches to optimize processing conditions. Trends Food Sci. Technol. 2015, 42, 134–149. [Google Scholar] [CrossRef]
- Simić, V.M.; Rajković, K.M.; Stojičević, S.S.; Veličković, D.T.; Nikolić, N.Č.; Lazić, M.L.; Karabegović, I.T. Optimization of microwave-assisted extraction of total polyphenolic compounds from chokeberries by response surface methodology and artificial neural network. Sep. Purif. Technol. 2016, 160, 89–97. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Allen, J.D.; Kanitkar, A.; Boldor, D. Oil extraction from Scenedesmus obliquus using a continuous microwave system-design, optimization, and quality characterization. Bioresour. Technol. 2011, 102, 3396–3403. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.M.; Rogez, H.; Larondelle, Y. Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Sep. Purif. Technol. 2007, 55, 381–387. [Google Scholar] [CrossRef]
- Kittisuban, P.; Ritthiruangdej, P.; Suphantharika, M. Optimization of hydroxypropylmethylcellulose, yeast β-glucan, and whey protein levels based on physical properties of gluten-free rice bread using response surface methodology. LWT-Food Sci. Technol. 2014, 57, 738–748. [Google Scholar] [CrossRef]
- Saldaña-Robles, A.; Guerra-Sánchez, R.; Maldonado-Rubio, M.I.; Peralta-Hernández, J.M. Optimization of the operating parameters using RSM for the Fenton oxidation process and adsorption on vegetal carbon of MO solutions. J. Ind. Eng. Chem. 2014, 20, 848–857. [Google Scholar] [CrossRef]
- Danish, M.; Hashim, R.; Ibrahim, M.N.M.; Sulaiman, O. Optimized preparation for large surface area activated carbon from date (Phoenix dactylifera L.) stone biomass. Biomass Bioenerg. 2014, 61, 167–178. [Google Scholar] [CrossRef]
- Périno-Issartier, S.; Zill-e-Huma; Abert-Vian, M.; Chemat, F. Solvent free microwave-assisted extraction of antioxidants from Sea buckthorn (Hippophae rhamnoides) food by-products. Food Bioprocess Technol. 2011, 4, 1020–1028. [Google Scholar]
- Ballard, T.S.; Mallikarjunan, P.; Zhou, K.; O’Keefe, S. Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins. Food Chem. 2010, 120, 1185–1192. [Google Scholar] [CrossRef]
- Barba, F.J.; Esteve, M.J.; Tedeschi, P.; Brandolini, V.; Frígola, A. A comparative study of the analysis of antioxidant activities of liquid foods employing spectrophotometric, fluorometric, and chemiluminescent methods. Food Anal. Methods 2013, 6, 317–327. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Li, Y.; Li, P.; Wang, H. Polyphenolic compounds and antioxidant properties of selected China wines. Food Chem. 2009, 112, 454–460. [Google Scholar] [CrossRef]
- Jena, J.; Debata, N.K.; Sahoo, R.K.; Subudhi, E. Phylogenetic study of metallo-β-lactamase producing multidrug resistant Pseudomonas aeruginosa isolates from burn patients. Burns 2015, 41, 1758–1763. [Google Scholar] [CrossRef] [PubMed]
- Şahin, S. A novel technology for extraction of phenolic antioxidants from mandarin (Citrus deliciosa Tenore) leaves: Solvent-free microwave extraction. Korean J. Chem. Eng. 2015, 32, 950–957. [Google Scholar] [CrossRef]
- Malik, N.S.A.; Bradford, J.M. Changes in oleuropein levels during differentiation and development of floral buds in “Arbequina” olives. Sci. Hortic. (Amst.) 2006, 110, 274–278. [Google Scholar] [CrossRef]
- Guinda, A.; Castellano, J.M.; Santos-Lozano, J.M.; Delgado-Hervás, T.; Gutiérrez-Adánez, P.; Rada, M. Determination of major bioactive compounds from olive leaf. LWT-Food Sci. Technol. 2015, 64, 431–438. [Google Scholar] [CrossRef]
- Yu, L.L.; Zhou, K.K.; Parry, J. Antioxidant properties of cold-pressed black caraway, carrot, cranberry, and hemp seed oils. Food Chem. 2005, 91, 723–729. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [PubMed]
- Apak, R.; Güçlü, K.; Özyürek, M.; Çelik, S.E. Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim. Acta 2008, 160, 413–419. [Google Scholar] [CrossRef]
- Jorgensen, J.H.; Hindler, J.F.; Reller, L.B.; Weinstein, M.P. New consensus guidelines from the Clinical and Laboratory Standards Institute for antimicrobial susceptibility testing of infrequently isolated or fastidious bacteria. Clin. Infect. Dis. 2007, 44, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Haykin, S. Neural Networks: A Comprehensive Foundation; Haykin, S., Ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Filly, A.; Fernandez, X.; Minuti, M.; Visinoni, F.; Cravotto, G.; Chemat, F. Solvent Free Microwave Extraction of Essential Oil from Aromatic Herbs. From laboratory to pilot and industrial scale. Food Chem. 2014, 150, 193–198. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the extracted compounds are available from the authors. |
No. | X1 (g) | X2 (W) | X3 (min) | TPC Amount (ppm) | ||
---|---|---|---|---|---|---|
Experimental | RSM Predicted | ANN Predicted | ||||
1 | 10 | 350 | 3 | 1.46 ± 0.04 | 0.44 | 1.27 |
2 | 5 | 250 | 2 | 2.48 ± 0.06 | 2.06 | 2.74 |
3 | 5 | 350 | 2 | 1.32 ± 0.04 | 1.11 | 1.51 |
4 | 7.5 | 300 | 2.5 | 1.72 ± 0.01 | 1.15 | 1.02 |
5 | 5 | 350 | 3 | 1.61 ± 0.01 | 2.04 | 1.94 |
6 | 7.5 | 350 | 2.5 | 1.30 ± 0.03 | 0.18 | 1.01 |
7 | 7.5 | 300 | 3 | 2.57 ± 0.03 | 1.50 | 2.58 |
8 | 7.5 | 300 | 2.5 | 1.82 ± 0.01 | 1.15 | 1.11 |
9 | 7.5 | 250 | 2.5 | 1.30 ± 0.01 | 0.74 | 1.32 |
10 | 10 | 250 | 3 | 1.84 ± 0.01 | 0.61 | 1.77 |
11 | 5 | 300 | 2.5 | 2.62 ± 0.03 | 1.40 | 2.47 |
12 | 5 | 250 | 3 | 2.17 ± 0.02 | 1.20 | 2.24 |
13 | 10 | 250 | 2 | 1.56 ± 0.02 | 1.02 | 1.40 |
14 | 7.5 | 300 | 2.5 | 1.85 ± 0.02 | 1.15 | 1.78 |
15 | 7.5 | 300 | 2 | 2.58 ± 0.04 | 1.19 | 2.76 |
16 | 7.5 | 300 | 2.5 | 1.75 ± 0.04 | 1.15 | 1.20 |
17 | 7.5 | 300 | 2.5 | 1.82 ± 0.01 | 1.15 | 1.87 |
18 | 10 | 300 | 2.5 | 1.19 ± 0.01 | 0.74 | 1.34 |
19 | 10 | 350 | 2 | 0.87 ± 0.00 | 0.40 | 1.16 |
20 | 7.5 | 300 | 2.5 | 1.80 ± 0.00 | 1.15 | 1.77 |
No. | X1 (g) | X2 (W) | X3 (min) | Oleuropein Amount (ppm) | ||
Experimental | RSM Predicted | ANN Predicted | ||||
1 | 10 | 350 | 3 | 0.0264 ± 0.00 | 0.0142 | 0.0272 |
2 | 5 | 250 | 2 | 0.0596 ± 0.01 | 0.0518 | 0.0592 |
3 | 5 | 350 | 2 | 0.0286 ± 0.00 | 0.0145 | 0.0278 |
4 | 7.5 | 300 | 2.5 | 0.0234 ± 0.00 | 0.0115 | 0.0242 |
5 | 5 | 350 | 3 | 0.0100 ± 0.00 | 0.0031 | 0.0103 |
6 | 7.5 | 350 | 2.5 | 0.0196 ± 0.00 | 0.0107 | 0.0208 |
7 | 7.5 | 300 | 3 | 0.0123 ± 0.00 | 0.0025 | 0.0125 |
8 | 7.5 | 300 | 2.5 | 0.0299 ± 0.00 | 0.0115 | 0.0242 |
9 | 7.5 | 250 | 2.5 | 0.0256 ± 0.00 | 0.0249 | 0.0372 |
10 | 10 | 250 | 3 | 0.0114 ± 0.00 | 0.0054 | 0.0235 |
11 | 5 | 300 | 2.5 | 0.0249 ± 0.01 | 0.0183 | 0.0251 |
12 | 5 | 250 | 3 | 0.0252 ± 0.00 | 0.0156 | 0.0595 |
13 | 10 | 250 | 2 | 0.0294 ± 0.00 | 0.0163 | 0.0316 |
14 | 7.5 | 300 | 2.5 | 0.0261 ± 0.00 | 0.0115 | 0.0254 |
15 | 7.5 | 300 | 2 | 0.0134 ± 0.00 | 0.0137 | 0.0150 |
16 | 7.5 | 300 | 2.5 | 0.0202 ± 0.01 | 0.0115 | 0.0205 |
17 | 7.5 | 300 | 2.5 | 0.0200 ± 0.00 | 0.0115 | 0.0200 |
18 | 10 | 300 | 2.5 | 0.0090 ± 0.00 | 0.0061 | 0.0097 |
19 | 10 | 350 | 2 | 0.0108 ± 0.00 | 0.0029 | 0.0117 |
20 | 7.5 | 300 | 2.5 | 0.0200 ± 0.01 | 0.0115 | 0.0211 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value Prob > F |
---|---|---|---|---|---|
Model (TPC) | 2.006 × 10−3 | 9 | 2.229 × 10−4 | 5.95 | 0.0051 |
X1 | 3.751 × 10−4 | 1 | 3.751 × 10−4 | 10.01 | 0.0101 |
X2 | 3.119 × 10−4 | 1 | 3.119 × 10−4 | 8.32 | 0.0162 |
X3 | 3.202 × 10−4 | 1 | 3.202 × 10−4 | 8.55 | 0.0152 |
X1X2 | 2.266 × 10−4 | 1 | 2.266 × 10−4 | 6.05 | 0.0337 |
X1X3 | 3.215 × 10−4 | 1 | 3.215 × 10−4 | 8.58 | 0.0151 |
X2X3 | 3.064 × 10−4 | 1 | 3.064 × 10−4 | 8.18 | 0.0170 |
X12 | 1.412 × 10−6 | 1 | 1.412 × 10−6 | 0.038 | 0.8500 |
X22 | 1.103 × 10−4 | 1 | 1.103 × 10−4 | 2.94 | 0.1170 |
X32 | 3.097 × 10−5 | 1 | 3.097 × 10−5 | 0.83 | 0.3847 |
Residual | 3.747 × 10−4 | 10 | 3.747 × 10−5 | ||
Lack of Fit | 2.920 × 10−4 | 5 | 5.840 × 10−5 | 3.53 | 0.0962 |
Pure Error | 8.269 × 10−5 | 5 | 1.654 × 10−5 | ||
Cor Total | 2.381 × 10−3 | 19 | |||
Model (oleuropein) | 3.92 | 9 | 0.44 | 6.00 | 0.0049 |
X1 | 1.08 | 1 | 1.08 | 14.85 | 0.0032 |
X2 | 0.78 | 1 | 0.78 | 10.72 | 0.0084 |
X3 | 0.069 | 1 | 0.069 | 0.95 | 0.3528 |
X1X2 | 0.055 | 1 | 0.055 | 0.76 | 0.4042 |
X1X3 | 0.099 | 1 | 0.099 | 1.37 | 0.2690 |
X2X3 | 0.10 | 1 | 0.10 | 1.41 | 0.2623 |
X12 | 0.018 | 1 | 0.018 | 0.25 | 0.6307 |
X22 | 1.29 | 1 | 1.29 | 17.77 | 0.0018 |
X32 | 0.95 | 1 | 0.95 | 13.08 | 0.0047 |
Residual | 0.73 | 10 | 0.073 | ||
Lack of Fit | 0.71 | 5 | 0.14 | 54.91 | 0.0002 |
Pure Error | 0.013 | 5 | 2.596 × 10−3 | ||
Cor Total | 4.64 | 19 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Şahin, S.; Samli, R.; Tan, A.S.B.; Barba, F.J.; Chemat, F.; Cravotto, G.; Lorenzo, J.M. Solvent-Free Microwave-Assisted Extraction of Polyphenols from Olive Tree Leaves: Antioxidant and Antimicrobial Properties. Molecules 2017, 22, 1056. https://doi.org/10.3390/molecules22071056
Şahin S, Samli R, Tan ASB, Barba FJ, Chemat F, Cravotto G, Lorenzo JM. Solvent-Free Microwave-Assisted Extraction of Polyphenols from Olive Tree Leaves: Antioxidant and Antimicrobial Properties. Molecules. 2017; 22(7):1056. https://doi.org/10.3390/molecules22071056
Chicago/Turabian StyleŞahin, Selin, Ruya Samli, Ayşe Seher Birteksöz Tan, Francisco J. Barba, Farid Chemat, Giancarlo Cravotto, and José M. Lorenzo. 2017. "Solvent-Free Microwave-Assisted Extraction of Polyphenols from Olive Tree Leaves: Antioxidant and Antimicrobial Properties" Molecules 22, no. 7: 1056. https://doi.org/10.3390/molecules22071056
APA StyleŞahin, S., Samli, R., Tan, A. S. B., Barba, F. J., Chemat, F., Cravotto, G., & Lorenzo, J. M. (2017). Solvent-Free Microwave-Assisted Extraction of Polyphenols from Olive Tree Leaves: Antioxidant and Antimicrobial Properties. Molecules, 22(7), 1056. https://doi.org/10.3390/molecules22071056