Selenium Enrichment of Horticultural Crops
Abstract
:1. Introduction
1.1. Selenium in Animals and Humans
1.2. Selenium in Plants
2. Selenium Enrichment of Agricultural Crops
Selenium Supplementation in Plants
3. Selenium Enrichment of Leafy Vegetable: Effects on Yield, Quality and Senescence
4. Selenium Enrichment of Fruit Crops: Effects on Yield, Quality and Senescence
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Birringer, M.; Pilawa, S.; Flohé, L. Trends in selenium biochemistry. Nat. Prod. Rep. 2002, 19, 693–718. [Google Scholar] [CrossRef] [PubMed]
- Tapiero, H.; Townsend, D.M.; Tew, K.D. The antioxidant role of selenium and seleno-compounds. Biomed. Pharmacother. 2003, 57, 134–144. [Google Scholar] [CrossRef]
- Rotruck, J.T.; Pope, A.L.; Ganther, H.E.; Swanson, A.B.; Hafeman, D.G.; Hoekstra, W.G. Selenium: Biochemical Role as a Component of Glutathione Peroxidase. Science 1973, 179, 588–590. [Google Scholar] [CrossRef] [PubMed]
- Ursini, F.; Bindoli, A. The role of selenium peroxidases in the protection against oxidative damage of membranes. Chem. Phys. Lipids 1987, 44, 255–276. [Google Scholar] [CrossRef]
- Arthur, J.R.; Nicol, F.; Beckett, G.J. Selenium deficiency, thyroid hormone metabolism, and thyroid hormone deiodinases. Am. J. Clin. Nutr. 1993, 57, 236S–239S. [Google Scholar] [PubMed]
- Gladyshev, V.N.; Stadtman, T.C.; Hatfield, D.L.; Jeang, K.T. Levels of major selenoproteins in T cells decrease during HIV infection and low molecular mass selenium compounds increase. Proc. Natl. Acad. Sci. USA 1999, 96, 835–839. [Google Scholar] [CrossRef] [PubMed]
- Cabaraux, J.-F.; Hornick, J.-L.; Schoonheere, N.; Istasse, L.; Dufrasne, I. Effects of selenium enriched fertilizers on Se content in feedstuffs and on the selenium status in a beef cattle herd. In Proceedings of the British Society of Animal Science, York, UK, 27–29 March 2006; Available online: http://orbi.ulg.ac.be/handle/2268/35407 (accessed on 30 March 2017).
- Suttle, N. Mineral Nutrition of Livestock, Hulbert, S., Hill, K., Eds.; 4th ed.; CABI: Wallingford, WC, USA, 2010. [Google Scholar] [CrossRef]
- Shamberger, R.J. Selenium in human health and disease. Proceedings of a Nordic Symposium of Mineral Elements 80, Helsinki-Espoo, Finland, 9–11 December 1980; Mineral Elements 80: Helsinki, Finland, 1981; pp. 501–509. [Google Scholar]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Hamilton, S.J. Review of selenium toxicity in the aquatic food chain. Sci. Total Environ. 2004, 326, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Krinsky, N.; Beecher, G.R.; Burk, R.F.; Chan, A.C.; Erdman, J.W.; Jacob, R.A.; Jialal, I.; Kolonel, L.N.; Marshall, J.R.; Taylor Mayne, P.R.L.; et al. Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. In Institute of Medicine; The National Academies Press: Washington, DC, USA, 2000; Available online: https://www.nap.edu/catalog/9810/dietary-reference-intakes-for-vitamin-c-vitamin-e-selenium-and-carotenoids (accessed on 30 March 2017).
- Combs, G.F., Jr. The search for the nutritional role of selenium: A success story in poultry nutrition. Feed Manag. 1980. ISSN: 0014-956X. [Google Scholar]
- Yang, G.; Wang, S.; Zhou, R.; Sun, S. Endemic selenium intoxication of humans in China. Am. J. Clin. Nutr. 1983, 37, 872–881. [Google Scholar] [CrossRef]
- Raisbeck, M.F. Selenosis. Vet. Clin. North Am. Food Anim. Pract. 2000, 16, 465–480. [Google Scholar] [CrossRef]
- Dhillon, K.S.; Dhillon, S.K. Quality of underground water and its contribution towards selenium enrichment of the soil-plant system for a seleniferous region of northwest India. J. Hydrol. 2003, 272, 120–130. [Google Scholar] [CrossRef]
- Hartikainen, H.; Xue, T.; Piironen, V. Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant Soil 2000, 225, 193–200. [Google Scholar] [CrossRef]
- Terry, N.; Zayed, A.M.; Souza, M.P. De; Tarun, A.S. Selenium in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000, 51, 401–432. [Google Scholar] [CrossRef] [PubMed]
- Djanaguiraman, M.; Devi, D.D.; Shanker, A.K.; Sheeba, J.A.; Bangarusamy, U. Selenium-An antioxidative protectant in soybean during senescence. Plant Soil 2005, 272, 77–86. [Google Scholar] [CrossRef]
- Zhu, Y.G.; Pilon-Smits, E.A. H.; Zhao, F.J.; Williams, P.N.; Meharg, A.A. Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci. 2009, 14, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Bañuelos, G.S.; Meek, D.W. Accumulation of Selenium in Plants Grown on Selenium-Treated Soil. J. Environ. Qual. 1990, 19, 772. [Google Scholar] [CrossRef]
- Ellis, D.R.; Salt, D.E. Plants, selenium and human health. Curr. Opin. Plant Biol. 2003, 6, 273–279. [Google Scholar] [CrossRef]
- Brown, T.A.; Shrift, A. Selenium: Toxicity and Tolerance in Higher Plants. Biol. Rev. 1982, 57, 59–84. [Google Scholar] [CrossRef]
- White, P.J.; Bowen, H.C.; Parmaguru, P.; Fritz, M.; Spracklen, W.P.; Spiby, R.E.; Meacham, M.C.; Mead, A.; Harriman, M.; Trueman, L.J.; et al. Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J. Exp. Bot. 2004, 55, 1927–1937. [Google Scholar] [CrossRef] [PubMed]
- Thavarajah, D.; Ruszkowski, J.; Vandenberg, A. High potential for selenium biofortification of lentils (Lens culinaris L.). J. Agric. Food Chem. 2008, 56, 10747–10753. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Alarcon, M.; Cabrera-Vique, C. Selenium in food and the human body: A review. Sci. Total Environ. 2008, 400, 115–141. [Google Scholar] [CrossRef] [PubMed]
- Xue, T.; Hartikainen, H.; Piironen, V. Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant Soil 2001, 237, 55–61. [Google Scholar] [CrossRef]
- Hu, Q.; Xu, J.; Pang, G. Effect of selenium on the yield and quality of green tea leaves harvested in early spring. J. Agric. Food Chem. 2003, 51, 3379–3381. [Google Scholar] [CrossRef] [PubMed]
- Turakainen, M.; Hartikainen, H.; Ekholm, P.; Seppänen, M.M. Distribution of selenium in different biochemical fractions and raw darkening degree of potato (Solanum tuberosum L.) tubers supplemented with selenate. J. Agric. Food Chem. 2006, 54, 8617–8622. [Google Scholar] [CrossRef] [PubMed]
- Schiavon, M.; Pilon-Smits, E.A.H. Selenium Biofortification and Phytoremediation Phytotechnologies: A Review. J. Environ. Qual. 2017, 46, 10. [Google Scholar] [CrossRef] [PubMed]
- Seppänen, M.; Turakainen, M.; Hartikainen, H. Selenium effects on oxidative stress in potato. Plant Sci. 2003, 165, 311–319. [Google Scholar] [CrossRef]
- Cartes, P.; Gianfreda, L.; Mora, M.L. Uptake of selenium and its antioxidant activity in ryegrass when applied as selenate and selenite forms. Plant Soil 2005, 276, 359–367. [Google Scholar] [CrossRef]
- De la Luz Mora, M.; Pinilla, L.; Rosas, A.; Cartes, P. Selenium uptake and its influence on the antioxidative system of white clover as affected by lime and phosphorus fertilization. Plant Soil 2008, 303, 139–149. [Google Scholar] [CrossRef]
- Carvalho, K.M.; Gallardo-Williams, M.T.; Benson, R.F.; Martin, D.F. Effects of selenium supplementation on four agricultural crops. J. Agric. Food Chem. 2003, 51, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.R.; Jiang, X.G.; Peng, S.F.; Li, F.C.; Liu, J.; Chen, D. Effect of selenium content on the quality and functional components of selenium-riched Camellia oleifera oil. J. Chin. Inst. Food Sci. Technol. 2015, 15, 142–149. [Google Scholar] [CrossRef]
- Lv, J.; Wu, J.; Zuo, J.; Fan, L.; Shi, J.; Gao, L.; Li, M.; Wang, Q. Effect of Se treatment on the volatile compounds in broccoli. Food Chem. 2017, 216, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Malorgio, F.; Diaz, K.E.; Ferrante, A.; Mensuali-Sodi, A.; Pezzarossa, B. Effects of selenium addition on minimally processed leafy vegetables grown in a floating system. J. Sci. Food Agric. 2009, 89, 2243–2251. [Google Scholar] [CrossRef]
- Pezzarossa, B.; Piccotino, D.; Shennan, C.; Malorgio, F. Uptake and distribution of selenium in tomato plants as affected by genotype and sulphate supply. J. Plant Nutr. 1999, 22, 1613–1635. [Google Scholar] [CrossRef]
- Pezzarossa, B.; Rosellini, I.; Borghesi, E.; Tonutti, P.; Malorgio, F. Effects of Se-enrichment on yield, fruit composition and ripening of tomato (Solanum lycopersicum) plants grown in hydroponics. Sci. Hortic. (Amsterdam) 2014, 165, 106–110. [Google Scholar] [CrossRef]
- Pezzarossa, B.; Remorini, D.; Gentile, M.L.; Massai, R. Effects of foliar and fruit addition of sodium selenate on selenium accumulation and fruit quality. J. Sci. Food Agric. 2012, 92, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Yin, X.; Bañuelos, G.S.; Lin, Z.Q.; Zhu, Z.; Liu, Y.; Yuan, L.; Li, M. Effect of selenium on control of postharvest gray mold of tomato fruit and the possible mechanisms involved. Front. Microbiol. 2016, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Djanaguiraman, M.; Prasad, P.V.V.; Seppanen, M. Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol. Biochem. 2010, 48, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Fujita, M. Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol. Trace Elem. Res. 2011, 143, 1758–1776. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Chen, Y.; Zhang, X.; Li, M. Effect of foliar treatment of sodium selenate on postharvest decay and quality of tomato fruits. Sci. Hortic. (Amsterdam) 2016, 198, 304–310. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, Y.; Shi, G.; Zhang, X. Selenium delays tomato fruit ripening by inhibiting ethylene biosynthesis and enhancing the antioxidant defense system. Food Chem. 2017, 219, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. The use of high-selenium yeast to raise selenium status: How does it measure up? Br. J. Nutr. 2004, 92, 557–573. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. Food-chain selenium and human health: emphasis on intake. Br. J. Nutr. 2008, 100, 254–268. [Google Scholar] [CrossRef] [PubMed]
- Broadley, M.R.; White, P.J.; Bryson, R.J.; Meacham, M.C.; Bowen, H.C.; Johnson, S.E.; Hawkesford, M.J.; McGrath, S.P.; Zhao, F.-J.; Breward, N.; et al. Biofortification of UK food crops with selenium. Proc. Nutr. Soc. 2006, 65, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Broadley, M.R.; Alcock, J.; Alford, J.; Cartwright, P.; Foot, I.; Fairweather-Tait, S.J.; Hart, D.J.; Hurst, R.; Knott, P.; McGrath, S.P.; et al. Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant Soil 2010, 332, 5–18. [Google Scholar] [CrossRef]
- Fairweather-Tait, S.J.; Bao, Y.; Broadley, M.R.; Collings, R.; Ford, D.; Hesketh, J.E.; Hurst, R. Selenium in human health and disease. Antioxid. Redox Signal. 2011, 14, 1337–1383. [Google Scholar] [CrossRef] [PubMed]
- Thomson, C.D. Selenium and iodine intakes and status in New Zealand and Australia. Br. J. Nutr. 2004, 91, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.N.; Lombi, E.; Sun, G.X.; Scheckel, K.; Zhu, Y.G.; Feng, X.; Zhu, J.; Carey, A.M.; Adomako, E.; Lawgali, Y.; et al. Selenium characterization in the global rice supply chain. Environ. Sci. Technol. 2009, 43, 6024–6030. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.C.; Fordyce, F.M.; Rayman, M.P. Factors controlling the distribution of selenium in the environment and their impact on health and nutrition. Proc. Nutr. Soc. 2010, 69, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Benemariya, H.; Robberecht, H.; Deelstra, H. Daily dietary intake of copper, zinc and selenium by different population groups in Burundi, Africa. Sci. Total Environ. 1993, 136, 49–76. [Google Scholar] [CrossRef]
- Calvo, M.S.; Whiting, S.J. Survey of current vitamin D food fortification practices in the United States and Canada. J. Steroid Biochem. Mol. Biol. 2013, 136, 211–213. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Galera, S.; Rojas, E.; Sudhakar, D.; Zhu, C.; Pelacho, A.M.; Capell, T.; Christou, P. Critical evaluation of strategies for mineral fortification of staple food crops. Transgenic Res. 2010, 19, 165–180. [Google Scholar] [CrossRef] [PubMed]
- Bañuelos, G.S.; Lin, Z.Q. Use and Development of Biofortified Agricultural Products; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar] [CrossRef]
- Carvalho, S.M. P.; Vasconcelos, M.W. Producing more with less: Strategies and novel technologies for plant-based food biofortification. Food Res. Int. 2013, 54, 961–971. [Google Scholar] [CrossRef]
- Hefferon, K.L. Nutritionally enhanced food crops; progress and perspectives. Int. J. Mol. Sci. 2015, 16, 3895–3914. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Gómez, J.; Twyman, R.M.; Zhu, C.; Farré, G.; Serrano, J.C.E.; Portero-Otin, M.; Muñoz, P.; Sandmann, G.; Capell, T.; Christou, P.; et al. Biofortification of crops with nutrients: Factors affecting utilization and storage. Curr. Opin. Biotechnol. 2016, 44, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Hart, D.J.; Fairweather-Tait, S.J.; Broadley, M.R.; Dickinson, S.J.; Foot, I.; Knott, P.; McGrath, S.P.; Mowat, H.; Norman, K.; Scott, P.R.; et al. Selenium concentration and speciation in biofortified flour and bread: Retention of selenium during grain biofortification, processing and production of Se-enriched food. Food Chem. 2011, 126, 1771–1778. [Google Scholar] [CrossRef] [PubMed]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets - Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef] [PubMed]
- Landini, M.; Gonzali, S.; Perata, P. Iodine biofortification in tomato. J. Plant Nutr. Soil Sci. 2011, 174, 480–486. [Google Scholar] [CrossRef]
- Eurola, M.H.; Ekholm, P.I.; Ylinen, M.E.; Varo, P.T.; Koivistoinen, P.E. Selenium in Finnish foods after beginning the use of selenate-supplemented fertilisers. J. Sci. Food Agric. 1991, 56, 57–70. [Google Scholar] [CrossRef]
- Poblaciones, M.J.; Rodrigo, S.; Santamaría, O.; Chen, Y.; McGrath, S.P. Agronomic selenium biofortification in Triticum durum under Mediterranean conditions: From grain to cooked pasta. Food Chem. 2014, 146, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Hawkesford, M.J.; Zhao, F.J. Strategies for increasing the selenium content of wheat. J. Cereal Sci. 2007, 46, 282–292. [Google Scholar] [CrossRef]
- Malagoli, M.; Schiavon, M.; Dall’Acqua, S.; Pilon-Smits, E.A.H. Effects of selenium biofortification on crop nutritional quality. Front. Plant Sci. 2015, 6, 280. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhang, Z.; Qin, G.; Tian, S. Effects of brassinosteroids on postharvest disease and senescence of jujube fruit in storage. Postharvest Biol. Technol. 2010, 56, 50–55. [Google Scholar] [CrossRef]
- Finley, J.W. Selenium Accumulation in Plant Foods. Nutr. Rev. 2005, 63, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Hartikainen, H. Biogeochemistry of selenium and its impact on food chain quality and human health. J. Trace Elem. Med. Biol. 2005, 18, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Hurst, R.; Armah, C.N.; Dainty, J.R.; Hart, D.J.; Teucher, B.; Goldson, A.J.; Broadley, M.R.; Motley, A.K.; Fairweather-Tait, S.J. Establishing optimal selenium status: Results of a randomized, double-blind, placebo-controlled trial. Am. J. Clin. Nutr. 2010, 91, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Kotrebai, M.; Birringer, M.; Tyson, J.F.; Block, E.; Uden, P.C. Selenium speciation in enriched and natural samples by HPLC-ICP-MS and HPLC-ESI-MS with perfluorinated carboxylic acid ion-pairing agents. Analyst 2000, 125, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Ip, C.; Kotrebai, M.; Birringer, M.; Tyson, J.; Block, E.; Uden, P.C.; Lisk, D.J. Chemical speciation influences comparative activity of selenium-enriched garlic and yeast in mammary cancer prevention. J. Agric. Food Chem. 2000, 48. [Google Scholar] [CrossRef]
- Finley, J.W.; Ip, C.; Lisk, D.J.; Davis, C.D.; Hintze, K.J.; Whanger, P.D. Cancer-protective properties of high-Selenium broccoli. J. Agric. Food Chem. 2001, 49, 2679–2683. [Google Scholar] [CrossRef] [PubMed]
- Mechora, Š.; Stibilj, V.; Radešček, T.; Gaberščik, A.; Germ, M. Impact of se (VI) fertilization on se concentration in different parts of red cabbage plants. J. Food Agric. Environ. 2011, 9, 357–361. [Google Scholar]
- Mechora, Š.; Stibilj, V.; Kreft, I.; Germ, M. The Physiology and Biochemical Tolerance of Cabbage to Se (VI) Addition to the Soil and by Foliar Spraying. J. Plant Nutr. 2014, 37, 2157–2169. [Google Scholar] [CrossRef]
- Premarathna, L.; McLaughlin, M.J.; Kirby, J.K.; Hettiarachchi, G.M.; Stacey, S.; Chittleborough, D.J. Selenate-enriched urea granules are a highly effective fertilizer for selenium biofortification of paddy rice grain. J. Agric. Food Chem. 2012, 60, 6037–6044. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, K.F.M.; Berton, R.S.; Coscione, A.R. Selenium biofortification of rice and radish: Effect of soil texture and efficiency of two extractants. Plant Soil Environ. 2014, 60, 105–110. [Google Scholar]
- Chilimba, A.D.C.; Young, S.D.; Black, C.R.; Meacham, M.C.; Lammel, J.; Broadley, M.R. Agronomic biofortification of maize with selenium (Se) in Malawi. F. Crop. Res. 2012, 125, 118–128. [Google Scholar] [CrossRef]
- Bañuelos, G.S.; Arroyo, I.; Pickering, I.J.; Yang, S.I.; Freeman, J.L. Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food Chem. 2015, 166, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Freeman, J.L.; Bañuelos, G.S. Selection of salt and boron tolerant selenium hyperaccumulator Stanleya pinnata genotypes and characterization of Se phytoremediation from agricultural drainage sediments. Environ. Sci. Technol. 2011, 45, 9703–9710. [Google Scholar] [CrossRef] [PubMed]
- Bañuelos, G.S.; Da Roche, J.; Robinson, J. Developing selenium-enriched animal feed and biofuel from canola planted for managing Se-laden drainage waters in the westside of central California. Int. J. Phytoremediat. 2010, 12, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Poggi, V.; Arcioni, A.; Filippini, P.; Pifferi, P.G. Foliar application of selenite and selenate to potato (Solanum tuberosum): Effect of a ligand agent on selenium content of tubers. J. Agric. Food Chem. 2000, 48, 4749–4751. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yang, F.; Xu, J.; Hu, Y.; Hu, Q.; Zhang, Y.; Pan, G. Determination of selenium concentration of rice in China and effect of fertilization of selenite and selenate on selenium content of rice. J. Agric. Food Chem. 2002, 50, 5128–5130. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Chen, L.; Hu, Q.; Pan, G. Effect of the application of selenium on selenium content of soybean and its products. Biol. Trace Elem. Res. 2003, 93, 249–256. [Google Scholar] [CrossRef]
- Stibilj, V.; Kreft, I.; Smrkolj, P.; Osvald, J. Enhanced selenium content in buckwheat (Fagopyrum esculentum Moench) and pumpkin (Cucurbita pepo L.) seeds by foliar fertilisation. Eur. Food Res. Technol. 2004, 219, 142–144. [Google Scholar] [CrossRef]
- Smrkolj, P.; Pograjc, L.; Hlastan-Ribič, C.; Stibilj, V. Selenium content in selected Slovenian foodstuffs and estimated daily intakes of selenium. Food Chem. 2005, 90, 691–697. [Google Scholar] [CrossRef]
- Kápolna, E.; Hillestrøm, P.R.; Laursen, K.H.; Husted, S.; Larsen, E.H. Effect of foliar application of selenium on its uptake and speciation in carrot. Food Chem. 2009, 115, 1357–1363. [Google Scholar] [CrossRef]
- Šindelářová, K.; Száková, J.; Tremlová, J.; Mestek, O.; Praus, L.; Kaňa, A.; Najmanová, J.; Tlustoš, P. The response of broccoli (Brassica oleracea convar. italica) varieties on foliar application of selenium: Uptake, translocation, and speciation. Food Addit. Contam. Part A. Chem. Anal. Control. Expo. Risk Assess. 2015, 32, 2027–2038. [Google Scholar] [CrossRef]
- Schiavon, M.; Berto, C.; Malagoli, M.; Trentin, A.; Sambo, P.; Dall’Acqua, S.; Pilon-Smits, E.A.H. Selenium Biofortification in Radish Enhances Nutritional Quality via Accumulation of Methyl-Selenocysteine and Promotion of Transcripts and Metabolites Related to Glucosinolates, Phenolics, and Amino Acids. Front. Plant Sci. 2016, 7, 1371. [Google Scholar] [CrossRef] [PubMed]
- Hawrylak-Nowak, B. Enhanced selenium content in sweet basil (Ocimum basilicum L.) by foliar fertilization. Veg. Crop. Res. Bull. 2008, 69, 63–72. [Google Scholar] [CrossRef]
- Kopsell, D.A.; Sams, C.E.; Barickman, T.C.; Deyton, D.E.; Kopsell, D.E. Selenization of basil and cilantro through foliar applications of selenate-selenium and selenite-selenium. HortScience 2009, 44, 438–442. [Google Scholar]
- Barátová, S.; Mezeyova, I.; Hegedusová, A.; Andrejiová, A. Impact of biofortification, variety and cutting on chosen qualitative characteristic of basil (Ocimum basilicum L.). Acta Fytotech. Zootech. 2015, 18, 71–75. [Google Scholar] [CrossRef]
- Mezeyová, I.; Hegedűsová, A.; Andrejiová, A.; Hegedűs, O.; Golian, M. Phytomass and content of essential oils in Ocimum basilicum after foliar treatment with selenium. J. Int. Sci. Publ. 2016, 4, 19–27. [Google Scholar]
- Schiavon, M.; Dall’Acqua, S.; Mietto, A.; Pilon-Smits, E.A.H.; Sambo, P.; Masi, A.; Malagoli, M. Selenium fertilization alters the chemical composition and antioxidant constituents of tomato (Solanum lycopersicon L.). J. Agric. Food Chem. 2013, 61, 10542–10554. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Liang, Y.; Gao, D.; An, X.; Kong, F. Spraying foliar selenium fertilizer on quality of table grape (Vitis vinifera L.) from different source varieties. Sci. Hortic. (Amsterdam) 2017, 218, 87–94. [Google Scholar] [CrossRef]
- Germ, M.; Stibilj, V.; Osvald, J.J.; Kreft, I. Effect of selenium foliar application on chicory (Cichorium intybus L.). J. Agric. Food Chem. 2007, 55, 795–798. [Google Scholar] [CrossRef] [PubMed]
- Diaz, K.E.; Mensuali-Sodi, A.; Serra, G.; Malorgio, F.; Tognoni, F.; Ferrante, A.; Pezzarossa, B. Effect of selenium addition on phenylalanine ammonia lyase (PAL) activity and ethylene production in leafy vegetables. Adv. Plant Ethyl. Res. 2007, 207–209. [Google Scholar] [CrossRef]
- MacLeod, J.; Gupta, U.C.; Milburn, P.; Sanderson, J.B. Selenium concentration in plant material, drainage and surface water as influenced by Se applied to barley foliage in a barley-red clover-potato rotation. Can. J. Soil Sci. 1998, 78, 685–688. [Google Scholar] [CrossRef]
- Ožbolt, L.; Kreft, S.; Kreft, I.; Germ, M.; Stibilj, V. Distribution of selenium and phenolics in buckwheat plants grown from seeds soaked in Se solution and under different levels of UV-B radiation. Food Chem. 2008, 110, 691–696. [Google Scholar] [CrossRef]
- Nawaz, F.; Ashraf, M.Y.; Ahmad, R.; Waraich, E.A. Selenium (Se) seed priming induced growth and biochemical changes in wheat under water deficit conditions. Biol. Trace Elem. Res. 2013, 151, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Ramos, S.J.; Faquin, V.; Guilherme, L.R.G.; Castro, E.M.; Ávila, F.W.; Carvalho, G.S.; Bastos, C.E.A.; Oliveira, C. Selenium biofortification and antioxidant activity in lettuce plants fed with selenate and selenite. Plant Soil Environ. 2010, 56, 584–588. [Google Scholar]
- Smoleń, S.; Kowalska, I.; Sady, W. Assessment of biofortification with iodine and selenium of lettuce cultivated in the NFT hydroponic system. Sci. Hortic. (Amsterdam) 2014, 166, 9–16. [Google Scholar] [CrossRef]
- Ferrarese, M.; Mahmoodi Sourestani, M.; Quattrini, E.; Schiavi, M.; Ferrante, A. Biofortification of Spinach Plants Applying Selenium in the Nutrient Solution of Floating System. Veg. Crop. Res. Bull. 2012, 76, 127–136. [Google Scholar] [CrossRef]
- Hernández-Castro, E.; Trejo-Téllez, L.; Gómez-Merino, F.; Rodríguez-Mendoza, M.; Sánchez-García, P.; Robledo-Paz, A. Bioaccumulation of iron, selenium, nitrate, and proteins in chard shoots. J. Soil Sci. Plant Nutr. 2015, 15, 694–710. [Google Scholar] [CrossRef]
- Goicoechea, N.; Garmendia, I.; Fabbrin, E.G.; Bettoni, M.M.; Palop, J.A.; Sanmartín, C. Selenium fertilization and mycorrhizal technology may interfere in enhancing bioactive compounds in edible tissues of lettuces. Sci. Hortic. (Amsterdam) 2015, 195, 163–172. [Google Scholar] [CrossRef]
- Sanmartín, C.; Garmendia, I.; Romano, B.; Díaz, M.; Palop, J.A.; Goicoechea, N. Mycorrhizal inoculation affected growth, mineral composition, proteins and sugars in lettuces biofortified with organic or inorganic selenocompounds. Sci. Hortic. 2014, 180, 40–51. [Google Scholar] [CrossRef]
- Pezzarossa, B.; Petruzzelli, G.; Petacco, F.; Malorgio, F.; Ferri, T. Absorption of selenium by Lactuca sativa as affected by carboxymethylcellulose. Chemosphere 2007, 67, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Businelli, D.; D’Amato, R.; Onofri, A.; Tedeschini, E.; Tei, F. Se-enrichment of cucumber (Cucumis sativus L.), lettuce (Lactuca sativa L.) and tomato (Solanum lycopersicum L. Karst) through fortification in pre-transplanting. Sci. Hortic. (Amsterdam) 2015, 197, 697–704. [Google Scholar] [CrossRef]
- Zhu, Y.G.; Huang, Y.; Hu, Y.; Liu, Y.; Christie, P. Interactions between selenium and iodine uptake by spinach (Spinacia oleracea L.) in solution culture. Plant Soil 2004, 261, 99–105. [Google Scholar] [CrossRef]
- Ríos, J.J.; Blasco, B.; Cervilla, L.M.; Rosales, M.A.; Sanchez-Rodriguez, E.; Romero, L.; Ruiz, J.M. Production and detoxification of H2O2 in lettuce plants exposed to selenium. Ann. Appl. Biol. 2009, 154, 107–116. [Google Scholar] [CrossRef]
- Blasco, B.; Rios, J.J.; Cervilla, L.M.; Sánchez-Rodríguez, E.; Rubio-Wilhelmi, M.M.; Rosales, M.A.; Ruiz, J.M.; Romero, L. Photorespiration Process and Nitrogen Metabolism in Lettuce Plants (Lactuca sativa L.): Induced Changes in Response to Iodine Biofortification. J. Plant Growth Regul. 2010, 29, 477–486. [Google Scholar] [CrossRef]
- Ríos, J.J.; Rosales, M.A.; Blasco, B.; Cervilla, L.M.; Romero, L.; Ruiz, J.M. Biofortification of Se and induction of the antioxidant capacity in lettuce plants. Sci. Hortic. (Amsterdam). 2008, 116, 248–255. [Google Scholar] [CrossRef]
- Ríos, J.J.; Blasco, B.; Leyva, R.; Sanchez-Rodriguez, E.; Rubio-Wilhelmi, M.M.; Romero, L.; Ruiz, J.M. Nutritional Balance Changes in Lettuce Plant Grown Under Different Doses and Forms of Selenium. J. Plant Nutr. 2013, 36, 1344–1354. [Google Scholar] [CrossRef]
- Saffaryazdi, A.; Lahouti, M.; Ganjeali, A.; Bayat, H. Impact of Selenium Supplementation on Growth and Selenium Accumulation on Spinach (Spinacia oleracea L.) Plants. Not. Sci. Biol. 2012, 4, 95–100. [Google Scholar] [CrossRef]
- Hawrylak-Nowak, B. Comparative effects of selenite and selenate on growth and selenium accumulation in lettuce plants under hydroponic conditions. Plant Growth Regul. 2013, 70, 149–157. [Google Scholar] [CrossRef]
- Oraghi Ardebili, Z.; Oraghi Ardebili, N.; Jalili, S.; Safiallah, S. The modified qualities of basil plants by selenium and/or ascorbic acid. Turk. J. Botany 2015, 39, 401–407. [Google Scholar] [CrossRef]
- Ríos, J.J.; Blasco, B.; Rosales, M.A.; Sanchez-Rodriguez, E.; Leyva, R.; Cervilla, L.M.; Romero, L.; Ruiz, J.M. Response of nitrogen metabolism in lettuce plants subjected to different doses and forms of selenium. J. Sci. Food Agric. 2010, 90, 1914–1919. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.-J.; Kang, B.-K.; Kim, T.-I.; Kim, T.-J.; Kim, J.-H. Effects of different selenium concentrations of the nutrient solution on the growth and quality of tomato fruit in hydroponics. Acta Hortic. 2007, 761, 443–448. [Google Scholar] [CrossRef]
- Pezzarossa, B.; Rosellini, I.; Malorgio, F.; Borghesi, E.; Tonutti, P. Effects of selenium enrichment of tomato plants on ripe fruit metabolism and composition. Acta Hortic. 2013, 247–251. [Google Scholar] [CrossRef]
- Andrejiová, A.; Hegedűsová, A.; Mezeyová, I. Effect of genotype and selenium biofortification on content of important bioactive substances in tomato (Lycopersicon esculentum Mill.) fruits. J. Int. Sci. Publ. 2016, 4, 8–18. [Google Scholar]
- Feng, T.; Chen, S.S.; Gao, D.Q.; Liu, G.Q.; Bai, H.X.; Li, A.; Peng, L.X.; Ren, Z.Y. Selenium improves photosynthesis and protects photosystem II in pear (Pyrus bretschneideri), grape (Vitis vinifera), and peach (Prunus persica). Photosynthetica 2015, 53, 609–612. [Google Scholar] [CrossRef]
- Yang, S.F.; Hoffman, N.E. Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. 1984, 35, 155–189. [Google Scholar] [CrossRef]
- Barry, C.S.; Llop-Tous, M.I.; Grierson, D. The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol. 2000, 123, 979–986. [Google Scholar] [CrossRef] [PubMed]
- Nakatsuka, A.; Murachi, S.; Okunishi, H.; Shiomi, S.; Nakano, R.; Kubo, Y.; Inaba, A. Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiol. 1998, 118, 1295–1305. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Yin, X.; Lin, Z.; Bañuelos, G.S.; Yuan, L.; Liu, Y.; Li, M. Inhibitory effect of selenium against Penicillium expansum and its possible mechanisms of action. Curr. Microbiol. 2014, 69, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Quinn, C.F.; Freeman, J.L.; Reynolds, R.J. B.; Cappa, J.J.; Fakra, S.C.; Marcus, M.A.; Lindblom, S.D.; Quinn, E.K.; Bennett, L.E.; Pilon-Smits, E.A.H.; et al. Selenium hyperaccumulation offers protection from cell disruptor herbivores. BMC Ecol. 2010, 10, 19. [Google Scholar] [CrossRef] [PubMed]
- Youssef, K.; Roberto, S.R. Salt strategies to control Botrytis mold of “Benitaka” table grapes and to maintain fruit quality during storage. Postharvest Biol. Technol. 2014, 95, 95–102. [Google Scholar] [CrossRef]
- Soylu, E.M.; Kurt, Ş.; Soylu, S. In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. Int. J. Food Microbiol. 2010, 143, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Cabot, C.; Gallego, B.; Martos, S.; Barceló, J.; Poschenrieder, C. Signal cross talk in Arabidopsis exposed to cadmium, silicon, and Botrytis cinerea. Planta 2013, 237, 337–349. [Google Scholar] [CrossRef] [PubMed]
- Hanson, B.; Garifullina, G.F.; Lindblom, S.D.; Wangeline, A.; Ackley, A.; Kramer, K.; Norton, A.P.; Lawrence, C.B.; Pilon-Smits, E.A.H. Selenium accumulation protects Brassica juncea from invertebrate herbivory and fungal infection. New Phytol. 2003, 159, 461–469. [Google Scholar] [CrossRef]
- Companioni, B.; Medrano, J.; Torres, J.A.; Flores, A.; Rodríguez, E.; Benavides, A. Protective action of sodium selenite against Fusarium wilt in tomato: Total protein contents, levels of phenolic compounds and changes in antioxidant potential. Acta Hortic. 2012, 947, 321–328. [Google Scholar] [CrossRef]
Plant Species | [Se] Supplemented | Se Chemical Form | Se Supplementation Methods | [Se] In the Edible Part | Reference |
---|---|---|---|---|---|
Lactuca sativa L. var. Acephala | 0.5 and 1 mg Se L−1 | selenate | Enrichment of nutrient solution | 26 mg kg−1 dry weight (DW) | Diaz et al. [98] |
Lactuca sativa L. var. Acephala | 1.5 and 5 mg Se kg−1 | selenite | Soil fertilization | 20 mg kg−1 DW | Pezzarossa et al. [108] |
Lactuca sativa L. | 5 mg Se kg −1 | selenate | Soil fertilization | 170 mg kg−1 DW | Pezzarossa et al. [108] |
Lactuca sativa L. var. Acephala | 0.5 and 1 mg Se L−1 | selenate | Enrichment of nutrient solution | 26 mg kg−1 DW | Malorgio et al. [37] |
Lactuca sativa | 0.16 to 5.12 mg Se L−1 | selenate | Enrichment of nutrient solution | 10 to 43.3 DW | Rios et al.; Malorgio et al.; Ramos et al.; Hawrylak-Nowak [37,102,111,113,114,116,118] |
Lactuca sativa L. cv. Justyna | from 0.16 to 2.4 mg Se L−1 | selenite | Nutrient solution | 30.6 mg kg−1 DW | Hawrylak-Nowak [116] |
Lactuca sativa L. | 1 to 1000 mg Se kg−1 | selenate | Peat fertilization | 219 mg kg−1 DW | Businelli et al. [109] |
Lactuca sativa L. cv. Capitata | 40 µg plant−1 | selenite, selenium urea, imidoselenocarbamate | Vermiculite-sand-peat fertilization | 68.4 to 413.5 µg kg−1 DW | Goicoechea et al.; Sanmartín et al. [106,107] |
Chicorium intybus L. | 0.5 and 1 mg Se L−1 | selenate | Enrichment of nutrient solution | 30 mg kg−1 DW | Diaz et al. [98] |
Chicorium intybus L. | 1 mg Se L−1 | selenate | Foliar fertilization | 45 mg kg−1 DW | Germ et al. [97] |
Chicorium intybus L. | 0.5 and 1 mg Se L−1 | selenate | Enrichment of nutrient solution | 29.1 mg kg−1 DW | Malorgio et al. [37] |
Ocimum basilicum L. | 1 to 50 mg Se L−1 | selenate | Foliar fertilization | 7.86 to 150 mg kg−1 DW | Hawrylak-Nowak; Kopsell et al.; Barátová et al. [91,92,93] |
Ocimum basilicum L. | 25 and 50 mg m−2 | selenate | Foliar fertilization | 7.86 mg kg−1 DW | Mezeyová et al. [94] |
Ocimum basilicum L. | 2 to 32 mg Se L−1 | selenite | Foliar application | 41.5 mg kg−1 DW | Kopsell et al. [92] |
Spinacia oleracea L. | 0.8 and 1.6 mg Se L−1 | selenate | Enrichment of nutrient solution | 12 mg kg−1 fresh weight (FW) | Zhu et al. [110] |
Spinacia oleracea L. | 0.2 to 0.4 mg Se L−1 | selenate | Enrichment of nutrient solution | 15.5 mg kg−1 DW | Ferrarese et al. [104] |
Spinacia oleracea L. | 1 to 10 mg Se L−1 | selenate | Enrichment of nutrient solution | 3.89 mg g−1 DW | Saffaryazdi et al. [115] |
Beta vulgaris subsp. Vulgaris L. | 10 and 20 mg Se L−1 | selenate | Enrichment of nutrient solution | 1393 µg of Se per shoot | Hernández-Castro et al. [105] |
Plant Species | Biomass | Oxidative Markers | Antioxidant Enzymes | Antioxidant Compounds | Photosynthetic Pigments | Nitrate Content | Ethylene Production | Reference |
---|---|---|---|---|---|---|---|---|
Ocimum basilicum L. | none | none | Barátová et al. [93] | |||||
Lactuca sativa L. | decrease at high [Se] | Businelli et al. [109] | ||||||
Lactuca sativa L. var. Acephala | none | decrease | Diaz et al. [98] | |||||
Chicorium intybus L. | none | decrease | Diaz et al. [98] | |||||
Spinacia oleracea L. | none | none | Ferrarese et al. [104] | |||||
Ocimum basilicum L. | none | improve | increase | none | Hawrylak-Nowak [91] | |||
Lactuca sativa L. cv. Justyna | none | improve | decrease at high [Se] | Hawrylak-Nowak [116] | ||||
Beta vulgaris subsp. Vulgaris L. | not determined (n.d). | none | Hernández-Castro et al. [105] | |||||
Chicorium intybus L. | none | decrease | Malorgio et al. [37] | |||||
Lactuca sativa L. var. Acephala | none | none | none | decrease | Malorgio et al. [37] | |||
Ocimum basilicum L. | none | none | Mezeyová et al. [94] | |||||
Ocimum basilicum L. | n.d. | increase | decrease at high [Se] | Oraghi Ardebili et al. [117] | ||||
Lactuca sativa L. var. Acephala | none | Pezzarossa et al. [108] | ||||||
Lactuca sativa L. cv. Vera | none | increase | Ramos et al. [102] | |||||
Lactuca sativa L. cv. Philipus | decrease at high [Se] | increase | increase | Ríos et al. [113] | ||||
Lactuca sativa L. cv. Philipus | decrease at high [Se] | increase | Ríos et al. [111] | |||||
Lactuca sativa L. cv. Philipus | decrease at high [Se] | decrease | Ríos et al. [118] | |||||
Lactuca sativa L. cv. Capitata | none | none or decrease | decrease | Goicoechea et al.; Sanmartín et al. [106,107] | ||||
Spinacia oleracea L. | none | increase | increase | Saffaryazdi et al. [115] | ||||
Spinacia oleracea L. | none | Zhu et al. [110] |
Plant Species | [Se] Supplemented | Se Chemical Form | Se Supplementation Method | [Se] in Fruit | Reference |
---|---|---|---|---|---|
Solanum lycopersicum L. | 0.5, 1, 2 mg Se L−1 | Selenate | Enrichment of nutrients solution | 5 mg kg−1 FW | Lee et al. [119] |
Solanum lycopersicum L. | 0.5, 1 mg Se L−1 | Selenate | Enrichment of nutrients solution | 11 mg kg−1 DW | Pezzarossa et al. [120] |
Solanum lycopersicum L. | 2 and 20 mg Se plant−1 | Selenate | Foliar fertilization | 4 mg kg−1 DW | Schiavon et al. [95] |
Solanum lycopersicum L. | 1 mg Se L−1 | Selenate | Enrichment of nutrients solution | 11.5 mg kg−1 DW | Pezzarossa et al. [39] |
Solanum lycopersicum L. | 1 to 30 mg Se kg−1 DW | Selenate | Peat fertilization | 201 µg kg−1 FW | Businelli et al. [109] |
Solanum lycopersicum L. | 1 mg Se L−1 | Selenate | Foliar fertilization | 500 µg kg−1 DW | Zhu et al. [41] |
Solanum lycopersicum L. | 1 mg Se L−1 | Selenate | Foliar fertilization | n.d. | Zhu et al. [45] |
Solanum lycopersicum L. | 150 to 300 g ha−1 | Selenate | Foliar fertilization | n.d. | Andrejiová et al. [121] |
Prunus persica Batch. | 0 to 1 mg Se L−1 | Selenate | Foliar and/or fruit fertilization | 75 µg kg−1 DW | Pezzarossa et al. [40] |
Pyrus communis L. | 0 to 1 mg Se L−1 | Selenate | Foliar and/or fruit fertilization | 200 µg kg−1 DW | Pezzarossa et al. [40] |
Vitis vinifera L. | 120 mg L−1 | Organic | Foliar fertilization | 25 µg kg−1FW | Zhu et al. [96] |
Plant Species | Biomass | Reactive Oxigen Species (ROS) | Antioxidant Enzymes | Ethylene Production | Qualitative Parameters | Post-Harvest Quality | Reference |
---|---|---|---|---|---|---|---|
Solanum. lycopersicum L. | none | increase | Businelli et al. [109] | ||||
Solanum. lycopersicum L. | increase | increase | Lee et al. [119] | ||||
Solanum. lycopersicum L. | none | decrease | Pezzarossa et al. [120] | ||||
Prunus. persica Batch. | none | increase | increase | Pezzarossa et al. [40] | |||
Pyrus. communis L. | none | increase | increase | Pezzarossa et al. [40] | |||
Solanum. lycopersicum L. | none | Pezzarossa et al. [39] | |||||
Solanum. lycopersicum L. | none | Schiavon et al. [95] | |||||
Solanum. lycopersicum L. | n.d. | increase | increase | Zhu et al. [41] | |||
Solanum. lycopersicum L. | n.d. | decrease | increase | decrease | Zhu et al. [45] | ||
Solanum. lycopersicum L. | n.d. | increase | Andrejiová et al. [121] | ||||
Vitis. vinifera L. | n.d. | increase | Zhu et al. [96] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puccinelli, M.; Malorgio, F.; Pezzarossa, B. Selenium Enrichment of Horticultural Crops. Molecules 2017, 22, 933. https://doi.org/10.3390/molecules22060933
Puccinelli M, Malorgio F, Pezzarossa B. Selenium Enrichment of Horticultural Crops. Molecules. 2017; 22(6):933. https://doi.org/10.3390/molecules22060933
Chicago/Turabian StylePuccinelli, Martina, Fernando Malorgio, and Beatrice Pezzarossa. 2017. "Selenium Enrichment of Horticultural Crops" Molecules 22, no. 6: 933. https://doi.org/10.3390/molecules22060933
APA StylePuccinelli, M., Malorgio, F., & Pezzarossa, B. (2017). Selenium Enrichment of Horticultural Crops. Molecules, 22(6), 933. https://doi.org/10.3390/molecules22060933