Ultrasonic Assisted-Reflux Synergistic Extraction of Camptothecin and Betulinic Acid from Camptotheca acuminata Decne. Fruits
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Independent Variables on Extraction Yield
2.1.1. Effect of Liquid–Solid Ratio
2.1.2. Effect of Ultrasonic Power
2.1.3. Effect of Ultrasonic Time
2.2. Optimization of Extraction Conditions of UARSE
2.3. Comparison of Different Extraction Methods
2.4. Scanning Electron Microscopy (SEM)
3. Materials and Methods
3.1. Plant Materials and Chemicals
3.2. Apparatus
3.3. Extraction Procedures
3.3.1. Ultrasonic Assisted-Reflux Synergistic Extraction (UARSE)
3.3.2. Heating Reflux Extraction (HRE)
3.3.3. Ultrasonic-Assisted Extraction (UAE)
3.4. Experimental Design of UARSE
3.5. HPLC Analysis
3.6. SEM Observation
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wang, P.; Luo, J.; Wang, X.B.; Fan, B.Y.; Kong, L.Y. New indole glucosides as biosynthetic intermediates of camptothecin from the fruits of Camptotheca acuminata. Fitoterapia 2015, 103, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Z.; Li, S.Y.; Zhang, S.M.; Liang, C.; Gorenstein, D.; Beasley, R.S. New Camptothecin and ellagic acid analogues from the root bark of Camptotheca acuminata. Planta Med. 2004, 70, 1216–1221. [Google Scholar] [CrossRef] [PubMed]
- Wall, M.E.; Wani, M.C.; Cook, C.E.; Palmer, K.H.; McPhail, A.T.; Sim, G.A. Plant antitumor agents. I. The isolation and structure of camptothecin, a Novel Alkaloidal Leukemia and Tumor Inhibitor from Camptotheca acuminata. J. Am. Chem. Soc. 1966, 88, 3888–3890. [Google Scholar] [CrossRef]
- Wiseman, L.R.; Markham, A. Irinotecan. A review of its pharmacological properties and clinical efficacy in the management of advanced colorectal cancer. Drugs 1996, 52, 606–623. [Google Scholar] [CrossRef] [PubMed]
- Shweta, S.; Zuehlke, S.; Ramesha, B.T.; Priti, V.; Mohana Kumar, P.; Ravikanth, G.; Spiteller, M.; Vasudeva, R.; Uma Shaanker, R. Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 2010, 71, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Del Poeta, M.; Chen, S.F.; Von Hoff, D.; Dykstra, C.C.; Wani, M.C.; Manikumar, G.; Heitman, J.; Wall, M.E.; Perfect, J.R. Comparison of in vitro activities of camptothecin and nitidine derivatives against fungal and cancer cells. Antimicrob. Agents Chemother. 1999, 43, 2862–2868. [Google Scholar] [PubMed]
- Cui, H.W.; He, Y.; Wang, J.; Gao, W.; Liu, T.; Qin, M.; Wang, X.; Gao, C.; Wang, Y.; Liu, M.Y.; et al. Synthesis of heterocycle-modified betulinic acid derivatives as antitumor agents. Eur. J. Med. Chem. 2015, 95, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Csuk, R.; Schwarz, S.; Siewert, B.; Kluge, R.; Ströhl, D. Synthesis and antitumor activity of ring A modified glycyrrhetinic acid derivatives. Eur. J. Med. Chem. 2011, 46, 5356–5369. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Khan, S.; Chib, R.; Kaur, T.; Sharma, P.R.; Singh, J.; Shah, B.A.; Taneja, S.C. A comparative study of proapoptotic potential of cyano analogues of boswellic acid and 11-keto-boswellic acid. Eur. J. Med. Chem. 2011, 46, 1356–1366. [Google Scholar] [CrossRef] [PubMed]
- Cavazos-Garduño, A.; Ochoa Flores, A.A.; Serrano-Niño, J.C.; Martínez-Sanchez, C.E.; Beristain, C.I.; García, H.S. Preparation of betulinic acid nanoemulsions stabilized by ω-3 enriched phosphatidylcholine. Ultrason. Sonochem. 2015, 24, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.H.; Wang, S.Y.; Yang, L.; Zu, Y.G.; Yang, F.J.; Zhao, C.J.; Zhang, L.; Zhang, Z.H. Ionic liquid-aqueous solution ultrasonic-assisted extraction of camptothecin and 10-hydroxycamptothecin from Camptotheca acuminata samara. Chem. Eng. Process. 2012, 57–58, 59–64. [Google Scholar] [CrossRef]
- Zhao, C.J.; Zhang, Y.K.; Li, C.Y.; He, X.; Yang, L.; Fu, Y.J.; Zhang, J.J.; Zhao, W.Y.; Zu, Y.G. Development of an ionic liquid-based ultrasonic/microwave-assisted simultaneous distillation and extraction method for separation of camptothecin, 10-hydroxycamptothecin, vincoside-lactam, and essential oils from the fruits of Camptotheca acuminata Decne. Appl. Sci. 2016, 6, 293. [Google Scholar] [CrossRef]
- Foo, J.B.; Yazan, L.S.; Tor, Y.S.; Wibowo, A.; Ismail, N.; How, C.W.; Armania, N.; Loh, S.P.; Ismail, I.S.; Cheah, Y.K. Induction of cell cycle arrest and apoptosis by betulinic acid-rich fraction from Dillenia suffruticosa root in MCF-7 cells involved p53/p21 and mitochondrial signalling pathway. J. Ethnopharmacol. 2015, 166, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, Y.M.; Tian, Y.T.; Yan, C.L.; Guo, C.Y. Ultrasound-Assisted Extraction of Total Phenolic Compounds from Inula helenium. Sci. World. J. 2013, 2013, 157527. [Google Scholar]
- Wei, M.C.; Yang, Y.C.; Chiu, H.F.; Hong, S.J. Development of a hyphenated procedure of heat-reflux and ultrasound-assisted extraction followed by RP-HPLC separation for the determination of three flavonoids content in Scutellaria barbata D. Don. J. Chromatogr. B. 2013, 940, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zheng, J.; Gan, R.Y.; Zhou, T.; Xu, D.P.; Li, H.B. Optimization of ultrasound-assisted extraction of antioxidants from the mung bean coat. Molecules 2017, 22, 638. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yin, P.; Fan, H.; Xue, Q.; Li, K.; Li, X.; Sun, L.; Liu, Y. Response surface methodology optimization of ultrasonic-assisted extraction of Acer Truncatum leaves for maximal phenolic yield and antioxidant activity. Molecules 2017, 22, 232. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Jiang, T.; He, J.; Barba, F.J.; Cravotto, G.; Koubaa, M. Ultrasound-assisted extraction, centrifugation and ultrafiltration: Multistage process for polyphenol recovery from purple sweet potatoes. Molecules 2016, 21, 1584. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xie, G.; Tian, M.; Pu, Q.; Qin, M. Optimization of the Ultrasonic-Assisted Extraction of Bioactive Flavonoids from Ampelopsis grossedentata and Subsequent Separation and Purification of Two Flavonoid Aglycones by High-Speed Counter-Current Chromatography. Molecules 2016, 21, 1096. [Google Scholar] [CrossRef] [PubMed]
- Kate, A.E.; Singh, A.; Shahi, N.C.; Pandey, J.P.; Prakash, O. Novel Eco-Friendly Techniques for Extraction of Food Based Lipophilic Compounds from Biological Materials. Nat. Prod. Chem. Res. 2016, 4, 231. [Google Scholar]
- Cheng, K.; Gao, H.; Wang, R.R.; Liu, Y.; Hou, Y.X.; Liu, X.H.; Liu, K.; Wang, W. Evaluation of extraction and degradation methods to obtain chickpeasaponin b1 from chickpea (Cicer arietinum L.). Molecules 2017, 22, 332. [Google Scholar] [CrossRef] [PubMed]
- Roselló-Soto, E.; Parniakov, O.; Deng, Q.; Patras, A.; Koubaa, M.; Grimi, N.; Boussetta, N.; Tiwari, B.K.; Vorobiev, E.; Lebovka, N. Application of non-conventional extraction methods: Toward a sustainable and green production of valuable compounds from mushrooms. Food Eng. Rev. 2016, 8, 214–234. [Google Scholar] [CrossRef]
- Barba, F.J.; Zhu, Z.; Koubaa, M.; Sant’Ana, A.S.; Orlien, V. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends Food Sci. Technol. 2016, 49, 96–109. [Google Scholar] [CrossRef]
- Zhu, Z.; Guan, Q.; Guo, Y.; He, J.; Liu, G.; Li, S.; Barba Orellana, F.J.; Jaffrin, M.Y. Green ultrasound-assisted extraction of anthocyanin and phenolic compounds from purple sweet potato using response surface methodology. Int. Agrophys. 2016, 30, 113–122. [Google Scholar] [CrossRef]
- Mason, T.J.; Chemat, F.; Vinatoru, M. The Extraction of Natural Products using Ultrasound or Microwaves. Curr. Org. Chem. 2011, 15, 237–247. [Google Scholar] [CrossRef]
- Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and opportunities for ultrasound assisted extraction in the food industry—A review. Innov. Food. Sci. Emerg. 2008, 9, 161–169. [Google Scholar] [CrossRef]
- Paniwnyk, L.; Beaufoy, E.; Lorimer, J.P.; Mason, T.J. The extraction of rutin from flower buds of Sophora japonica. Ultrason. Sonochem. 2001, 8, 299–301. [Google Scholar] [CrossRef]
- Sahin, S.; Samli, R. Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology. Ultrason. Sonochem. 2013, 20, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J; Yu, Y.; Liu, D.; Liu, Z. Extraction and composition of three naturally occurring anti-cancer alkaloids in Camptotheca acuminata seed and leaf extracts. Phytomedicine 2007, 14, 50–56. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
Runs | Factors | Extraction Yield (mg/g) | |||
---|---|---|---|---|---|
X1 (mL/g) a | X2 (min) b | X3 (w) c | CPT | BA | |
1 | 0(30) | 0(20) | 0(200) | 2.333 | 16.448 |
2 | 0(30) | 0(20) | 0(200) | 2.329 | 16.442 |
3 | 0(30) | −1(10) | −1(150) | 1.591 | 11.607 |
4 | −1(20) | 0(20) | 1(250) | 1.693 | 13.366 |
5 | 1(40) | −1(10) | 0(200) | 1.498 | 14.434 |
6 | 0(30) | 1(30) | −1(150) | 1.552 | 13.374 |
7 | −1(20) | −1(10) | 0(200) | 1.379 | 11.634 |
8 | 1(40) | 0(20) | 1(250) | 1.983 | 15.968 |
9 | 1(40) | 0(20) | −1(150) | 1.525 | 11.939 |
10 | 0(30) | 0(20) | 0(200) | 2.297 | 16.572 |
11 | −1(20) | 0(20) | −1(150) | 1.344 | 10.822 |
12 | 0(30) | 0(20) | 0(200) | 2.245 | 16.107 |
13 | 1(40) | 1(30) | 0(200) | 1.611 | 15.828 |
14 | 0(30) | −1(10) | 1(250) | 1.885 | 14.861 |
15 | 0(30) | 0(20) | 0(200) | 2.369 | 16.721 |
16 | −1(20) | 1(30) | 0(200) | 1.466 | 13.275 |
17 | 0(30) | 1(30) | 1(250) | 2.385 | 16.883 |
Source a | DF | CPT | BA | ||||||
---|---|---|---|---|---|---|---|---|---|
Sum of Square | Mean Square | F Value | p-Value b | Sum of Squares | Mean Square | F Value | p-Value b | ||
Model | 9 | 2.45 | 0.27 | 53.94 | <0.0001 | 69.21 | 7.69 | 87.53 | <0.0001 |
X1 | 1 | 6.80 × 10−2 | 6.80 × 10−2 | 13.38 | 0.0081 | 10.29 | 10.29 | 117.09 | <0.0001 |
X2 | 1 | 5.50 × 10−2 | 5.50 × 10−2 | 10.82 | 0.0133 | 5.82 | 5.82 | 66.25 | <0.0001 |
X3 | 1 | 0.47 | 0.47 | 92.63 | <0.0001 | 22.23 | 22.23 | 253.02 | <0.0001 |
X1X2 | 1 | 1.69 × 10−4 | 1.69 × 10−4 | 0.033 | 0.8600 | 1.50 × 10−2 | 1.50 × 10−2 | 0.17 | 0.6894 |
X1X3 | 1 | 2.97 × 10−3 | 2.97 × 10−3 | 0.59 | 0.4681 | 0.55 | 0.55 | 6.27 | 0.0407 |
X2X3 | 1 | 7.30 × 10−2 | 7.30 × 10−2 | 14.39 | 0.0068 | 1.60 × 10−2 | 1.60 × 10−2 | 0.19 | 0.6800 |
X12 | 1 | 1.15 | 1.15 | 226.92 | <0.0001 | 15.38 | 15.38 | 175.07 | <0.0001 |
X22 | 1 | 0.39 | 0.39 | 77.38 | <0.0001 | 2.39 | 2.39 | 27.23 | 0.0012 |
X32 | 1 | 0.10 | 0.10 | 20.51 | 0.0027 | 9.76 | 9.76 | 111.14 | <0.0001 |
Residual | 7 | 3.50 × 10−2 | 5.05 × 10−3 | 0.62 | 8.80 × 10−2 | ||||
Lack of Fit | 3 | 2.70 × 10−2 | 8.89 × 10−3 | 4.11 | 0.1030 | 0.41 | 0.14 | 2.65 | 0.1847 |
R2 | 0.9858 | 0.9912 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Zhang, Y.; Zhao, C.; Ni, Y.; Wang, K.; Zhang, J.; Zhao, W. Ultrasonic Assisted-Reflux Synergistic Extraction of Camptothecin and Betulinic Acid from Camptotheca acuminata Decne. Fruits. Molecules 2017, 22, 1076. https://doi.org/10.3390/molecules22071076
Li C, Zhang Y, Zhao C, Ni Y, Wang K, Zhang J, Zhao W. Ultrasonic Assisted-Reflux Synergistic Extraction of Camptothecin and Betulinic Acid from Camptotheca acuminata Decne. Fruits. Molecules. 2017; 22(7):1076. https://doi.org/10.3390/molecules22071076
Chicago/Turabian StyleLi, Chunying, Yukun Zhang, Chunjian Zhao, Yujiao Ni, Kaiting Wang, Jingjing Zhang, and Wenyan Zhao. 2017. "Ultrasonic Assisted-Reflux Synergistic Extraction of Camptothecin and Betulinic Acid from Camptotheca acuminata Decne. Fruits" Molecules 22, no. 7: 1076. https://doi.org/10.3390/molecules22071076
APA StyleLi, C., Zhang, Y., Zhao, C., Ni, Y., Wang, K., Zhang, J., & Zhao, W. (2017). Ultrasonic Assisted-Reflux Synergistic Extraction of Camptothecin and Betulinic Acid from Camptotheca acuminata Decne. Fruits. Molecules, 22(7), 1076. https://doi.org/10.3390/molecules22071076