Synthesis and Modification of Clinoptilolite
Abstract
:1. Introduction
2. Synthesis of Clinoptilolite
2.1. Composition of Raw Materials
2.2. Synthesis Temperature
2.3. Seeding and Reaction Time
3. Modification of Clinoptilolite
3.1. Organic Modification
3.1.1. Quarter Alkyl Ammonium Modification
3.1.2. Polymer Modification
3.1.3. Amine Modification
3.2. Inorganic Modification
3.2.1. Iron Compound Modification
3.2.2. Silver Compound Modification
3.2.3. Titanium Dioxide Modification
3.2.4. Other Compound Modification
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Schuth, F.; Sing, K.S.W.; Weitkarnp, J. Handbook of Porous Solids; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2002; Volume 2. [Google Scholar]
- Roth, W.J.; Nachtigall, P.; Morris, R.E.; Cejka, J. Two-dimensional zeolites: Current status and perspectives. Chem. Rev. 2014, 114, 4807–4837. [Google Scholar] [CrossRef] [PubMed]
- Alberti, A. The crystal structure of two clinoptilolites. Tschermaks Mineral. Petrogr. Mitt. 1975, 22, 25–37. [Google Scholar] [CrossRef]
- Baerlocher, C.; McCusker, L.B.; Olson, D.H. Atlas of Zeolite Framework Types; Elsevier: Amsterdam, The Netherlands, 2007; pp. 157–158. [Google Scholar]
- Armbruster, T.; Gunter, M.E. Crystal structures of natural zeolites. Rev. Mineral. Geochem. 2001, 45, 1–67. [Google Scholar] [CrossRef]
- Tsitsishvili, G.V.; Andronikashvli, T.G.; Kirov, G.R.; Filizova, L.D. Natural Zeolites; Ellis Horwood: London, UK, 1992; pp. 40–52. [Google Scholar]
- Kowalczyk, P.; Sprynskyy, M.; Terzyk, A.P.; Lebedynets, M.; Namieśnik, J.; Buszewski, B. Porous structure of natural and modified clinoptilolites. J. Colloid Interface Sci. 2006, 297, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Grce, M.; Pavelić, K. Antiviral properties of clinoptilolite. Microporous Mesoporous Mater. 2005, 79, 165–169. [Google Scholar] [CrossRef]
- Reháková, M.; Čuvanová, S.; Dzivák, M.; Rimár, J.; Gaval’ová, Z. Agricultural and agrochemical uses of natural zeolite of the clinoptilolite type. Curr. Opin. Solid State Mater. Sci. 2004, 8, 397–404. [Google Scholar] [CrossRef]
- Jovanovic, M.; Rajic, N.; Obradovic, B. Novel kinetic model of the removal of divalent heavy metal ions from aqueous solutions by natural clinoptilolite. J. Hazard. Mater. 2012, 233–234, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Zanin, E.; Scapinello, J.; de Oliveira, M.; Rambo, C.L.; Franscescon, F.; Freitas, L.; de Mello, J.M.M.; Fiori, M.A.; Oliveira, J.V.; Dal Magro, J.; et al. Adsorption of heavy metals from wastewater graphic industry using clinoptilolite zeolite as adsorbent. Process Saf. Environ. Prot. 2017, 105, 194–200. [Google Scholar] [CrossRef]
- Qiu, M.; Qian, C.; Xu, J.; Wu, J.; Wang, G. Studies on the adsorption of dyes into clinoptilolite. Desalination 2009, 243, 286–292. [Google Scholar] [CrossRef]
- Ahmadi, M.; Haghighi, M.; Kahforoushan, D. Influence of active phase composition (mn, ni, mnxni10−x) on catalytic properties and performance of clinoptilolite supported nanocatalysts synthesized using ultrasound energy toward abatement of toluene from polluted air. Process Saf. Environ. Prot. 2017, 106, 294–308. [Google Scholar] [CrossRef]
- Rodríguez-Fuentes, G.; Barrios, M.A.; Iraizoz, A.; Perdomo, I.; Cedré, B. Enterex: Anti-diarrheic drug based on purified natural clinoptilolite. Zeolites 1997, 19, 441–448. [Google Scholar] [CrossRef]
- Tomečková, V.; Reháková, M.; Mojžišová, G.; Magura, J.; Wadsten, T.; Zelenáková, K. Modified natural clinoptilolite with quercetin and quercetin dihydrate and the study of their anticancer activity. Microporous Mesoporous Mater. 2012, 147, 59–67. [Google Scholar] [CrossRef]
- Cerri, G.; de’ Gennaro, M.; Bonferoni, M.C.; Caramella, C. Zeolites in biomedical application: Zn-exchanged clinoptilolite-rich rock as active carrier for antibiotics in anti-acne topical therapy. Appl. Clay Sci. 2004, 27, 141–150. [Google Scholar] [CrossRef]
- Alireza, N.-E.; Sanaz, T.-G. Effect of a nano-sized natural clinoptilolite modified by the hexadecyltrimethyl ammonium surfactant on cephalexin drug delivery. Comptes Rendus Chim. 2014, 17, 49–61. [Google Scholar]
- Ames, L., Jr. Synthesis of a clinoptilolite-like zeolite. Am. Mineral. 1963, 48, 1374–1381. [Google Scholar]
- Hawkins, D.B. Zeolite studies i. Synthesis of some alkaline earth zeolites. Mater. Res. Bull. 1967, 2, 951–958. [Google Scholar] [CrossRef]
- Goto, Y. Synthesis of clinoptilolite. Am. Mineral. 1977, 62, 330–332. [Google Scholar]
- Chi, C.-H.; Sand, L. Synthesis of na-and k-clinoptilolite endmembers. Nature 1983, 304, 255–257. [Google Scholar] [CrossRef]
- Sanders, R.N.; Laurent, S.M. Method of Making a Zeolite of the Clinoptilolite Type by Seeding. U.S. Patent 4,623,529, 18 November 1986. [Google Scholar]
- Satokawa, S.; Itabashi, K. Clinoptilolite and Method for Synthesizing the Same. Patent EP 0681991 A1, 15 November 1995. [Google Scholar]
- Williams, C.D. Synthesis of pure clinoptilolite without the use of seed crystals. Chem. Commun. 1997, 2113–2114. [Google Scholar] [CrossRef]
- Zhao, D.; Kevan, L.; Szostak, R. Hydrothermal synthesis of alkali cation heulandite aluminosilicate molecular sieves. Zeolites 1997, 19, 366–369. [Google Scholar] [CrossRef]
- Zhao, D.; Cleare, K.; Oliver, C.; Ingram, C.; Cook, D.; Szostak, R.; Kevan, L. Characteristics of the synthetic heulandite-clinoptilolite family of zeolites. Microporous Mesoporous Mater. 1998, 21, 371–379. [Google Scholar] [CrossRef]
- Zhao, D.; Szostak, R.; Kevan, L. Role of alkali-metal cations and seeds in the synthesis of silica-rich heulandite-type zeolites. J. Mater. Chem. 1998, 8, 233–239. [Google Scholar] [CrossRef]
- Tanaka, H.; Yamasaki, N.; Muratani, M.; Hino, R. Structure and formation process of (k, na)-clinoptilolite. Mater. Res. Bull. 2003, 38, 713–722. [Google Scholar] [CrossRef]
- Güvenir, Ö.; Kalıpçılar, H.; Çulfaz, A. Crystallization field study for the formation of single phase sodium clinoptilolite: Batch composition, seed and temperature effects. Cryst. Res. Technol. 2009, 44, 293–299. [Google Scholar] [CrossRef]
- Güvenir, Ö.; Kalıpçılar, H.; Çulfaz, A. Crystallization field and rate study for the formation of single phase sodium-potassium and potassium clinoptilolite. Cryst. Res. Technol. 2011, 46, 345–350. [Google Scholar] [CrossRef]
- Bhardwaj, D.; Sharma, P.; Sharma, M.; Tomar, R. Removal and slow release studies of phosphate on surfactant loaded hydrothermally synthesized silicate nanoparticles. J. Taiwan Inst. Chem. Eng. 2014, 45, 2649–2658. [Google Scholar] [CrossRef]
- Bhardwaj, D.; Sharma, M.; Sharma, P.; Tomar, R. Synthesis and surfactant modification of clinoptilolite and montmorillonite for the removal of nitrate and preparation of slow release nitrogen fertilizer. J. Hazard. Mater. 2012, 227–228, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Haggerty, G.M.; Bowman, R.S. Sorption of chromate and other inorganic anions by organo-zeolite. Environ. Sci. Technol. 1994, 28, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, E.J.; Carey, J.W.; Bowman, R.S. Thermodynamics of cationic surfactant sorption onto natural clinoptilolite. J. Colloid Interface Sci. 1998, 206, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Li, Z. Sorption kinetics of hexadecyltrimethylammonium on natural clinoptilolite. Langmuir 1999, 15, 6438–6445. [Google Scholar] [CrossRef]
- Bowman, R.S. Applications of surfactant-modified zeolites to environmental remediation. Microporous Mesoporous Mater. 2003, 61, 43–56. [Google Scholar] [CrossRef]
- Ghiaci, M.; Kia, R.; Abbaspur, A.; Seyedeyn-Azad, F. Adsorption of chromate by surfactant-modified zeolites and mcm-41 molecular sieve. Sep. Purif. Technol. 2004, 40, 285–295. [Google Scholar] [CrossRef]
- Daković, A.; Tomasević-Canović, M.; Dondur, V.; Rottinghaus, G.E.; Medaković, V.; Zarić, S. Adsorption of mycotoxins by organozeolites. Colloids Surf. B 2005, 46, 20–25. [Google Scholar]
- Benkli, Y.E.; Can, M.F.; Turan, M.; Çelik, M.S. Modification of organo-zeolite surface for the removal of reactive azo dyes in fixed-bed reactors. Water Res. 2005, 39, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Wingenfelder, U.; Nowack, B.; Furrer, G.; Schulin, R. Adsorption of pb and cd by amine-modified zeolite. Water Res. 2005, 39, 3287–3297. [Google Scholar] [CrossRef] [PubMed]
- Bansiwal, A.K.; Rayalu, S.S.; Labhasetwar, N.K.; Juwarkar, A.A.; Devotta, S. Surfactant-modified zeolite as a slow release fertilizer for phosphorus. Agric. Food Chem. 2006, 54, 4773–4779. [Google Scholar] [CrossRef] [PubMed]
- Daković, A.; Tomašević-Čanović, M.; Rottinghaus, G.E.; Matijašević, S.; Sekulić, Ž. Fumonisin b1 adsorption to octadecyldimethylbenzyl ammonium-modified clinoptilolite-rich zeolitic tuff. Microporous Mesoporous Mater. 2007, 105, 285–290. [Google Scholar]
- Zeng, Y.; Woo, H.; Lee, G.; Park, J. Adsorption of cr(vi) on hexadecylpyridinium bromide (hdpb) modified natural zeolites. Microporous Mesoporous Mater. 2010, 130, 83–91. [Google Scholar] [CrossRef]
- Malekian, R.; Abedi-Koupai, J.; Eslamian, S.S. Influences of clinoptilolite and surfactant-modified clinoptilolite zeolite on nitrate leaching and plant growth. J. Hazard. Mater. 2011, 185, 970–976. [Google Scholar] [CrossRef] [PubMed]
- Danina, K.; Aleksandra, D.; Andjelija, M.; Ljiljana, D.; Milan, K.; Vladimir, D.; Jela, M. An investigation of diclofenac sodium release from cetylpyridinium chloride-modified natural zeolite as a pharmaceutical excipient. Microporous Mesoporous Mater. 2013, 167, 94–101. [Google Scholar]
- Nezamzadeh-Ejhieh, A.; Raja, G. Modification of nanoclinoptilolite zeolite with hexadecyltrimethylammonium surfactant as an active ingredient of chromate-selective membrane electrode. J. Chem. 2013, 2013, 13. [Google Scholar] [CrossRef]
- Figueiredo, H.; Quintelas, C. Tailored zeolites for the removal of metal oxyanions: Overcoming intrinsic limitations of zeolites. J. Hazard. Mater. 2014, 274, 287–299. [Google Scholar] [CrossRef] [PubMed]
- Guzel, P.; Aydın, Y.A.; Deveci Aksoy, N. Removal of chromate from wastewater using amine-based-surfactant-modified clinoptilolite. Int. J. Environ. Sci. Technol. 2016, 13, 1277–1288. [Google Scholar] [CrossRef]
- Milićević, S.; Matović, L.; Petrović, Đ.; Đukić, A.; Milošević, V.; Đokić, D.; Kumrić, K. Surfactant modification and adsorption properties of clinoptilolite for the removal of pertechnetate from aqueous solutions. J. Radioanal. Nucl. Chem. 2016, 310, 805–815. [Google Scholar] [CrossRef]
- Marković, M.; Daković, A.; Rottinghaus, G.E.; Kragović, M.; Petković, A.; Krajišnik, D.; Milić, J.; Mercurio, M.; de Gennaro, B. Adsorption of the mycotoxin zearalenone by clinoptilolite and phillipsite zeolites treated with cetylpyridinium surfactant. Colloids Surf. B 2017, 151, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Faghihian, H.; Bowman, R.S. Adsorption of chromate by clinoptilolite exchanged with various metal cations. Water Res. 2005, 39, 1099–1104. [Google Scholar] [CrossRef] [PubMed]
- Doušová, B.; Grygar, T.; Martaus, A.; Fuitová, L.; Koloušek, D.; Machovič, V. Sorption of asv on aluminosilicates treated with feii nanoparticles. J. Colloid Interface Sci. 2006, 302, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Stanić, T.; Daković, A.; Živanović, A.; Tomašević-Čanović, M.; Dondur, V.; Milićević, S. Adsorption of arsenic (V) by iron (III)-modified natural zeolitic tuff. Environ. Chem. Lett. 2008, 7, 161. [Google Scholar] [CrossRef]
- Jiménez-Cedillo, M.J.; Olguín, M.T.; Fall, C. Adsorption kinetic of arsenates as water pollutant on iron, manganese and iron–manganese-modified clinoptilolite-rich tuffs. J. Hazard. Mater. 2009, 163, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Camacho, L.M.; Parra, R.R.; Deng, S. Arsenic removal from groundwater by mno2-modified natural clinoptilolite zeolite: Effects of ph and initial feed concentration. J. Hazard. Mater. 2011, 189, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Šiljeg, M.; Foglar, L.; Gudelj, I. The removal of arsenic from water with natural and modified clinoptilolite. Chem. Ecol. 2012, 28, 75–87. [Google Scholar] [CrossRef]
- Guocheng, L.; Li, Z.; Jiang, W.-T.; Ackley, C.; Fenske, N.; Demarco, N. Removal of cr(vi) from water using fe(ii)-modified natural zeolite. Chem. Eng. Res. Des. 2014, 92, 384–390. [Google Scholar]
- Bogdanchikova, N.; Concepcion Rosabal, B.; Petranovskii, V.; Avalos-Borja, M.; Rodríguez-Fuentes, G. 01-p-15-different silver states stabilized in natural clinoptilolites. In Studies in Surface Science and Catalysis; Galarneau, A., Fajula, F., Renzo, F.D., Vedrine, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; Volume 135, p. 243. [Google Scholar]
- Concepción-Rosabal, B.; Rodríguez-Fuentes, G.; Bogdanchikova, N.; Bosch, P.; Avalos, M.; Lara, V.H. Comparative study of natural and synthetic clinoptilolites containing silver in different states. Microporous Mesoporous Mater. 2005, 86, 249–255. [Google Scholar] [CrossRef]
- De la Rosa-Gómez, I.; Olguín, M.T.; Alcántara, D. Antibacterial behavior of silver-modified clinoptilolite–heulandite rich tuff on coliform microorganisms from wastewater in a column system. J. Environ. Manag. 2008, 88, 853–863. [Google Scholar] [CrossRef] [PubMed]
- Copcia, V.E.; Luchian, C.; Dunca, S.; Bilba, N.; Hristodor, C.M. Antibacterial activity of silver-modified natural clinoptilolite. J. Mater. Sci. 2011, 46, 7121–7128. [Google Scholar] [CrossRef]
- Akhigbe, L.; Ouki, S.; Saroj, D.; Lim, X.M. Silver-modified clinoptilolite for the removal of escherichia coli and heavy metals from aqueous solutions. Environ. Sci. Pollut. Res. 2014, 21, 10940–10948. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Bowman, R.S. Counterion effects on the sorption of cationic surfactant and chromate on natural clinoptilolite. Environ. Sci. Technol. 1997, 31, 2407–2412. [Google Scholar] [CrossRef]
- Tomašević-Čanović, M.; Daković, A.; Rottinghaus, G.; Matijašević, S.; Đuričić, M. Surfactant modified zeolites-new efficient adsorbents for mycotoxins. Microporous Mesoporous Mater. 2003, 61, 173–180. [Google Scholar] [CrossRef]
- Nikashina, V.A.; Gembitskii, P.A.; Kats, E.M.; Boksha, L.F.; Galuzinskaya, A.K. Organomineral sorbents based on clinoptilolite-containing tuffs. Russ. Chem. Bull. 1994, 43, 1462–1465. [Google Scholar] [CrossRef]
- Nikashina, V.A.; Myasoedov, B.F. Environmental applications of modified natural zeolites. In Natural Microporous Materials in Environmental Technology; Springer: Amsterdam, The Netherlands, 1999; Volume 362, pp. 335–343. [Google Scholar]
- Minchev, K.; Penchev, V.; Kozova, L.; Buyukliiska, E. Use of thermal analysis to study the modification of natural clinoptilolite by amines. Bull. Acad. Sci. USSR Div. Chem. Sci. 1982, 31, 1308–1311. [Google Scholar] [CrossRef]
- Boyd, S.A.; Lee, J.-F.; Mortland, M.M. Attenuating organic contaminant mobility by soil modification. Nature 1988, 333, 345–347. [Google Scholar] [CrossRef]
- Matijasevic, S.; Dakovic, A.; Tomasevic-Canovic, M.; Stojanovic, M.; Iles, D. Uranium(vi) adsorption on surfactant modified heulandite/clinoptilolite rich tuff. J. Serbian Chem. Soc. 2006, 71, 1323–1331. [Google Scholar] [CrossRef]
- Misaelides, P.; Nikashina, V.; Godelitsas, A.; Gembitskii, P.; Kats, E. Sorption of as (v)-anions from aqueous solutions by organo-modified natural zeolitic materials. J. Radioanal. Nucl. Chem. 1998, 227, 183–186. [Google Scholar] [CrossRef]
- Zaremotlagh, S.; Hezarkhani, A. Removal of textile dyes from aqueous solution by conducting polymer modified clinoptilolite. Environ. Earth Sci. 2014, 71, 2999–3006. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, X.; Deng, J.; He, C. Utilization of chitosan–clinoptilolite composite for the removal of radiocobalt from aqueous solution: Kinetics and thermodynamics. J. Radioanal. Nucl. Chem. 2016, 308, 701–709. [Google Scholar] [CrossRef]
- Olad, A.; Ahmadi, S.; Rashidzadeh, A. Removal of nickel (II) from aqueous solutions with polypyrrole modified clinoptilolite: Kinetic and isotherm studies. Desalination Water Treat. 2013, 51, 7172–7180. [Google Scholar] [CrossRef]
- Xu, Y.H.; Ohki, A.; Maeda, S. Removal of arsenate, phosphate, and fluoride ions by aluminium-loaded shirasu-zeolite. Toxicol. Environ. Chem. 2000, 76, 111–124. [Google Scholar] [CrossRef]
- Samatya, S.; Yüksel, Ü.; Yüksel, M.; Kabay, N. Removal of fluoride from water by metal ions (Al3+, La3+ and ZrO2+) loaded natural zeolite. Sep. Sci. Technol. 2007, 42, 2033–2047. [Google Scholar] [CrossRef]
- Guaya, D.; Valderrama, C.; Farran, A.; Armijos, C.; Cortina, J.L. Simultaneous phosphate and ammonium removal from aqueous solution by a hydrated aluminum oxide modified natural zeolite. Chem. Eng. J. 2015, 271, 204–213. [Google Scholar] [CrossRef]
- Nikazara, M.; Gholivand, K.; Mahanpoor, K. Using TiO2 supported on clinoptilolite as a catalyst for photocatalytic degradation of azo dye disperse yellow 23 in water. Kinet. Catal. 2007, 48, 214–220. [Google Scholar] [CrossRef]
- Nikazar, M.; Gholivand, K.; Mahanpoor, K. Photocatalytic degradation of azo dye Acid Red 114 in water with TiO2 supported on clinoptilolite as a catalyst. Desalination 2008, 219, 293–300. [Google Scholar] [CrossRef]
- Trujillo, M.E.; Hirales, D.; Rincón, M.E.; Hinojosa, J.F.; Leyva, G.L.; Castillón, F.F. TiO2/clinoptilolite composites for photocatalytic degradation of anionic and cationic contaminants. J. Mater. Sci. 2013, 48, 6778–6785. [Google Scholar] [CrossRef]
- Nezamzadeh-Ejhieh, A.; Amiri, M. Cuo supported clinoptilolite towards solar photocatalytic degradation of p-aminophenol. Powder Technol. 2013, 235, 279–288. [Google Scholar] [CrossRef]
- Akbari Sene, R.; Moradi, G.R.; Sharifnia, S. Sono-dispersion of TiO2 nanoparticles over clinoptilolite used in photocatalytic hydrogen production: Effect of ultrasound irradiation during conventional synthesis methods. Ultrason. Sonochem. 2017, 37, 490–501. [Google Scholar] [CrossRef] [PubMed]
- Yener, H.B.; Yılmaz, M.; Deliismail, Ö.; Özkan, S.F.; Helvacı, Ş.Ş. Clinoptilolite supported rutile TiO2 composites: Synthesis, characterization, and photocatalytic activity on the degradation of terephthalic acid. Sep. Purif. Technol. 2017, 173, 17–26. [Google Scholar] [CrossRef]
Raw Material Composition | Temperature (°C) | Time | Seeds (%) | Result | Reference | |||
---|---|---|---|---|---|---|---|---|
(Na,K)2Al2·Si7O18 | 200 | 65 days | 0.0 | Clinoptilolite Mordenite | [20] | |||
2.1NaOH:Al(OH)3:5SiO2:52.5H2O | 120 | 300 h | 10.0 | Na-clinoptilolite (100%) | [21] | |||
140 | 64 h | 10.0 | Clinoptilolite (90%) Mordenite (10%) | |||||
2.1KOH:Al(OH)3:5SiO2:52.5H2O | 175 | 94 h | 1.0 | Clinoptilolite (95%) K-feldspar (5%) | ||||
195 | 37 h | 10.0 | K-Clinoptilolite (100%) | |||||
(2.1 ± 0.5)Na2O:Al2O3:(10 ± 2.0)SiO2:(110 ± 50)H2O | 140 | 72 h | 8.7 | Clinoptilolite (56%) | [22] | |||
135–140 | 79 h | 2.7 | Clinoptilolite (67%) | |||||
SiO2:Al2O3 | OH:SiO2 | K:(K + Na) | H2O:SiO2 | |||||
11 | 0.3 | 0.5 | 25 | 150 | 144 h | 0.0 | Clinoptilolite (100%) | [23] |
11 | 0.3 | 0.7 | 20 | 180 | 24 h | 1.0 | Clinoptilolite (100%) | |
10 | 0.3 | 0.6 | 20 | 150 | 72 h | 10.0 | Clinoptilolite (100%) | |
0.72K2O:0.27Na2O:Al2O3:8.4SiO2:210H2O | 150 | 336 h | 0.0 | Clinoptilolite (100%) | [24] | |||
1.26Na:1.26K:Al:6.0Si:52.5H2O | 140 | 8 days | 5.0 | Clinoptilolite (100%) | [28] | |||
2.1Na2O:Al2O3:10Si2O:110H2O | 140 | 118 h | 10.0 | Clinoptilolite (91%) | [29] | |||
141 h | 3.1 | Clinoptilolite (100%) | ||||||
187 h | 1.7 | Clinoptilolite (100%) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ambrozova, P.; Kynicky, J.; Urubek, T.; Nguyen, V.D. Synthesis and Modification of Clinoptilolite. Molecules 2017, 22, 1107. https://doi.org/10.3390/molecules22071107
Ambrozova P, Kynicky J, Urubek T, Nguyen VD. Synthesis and Modification of Clinoptilolite. Molecules. 2017; 22(7):1107. https://doi.org/10.3390/molecules22071107
Chicago/Turabian StyleAmbrozova, Pavlina, Jindrich Kynicky, Tomas Urubek, and Vinh Dinh Nguyen. 2017. "Synthesis and Modification of Clinoptilolite" Molecules 22, no. 7: 1107. https://doi.org/10.3390/molecules22071107
APA StyleAmbrozova, P., Kynicky, J., Urubek, T., & Nguyen, V. D. (2017). Synthesis and Modification of Clinoptilolite. Molecules, 22(7), 1107. https://doi.org/10.3390/molecules22071107