Characterization and Purification of Bergamottin from Citrus grandis (L.) Osbeck cv. Yongjiazaoxiangyou and Its Antiproliferative Activity and Effect on Glucose Consumption in HepG2 cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Quantification of Bergamottin in Different Fruit Tissues of Eight Citrus Cultivars
2.2. Purification of Bergamottin from the Flavedo of YJZXY
2.3. Antiproliferative Activity of Bergamottin
2.4. Glucose Consumption Activity of Bergamottin
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Fruit Materials
3.3. HPLC and LC-MS Analysis of Bergamottin
3.4. Quantification of Bergamottin in Different Fruit Tissues of Different Citrus Cultivars
3.5. Purification of Bergamottin from YJZXY Flavedo
3.5.1. Preparation of the Crude Extract
3.5.2. Silica Gel Column Chromatography
3.5.3. HSCCC Purification
3.6. Cell Lines and Cell Culture
3.7. Cell Proliferation Assay
3.8. Glucose Consumption Assay
3.9. Statistic Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hwang, Y.P.; Yun, H.J.; Choi, J.H.; Kang, K.W.; Jeong, H.G. Suppression of phorbol-12-myristate-13-acetate-induced tumor cell invasion by bergamottin via the inhibition of protein kinase Cδ/p38 mitogen-activated protein kinase and JNK/nuclear factor-κB-dependent matrix metalloproteinase-9 expression. Mol. Nutr. Food Res. 2010, 54, 977–990. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.J.; Wu, H.B.; Zhao, Y.Q.; Chen, L.J.; Zou, H.Z. Bergamottin isolated from Citrus bergamia exerts in vitro and in vivo antitumor activity in lung adenocarcinoma through the induction of apoptosis, cell cycle arrest, mitochondrial membrane potential loss and inhibition of cell migration and invasion. Oncol Rep. 2016, 36, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.M.; Lee, J.H.; Sethi, G.; Kim, C.; Baek, S.H.; Nam, D.; Chung, W.S.; Kim, S.H.; Shim, B.S.; Ahn, K.S. Bergamottin, a natural furanocoumarin obtained from grapefruit juice induces chemosensitization and apoptosis through the inhibition of STAT3 signaling pathway in tumor cells. Cancer Lett. 2014, 354, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Sandoval-Montemayor, N.E.; García, A.; Elizondo-Treviño, E.; Garza-González, E.; Alvarez, L.; del Rayo Camacho-Corona, M. Chemical composition of hexane extract of Citrus aurantifolia and anti-Mycobacterium tuberculosis activity of some of its constituents. Molecules 2012, 17, 11173–11184. [Google Scholar] [CrossRef] [PubMed]
- Olguín-Reyes, S.; Camacho-Carranza, R.; Hernández-Ojeda, S.; Elinos-Baez, M.; Espinosa-Aguirre, J.J. Bergamottin is a competitive inhibitor of CYP1A1 and is antimutagenic in the Ames test. Food Chem. Toxicol. 2012, 50, 3094–3099. [Google Scholar]
- He, K.; Iyer, K.R.; Hayes, R.N.; Sinz, M.W.; Woolf, T.F.; Hollenberg, P.F. Inactivation of cytochrome P450 3A4 by bergamottin, a component of grapefruit juice. Chem. Res. Toxicol. 1998, 11, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Kent, U.M.; Lin, H.L.; Noon, K.R.; Harris, D.L.; Hollenberg, P.F. Metabolism of bergamottin by cytochromes P450 2B6 and 3A5. J. Pharmacol. Exp. Ther. 2006, 318, 992–1005. [Google Scholar] [CrossRef] [PubMed]
- Messer, A.; Raquet, N.; Lohr, C.; Schrenk, D. Major furocoumarins in grapefruit juice II: Phototoxicity, photogenotoxicity, and inhibitory potency vs. cytochrome P450 3A4 activity. Food Chem. Toxicol. 2012, 50, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Späth, E.; Kainrath, P. Über bergamottin und über die auffindung von limettin im bergamottöl (XXXIV. mitteil. über natürliche cumarine). Eur. J. Inorg. Chem. 1937, 70, 2272–2276. [Google Scholar] [CrossRef]
- Cirmi, S.; Bisignano, C.; Mandalari, G.; Navarra, M. Anti-infective potential of Citrus bergamia Rissoet Poiteau (bergamot) derivatives: A systematic review. Phytother. Res. 2016, 30, 1404–1411. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Gibson, J.; Eggett, D.L.; Parker, T.L. Bergamot (Citrus bergamia) essential oil inhalation improves positive feelings in the waiting room of a mental health treatment center: A pilot study. Phytother. Res. 2017, 31, 812–816. [Google Scholar] [CrossRef] [PubMed]
- Mannucci, C.; Navarra, M.; Calapai, F.; Squeri, R.; Gangemi, S.; Calapai, G. Clinical pharmacology of Citrus bergamia: A systematic review. Phytother. Res. 2017, 31, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, M.; Luini, A.; Bombelli, R.; Corasaniti, M.T.; Bagetta, G.; Marino, F. The essential oil of bergamot stimulates reactive oxygen species production in human polymorphonuclear leukocytes. Phytother. Res. 2014, 28, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- Stanley, W.L.; Vannier, S.H. Chemical composition of lemon oil. I. isolation of a series of substituted coumarins. J. Am. Chem. Soc. 1957, 79, 3488–3491. [Google Scholar] [CrossRef]
- Schmiedlin-Ren, P.; Edwards, D.J.; Fitzsimmons, M.E.; He, K.; Lown, K.S.; Woster, P.M.; Rahman, A.; Thummel, K.E.; Fisher, J.M.; Hollenberg, P.F.; et al. Mechanisms of enhanced oral availability of CYP3A4 substrates by grapefruit constituents. Decreased enterocyte CYP3A4 concentration and mechanism-based inactivation by furanocoumarins. Drug Metab. Dispos. 1997, 25, 1228–1233. [Google Scholar] [PubMed]
- Vandermolen, K.M.; Cech, N.B.; Paine, M.F.; Oberlies, N.H. Rapid Quantitation of furanocoumarins and flavonoids in grapefruit juice using ultra performance liquid chromatography. Phytochem. Anal. 2013, 24, 654–660. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Ma, L.L.; Jiang, D.; Zhu, S.P.; Yan, F.H.; Xie, Y.X.; Xie, Z.Z.; Guo, W.W.; Deng, X.X. Content evaluation of 4 furanocoumarin monomers in various citrus germplasms. Food Chem. 2015, 187, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Kawaii, S.; Tomono, Y.; Katase, E.; Ogawa, K.; Yano, M. Isolation of furocoumarins from bergamot fruits as HL-60 differentiation-inducing compounds. J. Agric. Food Chem. 1999, 47, 4073–4078. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.B.; Pang, F.; Wen, Y.; Zhang, H.F.; Zhao, Z.; Hu, J.F. Antiproliferative and apoptotic activities of linear furocoumarins from Notopterygium incisum on cancer cell lines. Planta Med. 2010, 76, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Kang, T.J.; Lee, S.Y.; Singh, R.P.; Agarwal, R.; Yim, D.S. Anti-tumor activity of oxypeucedanin from Ostericum koreanum against human prostate carcinoma DU145 cells. Acta Oncol. 2009, 48, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.K.; Sun, C.D.; Yan, Y.Y.; Chen, Q.J.; Luo, F.L.; Zhu, X.Y.; Li, X.; Chen, K.S. Purification of naringin and neohesperidin from Huyou (Citrus changshanensis) fruit and their effects on glucose consumption in human HepG2 cells. Food Chem. 2012, 135, 1471–1478. [Google Scholar] [CrossRef] [PubMed]
- Luo, F.L.; Lv, Q.; Zhao, Y.Q.; Hu, G.B.; Huang, G.D.; Zhang, J.K.; Sun, C.D.; Li, X.; Chen, K.S. Quantification and purification of mangiferin from Chinese mango (Mangifera indica L.) cultivars and its protective effect on human umbilical vein endothelial cells under H2O2-induced stress. Int. J. Mol. Sci. 2012, 13, 11260–11274. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.G.; Kim, K.; Vance, T.M.; Perkins, C.; Provatas, A.; Wu, S.; Qureshi, A.; Cho, E.; Chun, O.K. Development of a comprehensive analytical method for furanocoumarins in grapefruit and their metabolites in plasma and urine using UPLC-MS/MS: A preliminary study. Int. J. Food Sci. Nutr. 2016, 67, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Girennavar, B.; Jayaprakasha, G.K.; Patil, B.S. Influence of pre- and post-harvest factors and processing on the levels of furocoumarins in grapefruits (Citrus paradisi Macfed.). Food Chem. 2008, 111, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, P.; Jayaprakasha, G.K.; Porat, R.; Patil, B.S. Degreening and postharvest storage influences ‘Star Ruby’grapefruit (Citrus paradisi Macf.) bioactive compounds. Food Chem. 2012, 135, 1667–1675. [Google Scholar] [CrossRef] [PubMed]
- Oka, F.; Oka, H.; Ito, Y. Systematic search for suitable two-phase solvent systems for high-speed counter-current chromatograph. J. Chromatogr. A. 1991, 538, 99–108. [Google Scholar] [CrossRef]
- Qiu, H.; Xiao, X.; Li, G. Separation and purification of furanocoumarins from Toddalia asiatica (L.) Lam. using microwave-assisted extraction coupled with high-speed counter-current chromatography. J. Sep. Sci. 2012, 35, 901–906. [Google Scholar] [CrossRef] [PubMed]
- Prosen, H.; Kočar, D. Different sample preparation methods combined with LC-MS/MS and LC-UV for determination of some furocoumarin compounds in products containing citruses. Flavour Fragr. J. 2008, 23, 263–271. [Google Scholar] [CrossRef]
- Jia, S.; Hu, Y.; Zhang, W.N.; Zhao, X.Y.; Chen, Y.H.; Sun, C.D.; Li, X.; Chen, K.S. Hypoglycemic and hypolipidemic effects of neohesperidin derived from Citrus aurantium L. in diabetic KK-Ay mice. Food Funct. 2015, 6, 878–886. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.; Si, M.M.; Yan, Y.Y.; Luo, F.L.; Hu, G.B.; Wu, H.S.; Sun, C.D.; Li, X.; Chen, K.S. Effects of phenolic-rich litchi (Litchi chinensis Sonn.) pulp extracts on glucose consumption in human HepG2 cells. J. Funct. Foods 2014, 7, 621–629. [Google Scholar] [CrossRef]
- Zhang, X.N.; Huang, H.Z.; Zhao, X.Y.; Lv, Q.; Sun, C.D.; Li, X.; Chen, K.S. Effects of flavonoids-rich Chinese bayberry (Myrica rubra Sieb. et Zucc.) pulp extracts on glucose consumption in human HepG2 cells. J. Funct. Foods 2015, 14, 144–153. [Google Scholar] [CrossRef]
- Zhang, X.N.; Lv, Q.; Jia, S.; Chen, Y.H.; Sun, C.D.; Li, X.; Chen, K.S. Effects of flavonoid-rich Chinese bayberry (Morella rubra Sieb. et Zucc.) fruit extract on regulating glucose and lipid metabolism in diabetic KK-Ay mice. Food Funct. 2016, 7, 3130–3140. [Google Scholar] [CrossRef] [PubMed]
- Widmer, W.; Haun, C. Variation in furanocoumarin content and new furanocoumarin dimers in commercial grapefruit (Citrus paradisi Macf.) juices. J. Food Sci. 2005, 70, 307–312. [Google Scholar] [CrossRef]
- Liu, X.W.; Su, Y.; Zhu, H.; Cao, J.; Ding, W.J.; Zhao, Y.C.; He, Q.J.; Yang, B. HIF-1α-dependent autophagy protects HeLa cells from fenretinide (4-HPR)-induced apoptosis in hypoxia. Pharmacol. Res. 2010, 62, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Y.; Sun, H. Up-regulation of Foxp3 inhibits cell proliferation, migration and invasion in epithelial ovarian cancer. Cancer Lett. 2010, 287, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Wu, H.S.; Tang, L.; Feng, C.R.; Yu, J.H.; Li, Y.; Yang, Y.S.; Yang, B.; He, Q.J. The potential insulin sensitizing and glucose lowering effects of a novel indole derivative in vitro and in vivo. Pharmacol. Res. 2007, 56, 335–343. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Not Available |
Cultivars | Bergamottin Content (μg·g−1 DW) | |||
---|---|---|---|---|
Flavedo | Albedo | SM 1 | JS 2 | |
Citrus grandis | ||||
Mabuwendan | 397.97 ± 3.02 c | 1.97 ± 0.08 c | 1.29 ± 0.03 ef | 13.98 ± 0.01 d |
Shatianyou | 2.64 ± 0.09 f | 0.23 ± 0.00 e | 0.91 ± 0.01 f | 0.41 ± 0.00 e |
Sijiyou | 356.04 ± 14.86 d | 0.91 ± 0.07 de | 3.46 ± 0.08 de | 34.07 ± 0.28 c |
Yuhuanyou | 583.15 ± 12.42 b | 1.88 ± 0.02 cd | 3.70 ± 0.04 d | 57.57 ± 0.95 b |
Yongjiazaoxiangyou | 666.54 ± 16.02 a | 15.87 ± 0.93 a | 7.23 ± 0.18 c | 1.23 ± 0.01 e |
Citrus paradisi | ||||
White Grapefruit | 11.43 ± 0.54 f | 0.44 ± 0.01 e | 0.91 ± 0.01 f | 0.84 ± 0.01 e |
Red Grapefruit | 206.73 ± 3.95 e | 16.34 ± 0.05 a | 42.96 ± 2.23 a | 144.24 ± 3.00 a |
Citrus reticulata | ||||
Mixiagan | 212.53 ± 13.48 e | 12.58 ± 0.49 b | 12.06 ± 0.32 b | 0.57 ± 0.01 e |
Solvent System (v/v/v/v) | Ratio | K1 | K2 1 | K2/K1 |
---|---|---|---|---|
Hexane–ethanol–acetonitrile–water | 10:8:1:1 | 0.34 | 0.31 | 0.91 |
Chloroform–methanol–water | 2:1:1 | 0.05 | 0.05 | 1 |
Chloroform–methanol–water | 13:7:8 | 0.25 | 0.33 | 1.32 |
Chloroform–methanol–n-butanol–water | 4:3:1:2 | 0.01 | 0.01 | 1 |
Hexane–ethyl acetate–methanol–water | 1:1:2:0.625 | 1.50 | 2.19 | 1.46 |
Hexane–ethyl acetate–methanol–water | 1:1:2:1 | 1.01 | 1.24 | 1.22 |
Hexane–ethyl acetate–methanol–water | 2:1:2:1 | 2.80 | 5.91 | 2.11 |
Hexane–ethyl acetate–methanol–water | 5:5:7:3 | 2.30 | 4.21 | 1.83 |
Purification Step | Purity (%) | Recovery (%) | Yield (mg) |
---|---|---|---|
Crude extract | 0.05 | / | / |
Silica gel-refined sample | 44.82 | 79.48 | 74.6 1 |
HSCCC | 94.01 | 65.73 | 22.6 2 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Ren, C.; Cao, Y.; Wang, Y.; Duan, W.; Xie, L.; Sun, C.; Li, X. Characterization and Purification of Bergamottin from Citrus grandis (L.) Osbeck cv. Yongjiazaoxiangyou and Its Antiproliferative Activity and Effect on Glucose Consumption in HepG2 cells. Molecules 2017, 22, 1227. https://doi.org/10.3390/molecules22071227
Liu Y, Ren C, Cao Y, Wang Y, Duan W, Xie L, Sun C, Li X. Characterization and Purification of Bergamottin from Citrus grandis (L.) Osbeck cv. Yongjiazaoxiangyou and Its Antiproliferative Activity and Effect on Glucose Consumption in HepG2 cells. Molecules. 2017; 22(7):1227. https://doi.org/10.3390/molecules22071227
Chicago/Turabian StyleLiu, Yilong, Chuanhong Ren, Yunlin Cao, Yue Wang, Wenyi Duan, Linfeng Xie, Chongde Sun, and Xian Li. 2017. "Characterization and Purification of Bergamottin from Citrus grandis (L.) Osbeck cv. Yongjiazaoxiangyou and Its Antiproliferative Activity and Effect on Glucose Consumption in HepG2 cells" Molecules 22, no. 7: 1227. https://doi.org/10.3390/molecules22071227
APA StyleLiu, Y., Ren, C., Cao, Y., Wang, Y., Duan, W., Xie, L., Sun, C., & Li, X. (2017). Characterization and Purification of Bergamottin from Citrus grandis (L.) Osbeck cv. Yongjiazaoxiangyou and Its Antiproliferative Activity and Effect on Glucose Consumption in HepG2 cells. Molecules, 22(7), 1227. https://doi.org/10.3390/molecules22071227