Chemical and Antimicrobial Analyses of Sideritis romana L. subsp. purpurea (Tal. ex Benth.) Heywood, an Endemic of the Western Balkan
Abstract
:1. Introduction
Taxonomic Characterization and Uses of SP
2. Results and Discussion
2.1. EO and Solvent Extractions
2.2. EO Chemical Analysis
2.3. Total Phenolic, Flavonoid and Tannin Contents
2.4. Antimicrobial Activity
3. Materials and Methods
3.1. Plant Material
3.2. EO Extraction
3.3. Solvent Extraction
3.4. EO Chemical Analysis
3.5. Determination of Total Phenols Content (TPC)
3.6. Determination of Total Tannins Content (TTC)
3.7. Determination of Total Flavonoid Content (TFC)
3.8. Bacterial Strains and Growth Media
3.9. Antimicrobials Agents and EO/Extracts Solutions Preparation
3.10. Antimicrobial Assay
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Baratta, M.T.; Dorman, H.J.D.; Deans, S.G.; Figueiredo, A.C.; Barroso, J.G.; Ruberto, G. Antimicrobial and antioxidant properties of some commercial essential oils. Flavour Fragr. J. 1998, 13, 235–244. [Google Scholar] [CrossRef]
- Cosentino, S.; Tuberoso, C.I.G.; Pisano, B.; Satta, M.; Mascia, V.; Arzedi, E.; Palmas, F. In Vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Lett. Appl. Microbiol. 1999, 29, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Rota, C.; Carramiñana, J.J.; Burillo, J.; Herrera, A. In vitro antimicrobial activity of essential oils from aromatic plants against selected foodborne pathogens. J. Food Prot. 2004, 67, 1252–1256. [Google Scholar] [CrossRef] [PubMed]
- Celiktas, O.Y.; Kocabas, E.E.H.; Bedir, E.; Sukan, F.V.; Ozek, T.; Baser, K.H.C. Antimicrobial activities of methanol extracts and essential oils of Rosmarinus officinalis, depending on location and seasonal variations. Food Chem. 2007, 100, 553–559. [Google Scholar] [CrossRef]
- Celikel, N.; Kavas, G. Antimicrobial properties of some essential oils against some pathogenic microorganisms. Czech J. Food Sci. 2007, 26, 174–181. [Google Scholar]
- Carvalho, I.T.; Estevinho, B.N.; Santos, L. Application of microencapsulated essential oils in cosmetic and personal healthcare products—A review. Int. J. Cosmet. Sci. 2016, 38, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Tongnuanchan, P.; Benjakul, S. Essential oils: Extraction, bioactivities, and their uses for food preservation. J. Food Sci. 2014, 79, R1231–R1249. [Google Scholar] [CrossRef] [PubMed]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- De las Heras, B.; Navarro, A.; Díaz-Guerra, M.J.; Bermejo, P.; Castrillo, A.; Boscá, L.; Villar, A. Inhibition of NOS-2 expression in macrophages through the inactivation of NF-κB by andalusol. Br. J. Pharmacol. 1999, 128, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Navarro, A.; De las Heras, B.; Villar, A. Anti-inflammatory and immunomodulating properties of a sterol fraction from Sideritis foetens Clem. Biol. Pharm. Bull. 2001, 24, 470–473. [Google Scholar] [CrossRef] [PubMed]
- Aboutabl, E.A.; Nassar, M.I.; Elsakhawy, F.M.; Maklad, Y.A.; Osman, A.F.; El-Khrisy, E.A.M. Phytochemical and pharmacological studies on Sideritis taurica Stephan ex Wild. J. Ethnopharmacol. 2002, 82, 177–184. [Google Scholar] [CrossRef]
- Basile, A.; Senatore, F.; Gargano, R.; Sorbo, S.; Del Pezzo, M.; Lavitola, A.; Ritieni, A.; Bruno, M.; Spatuzzi, D.; Rigano, D.; et al. Antibacterial and antioxidant activities in Sideritis italica (Miller) Greuter et Burdet essential oils. J. Ethnopharmacol. 2006, 107, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Küpeli, E.; Şahin, F.P.; Çaliş, I.; Yeşilada, E.; Ezer, N. Phenolic compounds of Sideritis ozturkii and their in vivo anti-inflammatory and antinociceptive activities. J. Ethnopharmacol. 2007, 112, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Charami, M.T.; Lazari, D.; Karioti, A.; Skaltsa, H.; Hadjipavlou-Litina, D.; Souleies, C. Antioxidant and antiinflammatory activities of Sideritis perfoliata subsp. perfoliata (Lamiaceae). Phyther. Res. 2008, 22, 450–454. [Google Scholar] [CrossRef]
- Ertaş, A.; Öztürk, M.; Boǧa, M.; Topçu, G. Antioxidant and anticholinesterase activity evaluation of ent-kaurane diterpenoids from Sideritis arguta. J. Nat. Prod. 2009, 72, 500–502. [Google Scholar] [CrossRef] [PubMed]
- Güvenç, A.; Okada, Y.; Akkol, E.K.; Duman, H.; Okuyama, T.; Çaliş, I. Investigations of anti-inflammatory, antinociceptive, antioxidant and aldose reductase inhibitory activities of phenolic compounds from Sideritis brevibracteata. Food Chem. 2010, 118, 686–692. [Google Scholar] [CrossRef]
- Demirtas, I.; Ayhan, B.; Sahin, A.; Aksit, H.; Elmastas, M.; Telci, I. Antioxidant activity and chemical composition of Sideritis libanotica Labill. ssp. linearis (Bentham) Borm. (Lamiaceae). Nat. Prod. Res. 2011, 25, 1512–1523. [Google Scholar] [CrossRef] [PubMed]
- Tadić, V.; Bojović, D.; Arsić, I.; Dordević, S.; Aksentijević, K.; Stamenić, M.; Janković, S. Chemical and antimicrobial evaluation of supercritical and conventional Sideritis scardica Griseb., Lamiaceae extracts. Molecules 2012, 17, 2683–2703. [Google Scholar] [CrossRef] [PubMed]
- Tadić, V.; Jeremić, I.; Dobrić, S.; Isaković, A.; Marković, I.; Trajković, V.; Bojović, B.; Arsić, I. Anti-inflammatory, gastroprotective, and cytotoxic effects of Sideritis scardica extracts. Planta Med. 2012, 78, 415–427. [Google Scholar] [CrossRef]
- Koutsaviti, A.; Bazos, I.; Milenković, M.; Pavlović-Drobac, M.; Tzakou, O. Antimicrobial activity and essential oil composition of five Sideritis taxa of Empedoclia and Hesiodia sect. from Greece. Rec. Nat. Prod. 2013, 7, 6–14. [Google Scholar]
- Heywood, V. Genus Sideritis L. in Flora Europaea. Tutin, T., Heywood, V., Burges, N., Moore, D., Valentine, S., Walters, S., Webb, D., Eds.; Cambridge University Press: Cambridge, UK, 1973; Volume 2, pp. 138–143. [Google Scholar]
- Gonzàlez-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. Sideritis spp.: Uses, chemical composition and pharmacological activities—A review. J. Ethnopharmacol. 2011, 135, 209–225. [Google Scholar] [CrossRef] [PubMed]
- Özcan, M.; Chalchat, J.C.; Akgül, A. Essential oil composition of Turkish mountain tea (Sideritis spp.). Food Chem. 2001, 75, 459–463. [Google Scholar] [CrossRef]
- Leporatti, M.L.; Impieri, M. Ethnobotanical notes about some uses of medicinal plants in Alto Tirreno Cosentino area (Calabria, Southern Italy). J. Ethnobiol. Ethnomed. 2007, 3, 34. [Google Scholar] [CrossRef] [PubMed]
- Venditti, A.; Frezza, C.; Guarcini, L.; Foddai, S.; Serafini, M.; Bianco, A. Phytochemical study of a species with ethnopharmacological interest: Sideritis romana L. Eur. J. Med. Plants 2016, 12, 1–9. [Google Scholar] [CrossRef]
- Gergis, V.; Argyriadou, N.; Poulos, C. Composition of the essential oils of Sideritis cladestina ssp cyllenea and Sideritis sipylea. J. Sci. Food Agric. 1989, 47, 501–507. [Google Scholar] [CrossRef]
- Mateo, C.; Sanz, J.; Calderón, J. Essential oil of Sideritis hirsuta. Phytochemistry 1983, 22, 171–173. [Google Scholar] [CrossRef]
- Morón, M.; Merle, H.; Primo, J.; Blázquez, M.A.; Boira, H. Diterpene compounds in the essential oil of Sideritis linearifolia Lam. growing in Spain. Flavour Fragr. J. 2005, 20, 205–208. [Google Scholar] [CrossRef]
- Kostadinova, E.; Nikolova, D.; Alipieva, K.; Stefova, M.; Stefkov, G.; Evstatieva, L.; Matevski, V.; Bankova, V. Chemical constituents of the essential oils of Sideritis scardica Griseb. and Sideritis raeseri Boiss and Heldr. from Bulgaria and Macedonia. Nat. Prod. Res. 2007, 21, 819–823. [Google Scholar] [CrossRef] [PubMed]
- Kirimer, N.; Tabanca, N.; Ozek, T.; Tümen, G.; Baser, K.H. Essential oils of annual Sideritis species growing in Turkey. Pharm. Biol. 2000, 38, 106–111. [Google Scholar] [CrossRef]
- Aligiannis, N.; Kalpoutzakis, E.; Chinou, I.B.; Mitakou, S.; Gikas, E.; Tsarbopoulos, A. Composition and antimicrobial activity of the essential oils of five taxa of Sideritis from Greece. J. Agric. Food Chem. 2001, 49, 811–815. [Google Scholar] [CrossRef] [PubMed]
- Kirimer, N.; Tabanca, N.; Tümen, G.; Duman, H.; Başer, K.H.C. Composition of the essential oils of four endemic Sideritis species from Turkey. Flavour Fragr. J. 1999, 14, 421–425. [Google Scholar] [CrossRef]
- Ezer, N.; Vila, R.; Cañigueral, S.; Adzet, T. Essential oil composition of four turkish species of Sideritis. Phytochemistry 1996, 41, 203–205. [Google Scholar] [CrossRef]
- Palá-Paúl, J.; Pérez-Alonso, M.J.; Velasco-Negueruela, A.; Ballestros, M.T.; Sanz, J. Essential oil composition of Sideritis hirsuta L. from Guadalajara Province, Spain. Flavour Fragr. J. 2006, 21, 410–415. [Google Scholar] [CrossRef]
- Rodriguez-Garcia, I.; Munoz-Dorado, M.; Gomez-Mercado, F.; Garcia-Maroto, F. Essential oil composition of Sideritis pusilla (Lange) Pau ssp. J. Essent. Oil Res. 2004, 16, 535–538. [Google Scholar] [CrossRef]
- Todorova, M.N.; Christov, R.C.; Evstatieva, L.N. Essential oil composition of three Sideritis species from Bulgaria. J. Essent. Oil Res. 2000, 12, 418–420. [Google Scholar] [CrossRef]
- Flamini, G.; Cioni, P.L.; Morelli, I.; Maccioni, S.; Tomei, P. Characterization of the volatile fraction of a Sideritis romana population from Montemarcello (Eastern Liguria). J. Essent. Oil Res. 1994, 6, 239–242. [Google Scholar] [CrossRef]
- Pljevljakušić, D.; Šavikin, K.; Janković, T.; Zdunić, G.; Ristić, M.; Godjevac, G.; Konić-Ristić, A. Chemical properties of the cultivated Sideritis raeseri Boiss. & Heldr. subsp. raeseri. Food Chem. 2011, 124, 226–233. [Google Scholar] [CrossRef]
- Baser, K.H.C. Aromatic biodiversity among the flowering plant taxa of Turkey. Pure Appl. Chem. 2002, 74, 527–545. [Google Scholar] [CrossRef]
- Ozsoy, N.; Can, A.; Yanardag, R.; Akev, N. Antioxidant activity of Smilax excelsa L. leaf extracts. Food Chem. 2008, 110, 571–583. [Google Scholar] [CrossRef]
- Samatha, T.; Shyamsundarachary, R.; Srinivas, P.; Swamy, N.R. Quantification of total phenolic and total flavonoid contents in extracts of Oroxylum indicum L.Kurz. Asian J. Pharm. Clin. Res. 2012, 5, 177–179. [Google Scholar]
- Roya, K.; Fatemeh, G. Screening of total phenol and flavonoid content, antioxidant and antibacterial activities of the methanolic extracts of three Silene species from Iran. Int. J. Agric. Crop Sci. 2013, 5, 305–312. [Google Scholar]
- Medini, F.; Fellah, H.; Ksouri, R.; Abdelly, C. Total phenolic, flavonoid and tannin contents and antioxidant and antimicrobial activities of organic extracts of shoots of the plant Limonium delicatulum. J. Taibah Univ. Sci. 2014, 8, 216–224. [Google Scholar] [CrossRef]
- Dincera, C.; Toruna, M.; Tontula, I.; Topuza, A.; Sahin-Nadeema, H.; Gokturkc, R.S.; Tugrul-Ayd, S.; Ozdemira, F. Phenolic composition and antioxidant activity of Sideritis lycia and Sideritis libanotica subsp. linearis: Effects of cultivation, year and storage. J. Appl. Res. Med. Aromat. Plants 2017, 5, 26–32. [Google Scholar]
- Menković, N.; Gođevac, D.; Šavikin, K.; Zdunić, G.; Milosavljević, S.; Bojadži, A.; Avramoski, O. Bioactive compounds of endemic species Sideritis raeseri subsp. raeseri grown in National Park Galičica. Rec. Nat. Prod. 2013, 7, 161–168. [Google Scholar]
- Tunalier, Z.; Kosar, M.; Ozturk, N.; Baser, K.H.C.; Duman, H.; Kirimer, N. Antioxidant properties and phenolic composition of Sideritis species. Chem. Nat. Compd. 2004, 40, 206–210. [Google Scholar] [CrossRef]
- Ozkan, G.; Sagdic, O.; Ozcan, M.; Ozcelik, H.; Unver, A. Antioxidant and antibacterial activities of Turkish endemic Sideritis extracts. Grasas Y Aceites 2005, 56, 16–20. [Google Scholar] [CrossRef]
- Vaya, J.; Belinky, P.A.; Aviram, M. Antioxidant constituents from licorice roots: Isolation, structure elucidation and antioxidative capacity toward LDL oxidation. Free Radic. Biol. Med. 1997, 23, 302–313. [Google Scholar] [CrossRef]
- Sengul, M.; Yildiz, H.; Gungor, N.; Cetin, B.; Eser, Z.; Ercisli, S. Total phenolic content, antioxidant and antimicrobial activities of some medicinal plants. Pak. J. Pharm. Sci. 2009, 22, 102–106. [Google Scholar] [PubMed]
- Stešević, D.; Božović, M.; Tadić, V.; Rančić, D.; Stevanović, Z.D. Plant-part anatomy related composition of essential oils and phenolic compounds in Chaerophyllum coloratum, a Balkan endemic species. Flora Morphol. Distrib. Funct. Ecol. Plants 2016, 220, 37–51. [Google Scholar] [CrossRef]
- Das, N.P.; Pereira, T.A. Effects of flavonoids on thermal autoxidation of palm oil: Structure-activity relationships. JAOCS 1990, 67, 255–258. [Google Scholar] [CrossRef]
- Jaakola, L.; Määttä-Riihinen, K.; Kärenlampi, S.; Hohtola, A. Activation of flavonoid biosynthesis by solar radiation in bilberry (Vaccinium myrtillus L.) leaves. Planta 2004, 218, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.S.; Martin, M.M. Tannin assays in ecological studies: Lack of correlation between phenolics, proanthocyanidins and protein-precipitating constituents in mature foliage of six oak species. Oecologia 1982, 54, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Sultana, M.; Verma, P.K.; Raina, R.; Prawez, S.; Dar, M.A. Quantitative analysis of total phenolic, flavonoids and tannin contents in acetone and n-hexane extracts of Ageratum conyzoides. Int. J. ChemTech Res. 2012, 4, 996–999. [Google Scholar]
- Han, X.; Shen, T.; Lou, H. Dietary polyphenols and their biological significance. Int. J. Mol. Sci. 2007, 8, 950–988. [Google Scholar] [CrossRef]
- Kirimer, N.; Baser, K.H. C.; Demirci, B.; Duman, H. Essential oils of Sideritis species of Turkey belonging to the section Empedoclia. Chem. Nat. Compd. 2004, 40, 19–23. [Google Scholar] [CrossRef]
- Villar, A.; Recio, M.C.; Ríos, J.L.; Zafra-Polo, M.C. Antimicrobial activity of essential oils from Sideritis species. Pharmazie 1986, 41, 298–299. [Google Scholar] [PubMed]
- Uğur, A.; Varol, Ö.; Ceylan, Ö. Antibacterial activity of Sideritis curvidens and Sideritis lanata from Turkey. Pharm. Biol. 2005, 43, 47–52. [Google Scholar] [CrossRef]
- Iscan, G.; Kirimer, N.; Kurkcuoglu, M.; Baser, K.H.C. Composition and antimicrobial activity of the essential oils of two endemic species from Turkey: Sideritis cilicica and Sideritis bilgerana. Chem. Nat. Compd. 2005, 41, 679–682. [Google Scholar] [CrossRef]
- Sagdic, O.; Aksoy, A.; Ozkan, G.; Ekici, L.; Albayrak, S. Biological activities of the extracts of two endemic Sideritis species in Turkey. Innov. Food Sci. Emerg. Technol. 2008, 9, 80–84. [Google Scholar] [CrossRef]
- Kostadinova, E.; Alipieva, K.; Stefova, M.; Antonova, D.; Evstatieva, L.; Stefkov, G.; Tsvetkova, I.; Naydenski, H.; Bankova, V. Influence of cultivation on the chemical composition and antimicrobial activity of Sideritis spp. Pharmacogn. Mag. 2008, 4, 102–106. [Google Scholar]
- Ambrósio, S.R.; Arakawa, N.S.; Esperandim, V.R.; De Albuquerque, S.; Da Costa, F.B. Trypanocidal activity of pimarane diterpenes from Viguiera arenaria (Asteraceae). Phyther. Res. 2008, 22, 1413–1415. [Google Scholar] [CrossRef] [PubMed]
- Del Vechio-Vieira, G.; Sousa, O.; Yamamoto, C.; Kaplan, M.C. Chemical composition and antimicrobial activity of the essential oils of Ageratum fastigiatum (Asteraceae). Rec. Nat. Prod. 2009, 3, 52–57. [Google Scholar]
- Kasim, L.S.; Olaleye, K.O.; Fagbohun, A.B.; Ibitoye, S.F.; Adejumo, O.E. Chemical composition and antibacterial activity of essential oils from Struchium sparganophora Linn. Ktze Asteraceae. Adv. Biol. Chem. 2014, 4, 246–252. [Google Scholar] [CrossRef]
- Gil, E.; Cuca, L.E.; Delgado, W.A. Chemical composition and antimicrobial activity of the essential oil of the leaves of Ocotea caudata (Nees) Mez (Lauraceae) from Colombia. Bol. Latinoam. Caribe Plantas Med. Aromat. 2016, 15, 258–263. [Google Scholar]
- Da Silva, L.; Oniki, G.H.; Agripino, D.G.; Moreno, P.R.H.; Young, M.C.M.; Mayworm, M.A.S.; Ladeira, A.M. Biciclogermacreno, resveratrol e atividade antifúngica em extratos de folhas de Cissus verticillata (L.) Nicolson & Jarvis (Vitaceae). Brazilian J. Pharmacogn. 2007, 17, 361–367. [Google Scholar] [CrossRef]
- De Lima, S.G.; Citó, A.M.G.L.; Lopes, J.A.D.; Neto, J.M.M.; Chaves, M.H.; Silveira, E.R. Fixed and volatile constituents of genus croton plants: C. adenocalyx baill—Euphorbiaceae. Rev. Latinoam. Quím. 2010, 38, 133–144. [Google Scholar]
- Vagionas, K.; Graikou, K.; Chinou, I.B.; Runyoro, D.; Ngassapa, O. Chemical analysis and antimicrobial activity of essential oils from the aromatic plants Artemisia afra Jacq. and Leonotis ocymifolia (Burm. F.) Iwarsson var. raineriana (Vision 1) Iwarsson growing in Tanzania. J. Essent. Oil Res. 2007, 19, 396–400. [Google Scholar] [CrossRef]
- Pirbalouti, G.A.; Firoznezhad, M.; Craker, L.; Akbarzadeh, M. Essential oil compositions, antibacterial and antioxidant activities of various populations of Artemisia chamaemelifolia at two phenological stages. Braz. J. Pharmacogn. 2013, 23, 861–869. [Google Scholar] [CrossRef]
- Silvério, M.S.; Del-Vechio-Vieira, G.; Pinto, M.A.O.; Alves, M.S.; Sousa, O.V. Chemical composition and biological activities of essential oils of Eremanthus erythropappus (DC) McLeisch (Asteraceae). Molecules 2013, 18, 9785–9796. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography; Allured Publishing Corporation: Carol Stream, IL, USA, 1995; pp. 1–804. [Google Scholar]
- Velioglu, Y.S.; Mazza, G.; Gao, L.; Oomah, B.D. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain Products. J. Agric. Food Chem. 1998, 46, 4113–4117. [Google Scholar] [CrossRef]
- Blanc, P. European Pharmacopoeia. Br. Med. J. 1964, 2, 192. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standars Institute. Performance Standards for Antimicrobial Susceptibility Testing; Fifteenth Informational Supplement M100-S15; CLSI: Wayne, PA, USA, 2005. [Google Scholar]
- Venditti, A.; Frezza, C.; Salutari, G.; Di Cecco, M.; Ciaschetti, G.; Oliva, A.; De Angelis, M.; Vullo, V.; Sabatino, M.; Garzoli, S.; et al. Composition of the essential oil of Coristospermum cuneifolium and anti-microbial activity evaluation. Planta Medica Int. Open 2017, in press. [Google Scholar]
Sample Availability: Samples of the essential oils and extract are not available from the authors. |
Sample Name | Solvent | Yield (Grams) |
---|---|---|
A | methanol | 0.76 |
B | n-hexane | 0.03 |
C | 1,2-dichloroethane | 0.03 |
D | ethyl-acetate | 0.05 |
E | chloroform | 0.02 |
Sample Name | Solvent | Yield % 1 |
---|---|---|
F | methanol | 0.254 |
G | acetone | 0.176 |
H | diethyl-ether | 0.191 |
# 1 | Compound Name | KI 2 | % | # 1 | Compound Name | KI 2 | % |
---|---|---|---|---|---|---|---|
1 | 1,8-cineole | 1026 | 0.3 | 23 | viridiflorol | 1592 | 0.8 |
2 | camphor | 1141 | 0.3 | 24 | 8-cedren-13-ol | 1688 | 1.1 |
3 | trans-chrysanthenyl acetate | 1235 | 0.2 | 25 | myristic acid | 1770 | 1.1 |
4 | α-terpinyl acetate | 1346 | 3.1 | 26 | isopropyl tetradecanoate | 1828 | 1.7 |
5 | γ-ylangene | 1374 | 0.2 | 27 | hexahydrofarnesyl acetone | 1848 | 6.9 |
6 | α-copaene | 1377 | 1 | 28 | (5E,9E)-farnesyl acetone | 1913 | 0.5 |
7 | β-bourbonene | 1387 | 0.4 | 29 | phytol | 1942 | 0.9 |
8 | β-(E)-demascenone | 1383 | 0.5 | 30 | palmitoleic acid | 1953 | 0.5 |
9 | β-elemene | 1384 | 0.6 | 31 | palmitic acid | 1959 | 7.6 |
10 | (E or β)-caryophyllene | 1417 | 7.9 | 32 | isopropyl hexadecanoate | 2024 | 0.6 |
11 | endo-arbazol | 1433 | 0.2 | 33 | manool | 2056 | 0.9 |
12 | aromadendrene | 1439 | 0.3 | 34 | epi-manool | 2059 | 0.3 |
13 | α-humulene | 1452 | 0.4 | 35 | octadecanol | 2077 | 0.6 |
14 | β-farnesene | 1454 | 0.4 | 36 | phytol acetate | 2218 | 1.9 |
15 | γ-muurolene | 1478 | 0.9 | 37 | 3α-hydroxy manool | 2297 | 0.9 |
16 | germacrene D | 1484 | 8 | 38 | 3-deoxy estradiol | 2300 | 0.8 |
17 | bicyclogermacrene | 1500 | 23.8 | 39 | torulosol | 2360 | 0.8 |
18 | 10-epi-italicene ether | 1515 | 1.6 | 40 | pentacosane | 2500 | 0.7 |
19 | δ-cadinene | 1522 | 1 | 41 | hexacosane | 2600 | 0.5 |
20 | spathulenol | 1577 | 5.5 | 42 | heptacosane | 2700 | 0.1 |
21 | caryophyllene oxide | 1582 | 2 | 43 | nonacosane | 2900 | 1.1 |
22 | globulol | 1590 | 1.5 | Unidentified compounds | 9.6 |
Microorganism | MIC Low Inoculum ° (mg/mL) | MBC Low Inoculum ° (mg/mL) | MIC High Inoculum § (mg/mL) | MBC High Inoculum § (mg/mL) | Activity | MIC Reference Antimicrobial (mg/L) |
---|---|---|---|---|---|---|
MSSA (ATCC 29213) | 0.307 | 0.615 | 0.307 | 0.615 | Bactericidal | 0.5 (VAN)–0.03 (RIF) |
MRSA * | 0.076 | 0.153 | 0.076 | 0.153 | Bactericidal | 1 (VAN)–0.06 (RIF) |
E. coli (ATCC 25922) | >2.46 | >2.46 | - | - | No effect | 0.125 (MEM) |
CS K. pneumoniae * | >2.46 | >2.46 | - | - | No effect | 0.25 (MEM) |
CR K. pneumoniae * | >2.46 | >2.46 | - | - | No effect | 16 (MEM) |
C. albicans (ATCC 14053) | 2.46 | >2.46 | - | - | Fungistatic | 0.25 (FLU) |
Sample Name | MBC MSSA (ATCC 29213) Low Inoculum (mg/mL) | MBC MSSA (ATCC 29213) High Inoculum (mg/mL) | MBC MRSA ° Low Inoculum (mg/mL) | MBC MRSA ° High Inoculum (mg/mL) | MBC C. albicans (ATCC 14053) Low Inoculum (mg/mL) | Antibacterial Activity | Antifungal Activity |
---|---|---|---|---|---|---|---|
A | 18.99 | 4.74 | 4.74 | 4.74 | >18.99 | Bactericidal | No effect |
B | >0.75 | >0.75 | >0.75 | >0.75 | 0.75 | No effect | Fungicidal |
C | 3.09 | 3.09 | 3.09 | 3.09 | 3.09 | Bactericidal | Fungicidal |
D | >1.30 * | >1.30 | >1.30 | >1.30 ** | >1.30 | Bacteriostatic | No effect |
E # | >0.89 | >0.89 | >0.89 | >0.89 | >0.89 | No effect | No effect |
F | 2.90 | 2.90 | 2.90 | 2.90 | >5.80 | Bactericidal | No effect |
G | >5.25 | >5.25 | >5.25 | >5.25 | >5.25 | No effect | No effect |
H | >3.07 | >3.07 | >3.07 | >3.07 | >3.07 | No effect | No effect |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tadić, V.; Oliva, A.; Božović, M.; Cipolla, A.; De Angelis, M.; Vullo, V.; Garzoli, S.; Ragno, R. Chemical and Antimicrobial Analyses of Sideritis romana L. subsp. purpurea (Tal. ex Benth.) Heywood, an Endemic of the Western Balkan. Molecules 2017, 22, 1395. https://doi.org/10.3390/molecules22091395
Tadić V, Oliva A, Božović M, Cipolla A, De Angelis M, Vullo V, Garzoli S, Ragno R. Chemical and Antimicrobial Analyses of Sideritis romana L. subsp. purpurea (Tal. ex Benth.) Heywood, an Endemic of the Western Balkan. Molecules. 2017; 22(9):1395. https://doi.org/10.3390/molecules22091395
Chicago/Turabian StyleTadić, Vanja, Alessandra Oliva, Mijat Božović, Alessia Cipolla, Massimiliano De Angelis, Vincenzo Vullo, Stefania Garzoli, and Rino Ragno. 2017. "Chemical and Antimicrobial Analyses of Sideritis romana L. subsp. purpurea (Tal. ex Benth.) Heywood, an Endemic of the Western Balkan" Molecules 22, no. 9: 1395. https://doi.org/10.3390/molecules22091395
APA StyleTadić, V., Oliva, A., Božović, M., Cipolla, A., De Angelis, M., Vullo, V., Garzoli, S., & Ragno, R. (2017). Chemical and Antimicrobial Analyses of Sideritis romana L. subsp. purpurea (Tal. ex Benth.) Heywood, an Endemic of the Western Balkan. Molecules, 22(9), 1395. https://doi.org/10.3390/molecules22091395