RETRACTED: Pyrene-Phosphonate Conjugate: Aggregation-Induced Enhanced Emission, and Selective Fe3+ Ions Sensing Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Design Strategy, Synthesis, and Characterization
2.2. A Naked Eye Detection of Metal Ions
2.3. Optical Sensing
2.4. Fluorescence Sensing
2.5. Competitive Experiments
2.6. Aggregation-Induced Enhanced Emission (AIEE) Phenomenon
2.7. Visualization of Aggregates by FE-SEM Analysis and Dynamic Light Scattering (DLS) Analysis
3. Experimental Section
3.1. Materials and Instruments
3.2. Naked-Eye Colorimetric Response
3.3. UV-Vis Absorption Spectroscopic
3.4. Fluorescence Spectroscopic
3.5. Reversible Experimental with EDTA
3.6. FE-SEM Measurements
3.7. DLS Analysis
3.8. Synthesis and Characterization of Target Molecules
3.8.1. Synthesis of 1-Pyrene Butyric Acid Chloride
3.8.2. Synthesis of Pyrene Phosphonate
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cairo, G.; Pietrangelo, A. Iron regulatory proteins in pathobiology. Biochem. J. 2000, 352, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Touati, D. Iron and oxidative stress in bacteria. Arch. Biochem. Biophys. 2000, 373, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Weizman, H.; Ardon, O.; Mester, B.; Libman, J.; Dwir, O.; Hadar, Y.; Chen, Y.; Shanzer, A. Fluorescently-labeled ferrichrome analogs as probes for receptor-mediated, microbial iron uptake. J. Am. Chem. Soc. 1996, 118, 12368–12375. [Google Scholar] [CrossRef]
- D’Autreaux, B.; Tucker, N.P.; Dixon, R.; Spiro, S. A non-haem iron centre in the transcription factor norr senses nitric oxide. Nature 2005, 437, 769–772. [Google Scholar] [CrossRef]
- Lee, J.-W.; Helmann, J.D. The perr transcription factor senses H2O2 by metal-catalysed histidine oxidation. Nature 2006, 440, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Kaim, W.; Schwederski, B.; Klein, A. Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life: An Introduction and Guide, 2nd ed.; John Wiley & Sons: Stuttgart, Germany, 2013. [Google Scholar]
- Crown, J.A. Inorganic Biochemistry: An Introduction, 2nd ed.; Wiley-VCH: New York, NY, USA, 1997; p. 456. [Google Scholar]
- Haas, J.D.; Brownlie, T. Iron deficiency and reduced work capacity: A critical review of the research to determine a causal relationship. J. Nutr. 2001, 131, 676S–690S. [Google Scholar] [PubMed]
- Halliwell, B.; Gutteridge, J.M.C. Role of free radicals and catalytic metal ions in human disease: An overview. Methods Enzymol. 1990, 186, 1–85. [Google Scholar] [PubMed]
- Halliwell, B.; Gutteridge, J.M.C. Biologically relevant metal ion-dependent hydroxyl radical generation an update. FEBS Lett. 1992, 307, 108–112. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 3rd ed.; Clarendon Press: Wotton-under-Edge, UK, 1999; p. 936. [Google Scholar]
- Crichton, R.R.; Dexter, D.T.; Ward, R.J. Metal based neurodegenerative diseases—From molecular mechanisms to therapeutic strategies. Coord. Chem. Rev. 2008, 252, 1189–1199. [Google Scholar] [CrossRef]
- Dornelles, A.S.; Garcia, V.A.; de Lima, M.N.M.; Vedana, G.; Alcalde, L.A.; Bogo, M.R.; Schröder, N. Mrna expression of proteins involved in iron homeostasis in brain regions is altered by age and by iron overloading in the neonatal period. Neurochem. Res. 2010, 35, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Ong, W.-Y.; Farooqui, A.A. Iron, neuroinflammation, and alzheimer’s disease. J. Alzheimers Dis. 2005, 8, 183–200. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361–5388. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Zhang, C.-J.; Gao, M.; Zhang, R.; Tang, B.Z.; Liu, B. Specific light-up bioprobe with aggregation-induced emission and activatable photoactivity for the targeted and image-guided photodynamic ablation of cancer cells. Angew. Chem. Int. Ed. 2015, 54, 1780–1786. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Li, K.; Liu, B.; Tang, B.Z. Bioprobes based on aie fluorogens. Acc. Chem. Res. 2013, 46, 2441–2453. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Tang, B.Z.; Liu, B. Specific light-up bioprobes based on aiegen conjugates. Chem. Soc. Rev. 2015, 44, 2798–2811. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Meng, L.; Chen, S.; Leung, C.W.T.; Da, L.-T.; Faisal, M.; Silva, D.-A.; Liu, J.; Lam, J.W.Y.; Huang, X.; et al. Monitoring and inhibition of insulin fibrillation by a small organic fluorogen with aggregation-induced emission characteristics. J. Am. Chem. Soc. 2012, 134, 1680–1689. [Google Scholar] [CrossRef] [PubMed]
- Amendola, V.; Fabbrizzi, L.; Foti, F.; Licchelli, M.; Mangano, C.; Pallavicini, P.; Poggi, A.; Sacchi, D.; Taglietti, A. Light-emitting molecular devices based on transition metals. Coord. Chem. Rev. 2006, 250, 273–299. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, Q.; Feng, W.; Li, F. Luminescent chemodosimeters for bioimaging. Chem. Rev. 2013, 113, 192–270. [Google Scholar] [CrossRef] [PubMed]
- Andersen, J.E.T. A novel method for the filterless preconcentration of iron. Analyst 2005, 130, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Del Castillo Busto, M.E.; Montes-Bayón, M.; Blanco-González, E.; Meija, J.; Sanz-Medel, A. Strategies to study human serum transferrin isoforms using integrated liquid chromatography icpms, maldi-tof, and esi-q-tof detection: Application to chronic alcohol abuse. Anal. Chem. 2005, 77, 5615–5621. [Google Scholar] [CrossRef] [PubMed]
- Pomazal, K.; Prohaska, C.; Steffan, I.; Reich, G.; Huber, J.F. Determination of Cu, Fe, Mn, and Zn in blood fractions by sec-hplc-icp-aes coupling. Analyst 1999, 124, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, C.M.G. Chemical speciation of iron in seawater by cathodic stripping voltammetry with dihydroxynaphthalene. Anal. Chem. 2006, 78, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.K.; Sharma, D.; Bera, R.K.; Crisponi, G.; Callan, J.F. Iron(iii) selective molecular and supramolecular fluorescent probes. Chem. Soc. Rev. 2012, 41, 7195–7227. [Google Scholar] [CrossRef] [PubMed]
- Carter, K.P.; Young, A.M.; Palmer, A.E. Fluorescent sensors for measuring metal ions in living systems. Chem. Rev. 2014, 114, 4564–4601. [Google Scholar] [CrossRef] [PubMed]
- Chung, P.K.; Liu, S.-R.; Wang, H.-F.; Wu, S.-P. A pyrene-based highly selective turn-on fluorescent chemosensor for iron(iii) ions and its application in living cell imaging. J. Fluoresc. 2013, 23, 1139–1145. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Talukder, S. A reversible pyrene-based turn-on luminescent chemosensor for selective detection of Fe3+ in aqueous environment with logic gate application. J. Fluoresc. 2016, 26, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Weerasinghe, A.J.; Schmiesing, C.; Varaganti, S.; Ramakrishna, G.; Sinn, E. Single- and multiphoton turn-on fluorescent Fe3+ sensors based on bis(rhodamine). J. Phys. Chem. B 2010, 114, 9413–9419. [Google Scholar] [CrossRef] [PubMed]
- Lim, N.C.; Pavlova, S.V.; Brückner, C. Squaramide hydroxamate-based chemidosimeter responding to iron(iii) with a fluorescence intensity increase. Inorg. Chem. 2009, 48, 1173–1182. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Tong, A. A new rhodamine-based chemosensor exhibiting selective Fe(iii)-amplified fluorescence. Org. Lett. 2006, 8, 1549–1552. [Google Scholar] [CrossRef]
- Bricks, J.L.; Kovalchuk, A.; Trieflinger, C.; Nofz, M.; Büschel, M.; Tolmachev, A.I.; Daub, J.; Rurack, K. On the development of sensor molecules that display Fe(iii)-amplified fluorescence. J. Am. Chem. Soc. 2005, 127, 13522–13529. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; She, M.; Yin, B.; Cui, J.; Zhang, Y.; Sun, W.; Li, J.; Shi, Z. Three rhodamine-based “off-on” chemosensors with high selectivity and sensitivity for Fe3+ imaging in living cells. J. Org. Chem. 2012, 77, 1143–1147. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Xu, Q.; Xia, X.; Wang, L.; Lu, J.; Wen, X. A polymeric chemosensor for Fe3+ based on fluorescence quenching of polymer with quinoline derivative in the side chain. Mater. Chem. Phys. 2009, 114, 339–343. [Google Scholar] [CrossRef]
- Xu, M.; Wu, S.; Zeng, F.; Yu, C. Cyclodextrin supramolecular complex as a water-soluble ratiometric sensor for ferric ion sensing. Langmuir 2010, 26, 4529–4534. [Google Scholar] [CrossRef] [PubMed]
- Tolis, E.I.; Helliwell, M.; Langley, S.; Raftery, J.; Winpenny, R.E.P. Synthesis and characterization of iron(iii) phosphonate cage complexes. Angew. Chem. Int. Ed. 2003, 42, 3804–3808. [Google Scholar] [CrossRef] [PubMed]
- De Silva, A.P.; Gunaratne, H.Q.N.; Gunnlaugsson, T.; Huxley, A.J.M.; McCoy, C.P.; Rademacher, J.T.; Rice, T.E. Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 1997, 97, 1515–1566. [Google Scholar] [CrossRef] [PubMed]
- Hayashita, T.; Yamauchi, A.; Tong, A.-J.; Lee, J.C.; Smith, B.D.; Teramae, N. Design of supramolecular cyclodextrin complex sensors for ion and molecule recognition in water. J. Incl. Phenom. Macrocycl. Chem. 2004, 50, 87–94. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Revision A.02; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Alexandratos, S.D.; Zhu, X. The role of polarizability in determining metal ion affinities in polymer-supported reagents: Monoprotic phosphates and the effect of hydrogen bonding. New J. Chem. 2015, 39, 5366–5373. [Google Scholar] [CrossRef]
- Venkatesan, P.; Wu, S.-P. A turn-on fluorescent pyrene-based chemosensor for Cu(ii) with live cell application. RSC Adv. 2015, 5, 42591–42596. [Google Scholar] [CrossRef]
- D’Aléo, A.; Cecchetto, E.; De Cola, L.; Williams, R. Metal ion enhanced charge transfer in a terpyridine-bis-pyrene system. Sensors 2009, 9, 3604–3626. [Google Scholar] [CrossRef] [PubMed]
- Shellaiah, M.; Simon, T.; Srinivasadesikan, V.; Lin, C.-M.; Sun, K.W.; Ko, F.-H.; Lin, M.-C.; Lin, H.-C. Novel pyrene containing monomeric and dimeric supramolecular aiee active nano-probes utilized in selective “off-on” trivalent metal and highly acidic ph sensing with live cell applications. J. Mater. Chem. C 2016, 4, 2056–2071. [Google Scholar] [CrossRef]
- Shellaiah, M.; Wu, Y.-H.; Singh, A.; Ramakrishnam Raju, M.V.; Lin, H.-C. Novel pyrene- and anthracene-based schiff base derivatives as Cu2+ and Fe3+ fluorescence turn-on sensors and for aggregation induced emissions. J. Mater. Chem. A 2013, 1, 1310–1318. [Google Scholar] [CrossRef]
- Rananaware, A.; La, D.D.; Bhosale, S.V. Solvophobic control aggregation-induced emission of tetraphenylethene-substituted naphthalene diimide via intramolecular charge transfer. RSC Adv. 2015, 5, 63130–63134. [Google Scholar] [CrossRef]
Sample Availability: Sample of the probe 1 is available from the authors. |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padghan, S.D.; Bhosale, R.S.; Bhosale, S.V.; Antolasic, F.; Al Kobaisi, M.; Bhosale, S.V. RETRACTED: Pyrene-Phosphonate Conjugate: Aggregation-Induced Enhanced Emission, and Selective Fe3+ Ions Sensing Properties. Molecules 2017, 22, 1417. https://doi.org/10.3390/molecules22091417
Padghan SD, Bhosale RS, Bhosale SV, Antolasic F, Al Kobaisi M, Bhosale SV. RETRACTED: Pyrene-Phosphonate Conjugate: Aggregation-Induced Enhanced Emission, and Selective Fe3+ Ions Sensing Properties. Molecules. 2017; 22(9):1417. https://doi.org/10.3390/molecules22091417
Chicago/Turabian StylePadghan, Sachin D., Rajesh S. Bhosale, Sidhanath V. Bhosale, Frank Antolasic, Mohammad Al Kobaisi, and Sheshanath V. Bhosale. 2017. "RETRACTED: Pyrene-Phosphonate Conjugate: Aggregation-Induced Enhanced Emission, and Selective Fe3+ Ions Sensing Properties" Molecules 22, no. 9: 1417. https://doi.org/10.3390/molecules22091417
APA StylePadghan, S. D., Bhosale, R. S., Bhosale, S. V., Antolasic, F., Al Kobaisi, M., & Bhosale, S. V. (2017). RETRACTED: Pyrene-Phosphonate Conjugate: Aggregation-Induced Enhanced Emission, and Selective Fe3+ Ions Sensing Properties. Molecules, 22(9), 1417. https://doi.org/10.3390/molecules22091417