Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review
Abstract
:1. Introduction
2. The Main Methods of Access to the Pyrazole Nucleus
- Cyclocondensation of hydrazine and similar derivatives with carbonyl systems.
- Dipolar cycloadditions.
- Multicomponent reactions.
2.1. Cyclocondensation of Hydrazine and Its Derivatives on 1,3-Difunctional Systems
2.1.1. From 1,3-Diketones
2.1.2. From Acetylenic Ketones
2.1.3. From Vinyl Ketones
2.1.4. From Vinyl Ketones Having a Leaving Group
2.2. The 1,3-Dipolar Cycloaddition
2.2.1. Cycloaddition of Diazocarbonyl Compounds
2.2.2. The Sydnones
2.2.3. Nitrilimines
2.3. Multicomponent Approaches
2.3.1. In Situ Formation of Carbonyl Derivatives
2.3.2. In Situ Formation of β-Aminoenones
2.3.3. In Situ Formation of a Hydrazone
2.3.4. In Situ Formation of Diazo Compounds
2.4. From Heterocyclic Systems
2.4.1. From the Pyranones
2.4.2. From Furandiones
2.4.3. From Pyrimidines and Pyrimidones
2.4.4. From Imidazole
2.4.5. From Oxazoles
2.4.6. From Tetrazoles
2.4.7. From Triazines
2.4.8. From 1,5-Benzodiazepin-2-one
2.4.9. From Other Heterocycles
3. Pharmacological Activities
3.1. Antibacterial and Antifungal Activity
3.2. Anticancer Activity
3.3. Anti-Inflammatory and Analgesic Activity
3.4. Anti-Tubercular Activity
3.5. Anti-Viral Activity
3.6. Anti-Azheimer’s Activity
3.7. Anti-Diabetic Activity
3.8. Anti-Leishmanial Activity
3.9. Anti-Malarial Activity
3.10. Anti-Parkinson Activity
3.11. Agrochemical Activity
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. From 2000 to Mid-2010: A fruitful decade for the synthesis of pyrazoles. Chem. Rev. 2011, 111, 6984–7034. [Google Scholar] [CrossRef] [PubMed]
- Ansari, A.; Ali, A.; Asif, M. biologically active pyrazole derivatives. New J. Chem. 2017, 41, 16–41. [Google Scholar] [CrossRef]
- Steinbach, G.; Lynch, P.M.; Robin, K.S.P.; Wallace, M.H.; Hawk, E.; Gordon, G.B.; Wakabayashi, N.; Saunders, B.; Shen, Y.; Fujimura, T.; Su, L.-K.; Levin, A.B. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N. Engl. J. Med. 2000, 342, 1946–1952. [Google Scholar] [CrossRef] [PubMed]
- Uslaner, J.M.; Parmentier-Batteur, S.; Flick, R.B.; Surles, N.O.; Lam, J.S.; McNaughton, C.H. Dose-dependent effect of CDPPB, the mGluR5 positive allosteric modulator, on recognition memory is associated with GluR1 and CREB phosphorylation in the prefrontal cortex and hippocampus. Neuropharmacology 2009, 57, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, G.; Rose, T.; Rissler, K. Determination of lonazolac and its hydroxy and O-sulfated metabolites by on-line sample preparation liquid chromatography with fluorescence detection. J. Chromatogr. B 2002, 766, 295–305. [Google Scholar] [CrossRef]
- Hampp, C.; Hartzema, A.G.; Kauf, T.L. Cost-utility analysis of rimonabant in the treatment of obesity. Value Health 2008, 11, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Spitz, I.; Novis, B.; Ebert, R.; Trestian, S.; LeRoith, D.; Creutzfeld, W. Betazole-induced GIP secretion is not mediated by gastric HCl. Metabolism 1982, 31, 380–382. [Google Scholar] [CrossRef]
- Luttinger, D.; Hlasta, D.J. Antidepressant Agents. Annu. Rep. Med. Chem. 1987, 22, 21–30. [Google Scholar] [CrossRef]
- Tsutomu, K.; Toshitaka, N. Effects of 1,3-diphenyl-5-(2-dimethylaminopropionamide)-pyrazole [difenamizole] on a conditioned avoidance response. Neuropharmacology 1978, 17, 249–256. [Google Scholar] [CrossRef]
- García-Lozano, J.; Server-Carrió, J.; Escrivà, E.; Folgado, J.-V.; Molla, C.; Lezama, L. X-ray crystal structure and electronic properties of chlorobis (mepirizole) copper (II) tetrafluoroborate (mepirizole = 4-methoxy-2-(5-methoxy-3-methyl-1H-pyrazol-1-yl)-6-methylpyrimidine). Polyhedron 1997, 16, 939–944. [Google Scholar] [CrossRef]
- Knorr, L. Einwirkung von acetessigester auf phenylhydrazin. Eur. J. Inorg. Chem. 1883, 16, 2597–2599. [Google Scholar] [CrossRef]
- Girish, Y.R.; Kumar, K.S.S.; Manasa, H.S.; Shashikanth, S. ZnO: An Ecofriendly, Green Nano-catalyst for the Synthesis of Pyrazole Derivatives under Aqueous Media. J. Chin. Chem. Soc. 2014, 61, 1175–1179. [Google Scholar] [CrossRef]
- Ohtsuka, Y.; Uraguchi, D.; Yamamoto, K.; Tokuhisa, K.; Yamakawa, T. Syntheses of 2-(trifluoromethyl)-1, 3-dicarbonyl compounds through direct trifluoromethylation with CF3I and their application to fluorinated pyrazoles syntheses. Tetrahedron 2012, 68, 2636–2649. [Google Scholar] [CrossRef]
- Gosselin, F.; O’Shea, P.D.; Webster, R.A.; Reamer, R.A.; Tillyer, R.D.; Grabowski, E.J.J. Highly Regioselective Synthesis of 1-Aryl-3,4,5-Substituted Pyrazoles. Synlett 2006, 19, 3267–3270. [Google Scholar] [CrossRef]
- Moureu, C.; Delange, R. Over some Acetylenketone and over a new method to the synthesis of β-Diketones. Bull. Soc. Chim. Fr. 1901, 25, 302–313. [Google Scholar]
- Baldwin, J.E.; Pritchard, G.J.; Rathmell, R.E. The reactions of diacetylenic ketones with nitrogen nucleophiles; facile preparation of alkynyl substituted pyrimidines and pyrazoles. J. Chem. Soc. Perkin Trans. 1 2001, 2906–2908. [Google Scholar] [CrossRef]
- Ji, G.; Wang, X.; Zhang, S.; Xu, Y.; Ye, Y.; Li, M. Synthesis of 3-trifluoromethylpyrazoles via trifluoromethylation/cyclization of α,β-alkynic hydrazones using a hypervalent iodine reagent. Chem. Commun. 2014, 50, 4361–4363. [Google Scholar] [CrossRef] [PubMed]
- Bishop, B.C.; Brands, K.M.; Gibb, A.D.; Kennedy, D.J. Regioselective synthesis of 1,3,5-substituted pyrazoles from acetylenic ketones and hydrazines. Synthesis 2004, 2004, 43–52. [Google Scholar] [CrossRef]
- Rao, V.K.; Tiwari, R.; Chhikara, B.S.; Shirazi, A.N.; Parang, K.; Kumar, A. Copper triflate-mediated synthesis of 1,3,5-triarylpyrazoles in [bmim][PF6] ionic liquid and evaluation of their anticancer activities. RSC Adv. 2013, 3, 15396–15403. [Google Scholar] [CrossRef] [PubMed]
- Bhat, B.A.; Puri, S.C.; Qurishi, M.A.; Dhar, K.L.; Qazi, G.N. Synthesis of 3,5-diphenyl-1H-pyrazoles. Synth. Commun. 2005, 35, 1135–1142. [Google Scholar] [CrossRef]
- Huang, Y.R.; Katzenellenbogen, J.A. Regioselective synthesis of 1,3,5-triaryl-4-alkylpyrazoles: Novel ligands for the estrogen receptor. Org. Lett. 2000, 2, 2833–2836. [Google Scholar] [CrossRef] [PubMed]
- Ponnala, S.; Prasad, S.D. Iodine-Mediated Synthesis of 2-Arylbenzoxazoles, 2-Arylbenzimidazoles, and 1,3,5-Trisubstituted Pyrazoles. Synth. Commun. 2006, 36, 2189–2194. [Google Scholar] [CrossRef]
- Braibante, M.E.; Braibante, H.T.; Da Roza, J.K.; Henriques, D.M.; de Carvalho, T.L. Synthesis of Aminopyrazoles from α-Oxoketene O,N-Acetals Using Montmorillonite K-10/Ultrasound. Synthesis 2003, 2003, 1160–1162. [Google Scholar] [CrossRef]
- Rosa, F.A.; Machado, P.; Vargas, P.S.; Bonacorso, H.G.; Zanatta, N.; Martins, M.A. Straightforward and regiospecific synthesis of pyrazole-5-carboxylates from unsymmetrical enaminodiketones. Synlett 2008, 2008, 1673–1678. [Google Scholar] [CrossRef]
- Katritzky, A.R.; Wang, M.; Zhang, S.; Voronkov, M.V.; Steel, P.J. Regioselective synthesis of polysubstituted pyrazoles and isoxazoles. J. Org. Chem. 2001, 66, 6787–6791. [Google Scholar] [CrossRef] [PubMed]
- Alberola, A.; Gonzalez-Ortega, A.; Luisa Sadaba, M.; Carmen Sanudo, M. [small beta]-Aminoenones in the regioselective synthesis of 1,3,5-trialkylpyrazoles. The influence of the substituents in the mechanism and the regioselectivity of the reaction. J. Chem. Soc. Perkin Trans. 1. 1998, 0, 4061–4066. [Google Scholar] [CrossRef]
- He, S.; Chen, L.; Niu, Y.-N.; Wu, L.-Y.; Liang, Y.-M. 1,3-Dipolar cycloaddition of diazoacetate compounds to terminal alkynes promoted by Zn (OTf)2: An efficient way to the preparation of pyrazoles. Tetrahedron Lett. 2009, 50, 2443–2445. [Google Scholar] [CrossRef]
- Gioiello, A.; Khamidullina, A.; Fulco, M.C.; Venturoni, F.; Zlotsky, S.; Pellicciari, R. New one-pot synthesis of pyrazole-5-carboxylates by 1,3-dipole cycloadditions of ethyl diazoacetate with α-methylene carbonyl compounds. Tetrahedron Lett. 2009, 50, 5978–5980. [Google Scholar] [CrossRef]
- Jiang, N.; Li, C.-J. Novel 1,3-dipolar cycloaddition of diazocarbonyl compounds to alkynes catalyzed by InCl3 in wate. Chem. Commun. 2004, 394–395. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Ready, J.M. Copper-Promoted Cycloaddition of Diazocarbonyl Compounds and Acetylides. Angew. Chem. Int. Ed. 2007, 46, 3242–3244. [Google Scholar] [CrossRef] [PubMed]
- Delaunay, T.; Genix, P.; Es-Sayed, M.; Vors, J.-P.; Monteiro, N.; Balme, G. A Modular Sydnone Cycloaddition/Suzuki-Miyaura Cross-Coupling Strategy to Unsymmetrical 3,5-Bis (hetero) aromatic Pyrazoles. Org. Lett. 2010, 12, 3328–3331. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Liu, F.-M.; Shi, H.; Chen, S.-L. A facile access to 1,3,4-trisubstituted pyrazoles via 1,3-dipolar cycloaddition of 3-arylsydnones with α,β-unsaturated ketones. Monatsh. Chem. Chem. Mon. 2013, 144, 879–884. [Google Scholar] [CrossRef]
- Dadiboyena, S.; Valente, E.J.; Hamme, A.T. A novel synthesis of 1,3,5-trisubstituted pyrazoles through a spiro-pyrazoline intermediate via a tandem 1,3-dipolar cycloaddition/elimination. Tetrahedron Lett. 2009, 50, 291–294. [Google Scholar] [CrossRef] [PubMed]
- Oh, L.M. Synthesis of celecoxib via 1,3-dipolar cycloaddition. Tetrahedron Lett. 2006, 47, 7943–7946. [Google Scholar] [CrossRef]
- Harigae, R.; Moriyama, K.; Togo, H. Preparation of 3,5-Disubstituted Pyrazoles and Isoxazoles from Terminal Alkynes, Aldehydes, Hydrazines, and Hydroxylamine. J. Org. Chem. 2014, 79, 2049–2058. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.-A.; Huang, W.-B.; Zhai, J.-J.; Liu, H.-W.; Cai, Q.; Xu, L.-X. ‘One-pot’ synthesis of 4-substituted 1,5-diaryl-1H-pyrazole-3-carboxylates via lithium tert-butoxide-mediated sterically hindered Claisen condensation and Knorr reaction. Tetrahedron 2013, 69, 627–6235. [Google Scholar] [CrossRef]
- Iizuka, M.; Kondo, Y. Palladium-Catalyzed Alkynylcarbonylation of Aryl Iodides with the Use of Mo (CO) 6 in the Presence of tBu3P Ligand. Eur. J. Org. Chem. 2007, 2007, 5180–5182. [Google Scholar] [CrossRef]
- Kovacs, S.; Novak, Z. Copper on iron promoted one-pot synthesis of β-aminoenones and 3,5-disubstituted pyrazoles. Tetrahedron 2013, 69, 8987–9893. [Google Scholar] [CrossRef]
- Dang, T.T.; Dang, T.T.; Fischer, C.; Görls, H.; Langer, P. Synthesis of pyrazole-3-carboxylates and pyrazole-1,5-dicarboxylates by one-pot cyclization of hydrazone dianions with diethyl oxalate. Tetrahedron 2008, 64, 2207–2215. [Google Scholar] [CrossRef]
- Lokhande, P.; Hasanzadeh, K.; Konda, S.G. A novel and efficient approach for the synthesis of new halo substituted 2-arylpyrazolo[4,3-c]coumarin derivatives. Eur. J. Chem. 2011, 2, 223–228. [Google Scholar] [CrossRef]
- Deng, X.; Mani, N.S. Reaction of N-monosubstituted hydrazones with nitroolefins: A novel regioselective pyrazole synthesis. Org. Lett. 2006, 8, 3505–3508. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Mani, N.S. Base-mediated reaction of hydrazones and nitroolefins with a reversed regioselectivity: A novel synthesis of 1,3,4-trisubstituted pyrazoles. Org. Lett. 2008, 10, 1307–13010. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, V.K.; de Vicente, J.; Bonnert, R.V. A novel one-pot method for the preparation of pyrazoles by 1,3-dipolar cycloadditions of diazo compounds generated in situ. J. Org. Chem. 2003, 68, 5381–5383. [Google Scholar] [CrossRef] [PubMed]
- Yadav, J.; Reddy, B.S.; Srinivas, M.; Prabhakar, A.; Jagadeesh, B. Montmorillonite KSF clay-promoted synthesis of enantiomerically pure 5-substituted pyrazoles from 2,3-dihydro-4H-pyran-4-ones. Tetrahedron Lett. 2004, 45, 6033–6036. [Google Scholar] [CrossRef]
- Xie, F.; Cheng, G.; Hu, Y. Three-component, one-pot reaction for the combinatorial synthesis of 1,3,4-substituted pyrazoles. J. Comb. Chem. 2006, 8, 286–288. [Google Scholar] [CrossRef] [PubMed]
- Arkhipov, V.; Garazd, M.; Smirnov, M.; Khilya, V. Chemistry of Modified Flavonoids. 24. Synthesis of 4-Aryloxy-3-(2-hydroxy-4-hydroxy/alkoxyphenyl) pyrazoles. Chem. Heterocycl. Compd. 2004, 40, 183–187. [Google Scholar] [CrossRef]
- Sosnovskikh, V.Y.; Barabanov, M.; Usachev, B. Reactions of 5,7-dimethyl-2-polyfluoroalkyl-8-azachromones with N-nucleophiles. Russ. Chem. Bull. 2003, 52, 1758–1767. [Google Scholar] [CrossRef]
- Usachev, B.; Shafeev, M.; Sosnovskikh, V.Y. Synthesis and reactivity of 2-polyfluoroalkylchromene-4(4H)-thiones. Russ. Chem. Bull. 2004, 53, 2285–2292. [Google Scholar] [CrossRef]
- Sosnovskikh, V.Y.; Usachev, B.; Sizov, A.Y. 2-Polyfluoroalkylchromones. 14. Synthesis of 4-chloro-3(5)-(2-hydroxyaryl)-5(3)-polyfluoroalkylpyrazoles. Russ. Chem. Bull. 2003, 52, 508–510. [Google Scholar] [CrossRef]
- İlhan, İ.Ö.; Saripinar, E.; Akçamur, Y. Synthesis of some pyrazole-3-carboxylic acid-hydrazide and pyrazolopyridazine compounds. J. Heterocycl. Chem. 2005, 42, 117–120. [Google Scholar] [CrossRef]
- Sener, A.; Kasimogullari, R.; Sener, M.; Genç, H. Studies on reactions of cyclic oxalyl compounds with hydrazines or hydrazones. 2. Synthesis and reactions of 4-benzoyl-1-(4-nitrophenyl)-5-phenyl-1H-pyrazole-3-carboxylic acid. Chem. Heterocycl. Compd. 2004, 40, 1039–1046. [Google Scholar] [CrossRef]
- Krishnaiah, A.; Narsaiah, B. A novel approach to the synthesis of 5-trifluoromethyl-3-substituted pyrazoles. J. Fluor. Chem. 2002, 115, 9–11. [Google Scholar] [CrossRef]
- Bisenieks, E.; Uldrikis, J.; Duburs, G. Reaction of 3,5-carbonyl-substituted 1,4-dihydropyridines with hydrazine hydrate. Chem. Heterocycl. Compd. 2004, 40, 869–875. [Google Scholar] [CrossRef]
- Grošelj, U.; Drobnič, A.; Rečnik, S.; Svete, J.; Stanovnik, B.; Golobič, A.; Nina, L.; Ivan, L.; Anton, M.; Simona, G.-G. 1,3-Dipolar Cycloadditions to (5Z)-1-Acyl-5-(cyanomethylidene)-imidazolidine-2,4-diones: Synthesis and Transformations of Spirohydantoin Derivatives. Helv. Chim. Acta 2001, 84, 3403–3417. [Google Scholar] [CrossRef]
- Kawase, M.; Koiwai, H.; Yamano, A.; Miyamae, H. Regioselective reaction of mesoionic 4-trifluoroacetyl-1,3-oxazolium-5-olates and phenylhydrazine: Synthesis of trifluoromethyl substituted pyrazole and 1,2,4-triazine derivatives. Tetrahedron Lett. 1998, 39, 663–666. [Google Scholar] [CrossRef]
- Simoni, D.; Rondanin, R.; Furnò, G.; Aiello, E.; Invidiata, F.P. Facile synthesis of pyrazoles and pyrroles via thermolysis of tetrazolo[1,5-b]pyridazines, tetrazolo[1,5-a]pyrimidines and tetrazolo[1,5-a]pyridines. Tetrahedron Lett. 2000, 41, 2699–2703. [Google Scholar] [CrossRef]
- Rykowski, A.; Branowska, D. Ring transformation of 3-halo-1,2,4-triazines with α-chlorocarbanions: A novel route to pyrazoles with sulfonyl, sulfonamido and sulfonyloxy groups. Heterocycles 1996, 10, 2095–2098. [Google Scholar] [CrossRef]
- Ferfra, S.; Ahabchane, N.H.; Garrigues, B.; Essassi, E.M. Nouvelle méthode de synthèse de quinoxalines associées à différents hétérocycles à cinq chaînons. C. R. Acad. Sci. IIC 2001, 4, 905–911. [Google Scholar] [CrossRef]
- Dzvinchuk, I.; Lozinskii, M. Hydrazinolytic Recyclization of (Z)-3-Acetyl-2-methyl-2,3-dihydro-1,4-benzodioxin-2-ol. Chem. Heterocycl. Compd. 2001, 37, 459–462. [Google Scholar] [CrossRef]
- Azev, Y.A.; Lork, E.; Gabel, D.; Duelcks, T. New way of the reaction of 1-amino-6,7-difluoro-4-oxoquinolyl-3-ethylcarboxylate with acetoacetone. Mendeleev Commun. 2003, 13, 184–185. [Google Scholar] [CrossRef]
- Pfeiffer, W.-D.; Dilk, E.; Rossberg, H.; Langer, P. Synthesis and Reactivity of 3,4-Dimethyl-4H-1,3,4-thiadiazines. Synlett 2003, 2003, 2392–2394. [Google Scholar] [CrossRef]
- Guillard, J.; Goujon, F.; Badol, P.; Poullain, D. New synthetic route to diaminonitropyrazoles as precursors of energetic materials. Tetrahedron Lett. 2003, 44, 5943–5945. [Google Scholar] [CrossRef]
- Suen, Y.F.; Hope, H.; Nantz, M.H.; Haddadin, M.J.; Kurth, M.J. A novel route to fully substituted 1H-pyrazoles. J. Org. Chem. 2005, 70, 8468–8471. [Google Scholar] [CrossRef] [PubMed]
- Akbas, E.; Berber, I.; Sener, A.; Hasanov, B. Synthesis and antibacterial activity of 4-benzoyl-1-methyl-5-phenyl-1H-pyrazole-3-carboxylic acid and derivatives. Farmaco 2005, 60, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Prasath, R.; Bhavana, P.; Sarveswari, S.; Ng, S.W.; Tiekink, E.R.T. Efficient ultrasound-assisted synthesis, spectroscopic, crystallographic and biological investigations of pyrazole-appended quinolinyl chalcones. J. Mol. Struct. 2015, 1081, 201–210. [Google Scholar] [CrossRef]
- Mert, S.; Kasimogullari, R.; Ica, T.; Colak, F.; Altun, A.; Ok, S. Synthesis, structure-activity relationships, and in vitro antibacterial and antifungal activity evaluations of novel pyrazole carboxylic and dicarboxylic acid derivatives. Eur. J. Med. Chem. 2014, 78, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Rahimizadeh, M.; Pordel, M.; Bakavoli, M.; Rezaeian, S.; Sadeghian, A. Synthesis and antibacterial activity of some new derivatives of pyrazole. World J. Microbiol. Biotechnol. 2010, 26, 317–321. [Google Scholar] [CrossRef]
- Chandrakantha, B.; Isloor, A.; Shetty, P.; Isloor, S.; Malladi, S.; Fun, H. Synthesis, characterization and antimicrobial activity of novel ethyl 1-(N-substituted)-5-phenyl-1H-pyrazole-4-carboxylate derivatives. Med. Chem. Res. 2012, 21, 2702–2708. [Google Scholar] [CrossRef]
- Sharma, P.K.; Kumar, S.; Kumar, P.; Kaushik, P.; Kaushik, D.; Dhingra, Y. Synthesis and biological evaluation of some pyrazolylpyrazolines as anti-inflammatory–antimicrobial agents. Eur. J. Med. Chem. 2010, 45, 2650–2655. [Google Scholar] [CrossRef] [PubMed]
- Kendre, B.V.; Landge, M.G.; Bhusare, S.R. Synthesis and biological evaluation of some novel pyrazole, isoxazole, benzoxazepine, benzothiazepine and benzodiazepine derivatives bearing an aryl sulfonate moiety as antimicrobial and anti-inflammatory agents. Arab. J. Chem. 2015. [Google Scholar] [CrossRef]
- B’Bhatt, H.; Sharma, S. Synthesis and antimicrobial activity of pyrazole nucleus containing 2-thioxothiazolidin-4-one derivatives. Arab. J. Chem. 2017, 10, S1590–S1596. [Google Scholar] [CrossRef]
- Abunada, N.; Hassaneen, H.; Kandile, N.; Miqdad, O. Synthesis and Antimicrobial Activity of Some New Pyrazole, Fused Pyrazolo[3,4-d]-pyrimidine and Pyrazolo[4,3-e][1,2,4]-triazolo[1,5-c]pyrimidine Derivatives. Molecules 2008, 13, 1501–1517. [Google Scholar] [CrossRef] [PubMed]
- Padmaja, A.; Payani, T.; Reddy, G.D.; Padmavathi, V. Synthesis, antimicrobial and antioxidant activities of substituted pyrazoles, isoxazoles, pyrimidine and thioxopyrimidine derivatives. Eur. J. Med. Chem. 2009, 44, 4557–4566. [Google Scholar] [CrossRef] [PubMed]
- Ragavan, R.V.; Vijayakumar, V.; Kumari, N.S. Synthesis and antimicrobial activities of novel 1,5-diaryl pyrazoles. Eur. J. Med. Chem. 2010, 45, 1173–1180. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.K.; Chandak, N.; Kumar, P.; Sharma, C.; Aneja, K.R. Synthesis and biological evaluation of some 4-functionalized-pyrazoles as antimicrobial agents. Eur. J. Med. Chem. 2011, 46, 1425–1432. [Google Scholar] [CrossRef] [PubMed]
- Pathak, R.B.; Chovatia, P.T.; Parekh, H.H. Synthesis, antitubercular and antimicrobial evaluation of 3-(4-chlorophenyl)-4-substituted pyrazole derivatives. Bioorg. Med. Chem. Lett. 2012, 22, 5129–5133. [Google Scholar] [CrossRef] [PubMed]
- Vijesh, A.M.; Isloor, A.M.; Telkar, S.; Peethambar, S.K.; Rai, S.; Isloor, N. Synthesis, characterization and antimicrobial studies of some new pyrazole incorporated imidazole derivatives. Eur. J. Med. Chem. 2011, 46, 3531–3536. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Shi, Q.; Chen, Z.; He, M.; Jin, L.; Hu, D. Synthesis and Bioactivity of Pyrazole Acyl Thiourea Derivatives. Molecules 2012, 17, 5139–5150. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Hu, D.; Kuangn, J.; Cain, H.; Wun, S.; Xuen, W. Synthesis and Antifungal Activity of N-(Substituted pyridinyl)-1-methyl(phenyl)-3-(trifluoromethyl)-1H-pyrazole-4-carboxamide Derivatives. Molecules 2012, 17, 14205–14218. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.-L.; Zheng, C.-J.; Sun, L.-P.; Miao, J.; Piao, H.-R. Synthesis of novel 1,3-diaryl pyrazole derivatives bearing rhodanine-3-fatty acid moieties as potential antibacterial agents. Eur. J. Med. Chem. 2012, 48, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Desai, N.C.; Rajpara, K.M.; Joshi, V.V. Synthesis of pyrazole encompassing 2-pyridone derivatives as antibacterial agents. Bioorg. Med. Chem. Lett. 2013, 23, 2714–2717. [Google Scholar] [CrossRef] [PubMed]
- Jardosh, H.H.; Sangani, C.B.; Patel, M.P.; Patel, R.G. One step synthesis of pyrido [1,2-a] benzimidazole derivatives of aryloxypyrazole and their antimicrobial evaluation. Chin. Chem. Lett. 2013, 24, 123–126. [Google Scholar] [CrossRef]
- Malladi, S.; Isloor, A.M.; Isloor, S.; Akhila, D.; Fun, H.-K. Synthesis, characterization and antibacterial activity of some new pyrazole based Schiff bases. Arab. J. Chem. 2013, 6, 335–340. [Google Scholar] [CrossRef]
- Renuka, N.; Kumar, K.A. Synthesis and biological evaluation of novel formyl-pyrazoles bearing coumarin moiety as potent antimicrobial and antioxidant agents. Bioorg. Med. Chem. Lett. 2013, 23, 6406–6409. [Google Scholar] [CrossRef] [PubMed]
- Song, M.-X.; Zheng, C.-J.; Deng, X.-Q.; Sun, L.-P.; Wu, Y.; Hong, L.; Li, Y.J.; Liu, Y.; Wei, Z.Y.; Jin, M.J.; et al. Synthesis and antibacterial evaluation of rhodanine-based 5-aryloxy pyrazoles against selected methicillin resistant and quinolone-resistant Staphylococcus aureus (MRSA and QRSA). Eur. J. Med. Chem. 2013, 60, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Sayed, G.H.; Azab, M.E.; Anwer, K.E.; Raouf, M.A.; Negm, N.A. Pyrazole, pyrazolone and enaminonitrile pyrazole derivatives: Synthesis, characterization and potential in corrosion inhibition and antimicrobial applications. J. Mol. Liq. 2018, 252, 329–338. [Google Scholar] [CrossRef]
- Kalaria, P.N.; Satasia, S.P.; Avalani, J.R.; Raval, D.K. Ultrasound-assisted one-pot four-component synthesis of novel 2-amino-3-cyanopyridine derivatives bearing 5-imidazopyrazole scaffold and their biological broadcast. Eur. J. Med. Chem. 2014, 83, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Arora, J.; Ruhil, S.; Phougat, N.; Chhillar, A.K.; Prasad, A.K. Synthesis and antimicrobial studies of pyrimidine pyrazole heterocycles. Adv. Chem. 2014, 2014, 1–12. [Google Scholar] [CrossRef]
- Liu, X.-R.; Wu, H.; He, Z.-Y.; Ma, Z.-Q.; Feng, J.-T.; Zhang, X. Design, Synthesis and Fungicidal Activities of Some Novel Pyrazole Derivatives. Molecules 2014, 19, 14036–14051. [Google Scholar] [CrossRef] [PubMed]
- Malladi, S.; Isloor, A.M.; Peethambar, S.; Fun, H.K. Synthesis and biological evaluation of newer analogues of 2,5-disubstituted 1,3,4-oxadiazole containing pyrazole moiety as antimicrobial agents. Arab. J. Chem. 2014, 7, 1185–1191. [Google Scholar] [CrossRef]
- Mehta, H.B.; Dixit, B.C.; Dixit, R.B. L-Proline catalyzed one-pot multi-component synthesis of 2-(1,3-diphenyl-1H-pyrazol-4-yl)quinazolin-4(3H)-one derivatives and their biological studies. Chin. Chem. Lett. 2014, 25, 741–744. [Google Scholar] [CrossRef]
- Ningaiah, S.; Bhadraiah, U.K.; Doddaramappa, S.D.; Keshavamurthy, S.; Javarasetty, C. Novel pyrazole integrated 1,3,4-oxadiazoles: Synthesis, characterization and antimicrobial evaluation. Bioorg. Med. Chem. Lett. 2014, 24, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Prakash, T.B.; Reddy, G.D.; Padmaja, A.; Padmavathi, V. Synthesis and antimicrobial activity of amine linked bis-and tris-heterocycles. Eur. J. Med. Chem. 2014, 82, 347–3454. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Tian, Z.; Yang, D.; Li, X.; Li, H.; Jia, C.; Che, C.; Wang, M.; Qin, Z. Synthesis, Antifungal Activity and Structure-Activity Relationships of Novel 3-(Difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic Acid Amides. Molecules 2015, 20, 8395–8408. [Google Scholar] [CrossRef] [PubMed]
- Miniyar, P.B.; Barmade, M.A.; Mahajan, A.A. Synthesis and biological evaluation of 1-(5-(2-chloroquinolin-3-yl)-3-phenyl-1H-pyrazol-1-yl) ethanone derivatives as potential antimicrobial agents. J. Saudi Chem. Soc. 2015, 19, 655–660. [Google Scholar] [CrossRef]
- Radi, S.; Tighadouini, S.; Feron, O.; Riant, O.; Bouakka, M.; Benabbes, R.; Mabkhot, Y.N. Synthesis of Novel β-Keto-Enol Derivatives Tethered Pyrazole, Pyridine and Furan as New Potential Antifungal and Anti-Breast Cancer Agents. Molecules 2015, 20, 19684–19694. [Google Scholar] [CrossRef] [PubMed]
- Rizk, H.F.; Ibrahim, S.A.; El-Borai, M.A. Synthesis, fastness properties, color assessment and antimicrobial activity of some azo reactive dyes having pyrazole moiety. Dyes Pigment. 2015, 112, 86–92. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, Y. Synthesis and Antifungal Activity of the Derivatives of Novel Pyrazole Carboxamide and Isoxazolol Pyrazole Carboxylate. Molecules 2015, 20, 4383–4394. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.-G.; Ni, T.-F.; Gao, W.; He, Y.; Wang, Y.-Y.; Cui, H.-W.; Yang, C.-G.; Qiu, W.-W. The synthesis and antibacterial activity of pyrazole-fused tricyclic diterpene derivatives. Eur. J. Med. Chem. 2015, 90, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Elshaier, Y.; Barakat, A.; Al-Qahtany, B.; Al-Majid, A.; Al-Agamy, M. Synthesis of Pyrazole-Thiobarbituric Acid Derivatives: Antimicrobial Activity and Docking Studies. Molecules 2016, 21, 1337. [Google Scholar] [CrossRef] [PubMed]
- Hafez, H.; El-Gazzar, A.-R. Synthesis and Biological Evaluation of N-Pyrazolyl Derivatives and Pyrazolopyrimidine Bearing a Biologically Active Sulfonamide Moiety as Potential Antimicrobial Agent. Molecules 2016, 21, 1156. [Google Scholar] [CrossRef] [PubMed]
- Mabkhot, Y.; Alatibi, F.; El-Sayed, N.; Kheder, N.; Al-Showiman, S. Synthesis and Structure-Activity Relationship of Some New Thiophene-Based Heterocycles as Potential Antimicrobial Agents. Molecules 2016, 21, 1036. [Google Scholar] [CrossRef] [PubMed]
- Mu, J.-X.; Shi, Y.-X.; Yang, M.-Y.; Sun, Z.-H.; Liu, X.-H.; Li, B.-J.; Sun, N.-B. Design, Synthesis, DFT Study and Antifungal Activity of Pyrazolecarboxamide Derivatives. Molecules 2016, 21, 68. [Google Scholar] [CrossRef] [PubMed]
- Nagamallu, R.; Srinivasan, B.; Ningappa, M.B.; Kariyappa, A.K. Synthesis of novel coumarin appended bis(formylpyrazole) derivatives: Studies on their antimicrobial and antioxidant activities. Bioorg. Med. Chem. Lett. 2016, 26, 690–694. [Google Scholar] [CrossRef] [PubMed]
- Abrigach, F.; Bouchal, B.; Riant, O.; Macé, Y.; Takfaoui, A.; Radi, S.; Oussaid, A.; Bellaoui, M.; Touzani, R. New N,N,N′,N′-tetradentate Pyrazoly Agents: Synthesis and Evaluation of their Antifungal and Antibacterial Activities. Med. Chem. 2016, 12, 83–89. [Google Scholar] [CrossRef] [PubMed]
- El Shehry, M.F.; Ghorab, M.M.; Abbas, S.Y.; Fayed, E.A.; Shedid, S.A.; Ammar, Y.A. Quinoline derivatives bearing pyrazole moiety: Synthesis and biological evaluation as possible antibacterial and antifungal agents. Eur. J. Med. Chem. 2018, 143, 1463–1473. [Google Scholar] [CrossRef] [PubMed]
- Ahn, M.; Gunasekaran, P.; Rajasekaran, G.; Kim, E.Y.; Lee, S.-J.; Bang, G.; Cho, K.; Hyun, J.-K.; Lee, H.-J.; Jeon, Y.H.; et al. Pyrazole derived ultra-short antimicrobial peptidomimetics with potent anti-biofilm activity. Eur. J. Med. Chem. 2017, 125, 551–564. [Google Scholar] [CrossRef] [PubMed]
- Nada, A.; Al-Moghazy, M.; Soliman, A.A.F.; Rashwan, G.M.T.; Eldawy, T.H.A.; Hassan, A.A.E.; Sayed, G.H. Pyrazole-based compounds in chitosan liposomal emulsion for antimicrobial cotton fabrics. Int. J. Biol. Macromol. 2018, 107, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Ghabbour, H.; Khan, S.T.; de la Torre, B.G.; Albericio, F.; El-Faham, A. Novel pyrazolyl-s-triazine derivatives, molecular structure and antimicrobial activity. J. Mol. Struct. 2017, 1145, 244–253. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, P.-Y.; Zhou, J.; Shao, W.-B.; Fang, H.-S.; Wu, Z.-B.; Yang, S. Antimicrobial activities of pyridinium-tailored pyrazoles bearing 1,3,4-oxadiazole scaffolds. J. Saudi Chem. Soc. 2017, 21, 852–860. [Google Scholar] [CrossRef]
- Mandal, S.; Mondal, M.; Biswas, J.K.; Cordes, D.B.; Slawin, A.M.Z.; Butcher, R.J.; Saha, M.; Saha, N.C. Synthesis, characterization and antimicrobial activity of some nickel, cadmium and mercury complexes of 5-methyl pyrazole-3yl-N-(2′-methylthiophenyl) methyleneimine, (MPzOATA) ligand. J. Mol. Struct. 2018, 1152, 189–198. [Google Scholar] [CrossRef]
- Mor, S.; Mohil, R.; Kumar, D.; Ahuja, M. Synthesis and antimicrobial activities of some isoxazolyl thiazolyl pyrazoles. Med. Chem. Res. 2012, 21, 3541–3548. [Google Scholar] [CrossRef]
- Nitulescu, G.M.; Draghici, C.; Chifiriuc, M.C.; Marutescu, L.; Bleotu, C.; Missir, A.V. Synthesis and antimicrobial screening of N-(1-methyl-1H-pyrazole-4-carbonyl)-thiourea derivatives. Med. Chem. Res. 2012, 21, 308–314. [Google Scholar] [CrossRef]
- Tanitame, A.; Oyamada, Y.; Ofuji, K.; Fujimoto, M.; Iwai, N.; Hiyama, Y.; Suzuki, K.; Ito, H.; Terauchi, H.; Kawasaki, M.; et al. Synthesis and Antibacterial Activity of a Novel Series of Potent DNA Gyrase Inhibitors. Pyrazole Derivatives. J. Med. Chem. 2004, 47, 3693–3696. [Google Scholar] [CrossRef] [PubMed]
- Çetin, A.; Bildirici, İ. A study on synthesis and antimicrobial activity of 4-acyl-pyrazoles. J. Saudi Chem. Sci. 2016. [Google Scholar] [CrossRef]
- Dayakar, C.; Kumar, B.S.; Sneha, G.; Sagarika, G.; Meghana, K.; Ramakrishna, S.; Prakasham, R.S.; China, R.B. Synthesis, pharmacological activities and molecular docking studies of pyrazolyltriazoles as anti-bacterial and anti-inflammatory agents. Bioorg. Med. Chem. 2017, 25, 5678–5691. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Chen, J.; Li, G.; Ge, S.; Shi, Y.; Fang, Y.; Ling, Y. Design, synthesis, and bioactivities of novel oxadiazole-substituted pyrazole oximes. Bioorg. Med. Chem. Lett. 2017, 27, 950–953. [Google Scholar] [CrossRef] [PubMed]
- Kamal, A.; Shaik, A.B.; Jain, N.; Kishor, C.; Nagabhushana, A.; Supriya, B.; Kumar, G.B.; Chourasiya, S.S.; Suresh, Y.; Mishra, R.K. Anthony Addlagatta. Design and synthesis of pyrazole–oxindole conjugates targeting tubulin polymerization as new anticancer agents. Eur. J. Med. Chem. 2015, 92, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Liu, X.-H.; Saunders, M.; Pearce, S.; Foulks, J.M.; Parnell, K.M.; Clifford, A.; Nix, R.N.; Bullough, J.; Hendrickson, T.F.; et al. Discovery of 3-(trifluoromethyl)-1H-pyrazole-5-carboxamide activators of the M2 isoform of pyruvate kinase (PKM2). Bioorg. Med. Chem. Lett. 2014, 24, 515–519. [Google Scholar] [CrossRef] [PubMed]
- Viale, M.; Anzaldi, M.; Aiello, C.; Fenoglio, C.; Albicini, F.; Emionite, L.; Gangemi, R.; Balbi, A. Evaluation of the anti-proliferative activity of three new pyrazole compounds in sensitive and resistant tumor cell lines. Pharmacol. Rep. 2013, 65, 717–723. [Google Scholar] [CrossRef]
- Tzanetou, E.; Liekens, S.; Kasiotis, K.M.; Fokialakis, N.; Haroutounian, S.A. Novel Pyrazole and Indazole Derivatives: Synthesis and Evaluation of Their Anti-Proliferative and Anti-Angiogenic Activities. Arch. Pharm. 2012, 345, 804–811. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.-W.; Shao, J.-H.; Zhao, B.-X.; Miao, J.-Y. Synthesis of novel pyrazolo[1,5-a]pyrazin-4(5H)-one derivatives and their inhibition against growth of A549 and H322 lung cancer cells. Bioorg. Med. Chem. Lett. 2011, 21, 3909–3913. [Google Scholar] [CrossRef] [PubMed]
- Balbi, A.; Anzaldi, M.; Macciò, C.; Aiello, C.; Mazzei, M.; Gangemi, R.; Castagnola, P.; Miele, M.; Rosano, C.; Viale, M. Synthesis and biological evaluation of novel pyrazole derivatives with anticancer activity. Eur. J. Med. Chem. 2011, 46, 5293–5309. [Google Scholar] [CrossRef] [PubMed]
- Nitulescu, G.M.; Draghici, C.; Missir, A.V. Synthesis of new pyrazole derivatives and their anticancer evaluation. Eur. J. Med. Chem. 2010, 45, 4914–4919. [Google Scholar] [CrossRef] [PubMed]
- Bandgar, B.P.; Totre, J.V.; Gawande, S.S.; Khobragade, C.N.; Warangkar, S.C.; Kadam, P.D. Synthesis of novel 3,5-diaryl pyrazole derivatives using combinatorial chemistry as inhibitors of tyrosinase as well as potent anticancer, anti-inflammatory agents. Bioorg. Med. Chem. 2010, 18, 6149–6155. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.-W.; Wu, L.-L.; Zhao, B.-X.; Dong, W.-L.; Miao, J.-Y. Synthesis of novel substituted pyrazole-5-carbohydrazide hydrazone derivatives and discovery of a potent apoptosis inducer in A549 lung cancer cells. Bioorg. Med. Chem. 2009, 17, 1957–1962. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Dong, Z.-W.; Zhao, B.-X.; Ge, X.; Meng, N.; Shin, D.-S.; Miao, J.-Y. Synthesis and structure-activity relationships of novel 1-arylmethyl-3-aryl-1H-pyrazole-5-carbohydrazide derivatives as potential agents against A549 lung cancer cells. Bioorg. Med. Chem. 2007, 15, 6893–6899. [Google Scholar] [CrossRef] [PubMed]
- Lian, S.; Su, H.; Zhao, B.X.; Liu, W.Y.; Zheng, L.W.; Miao, J.Y. Synthesis and discovery of pyrazole-5-carbohydrazide N-glycosides as inducer of autophagy in A549 lung cancer cells. Bioorg. Med. Chem. 2009, 17, 7085–7092. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Zhao, B.-X.; Huang, B.; Zhang, L.; Sun, C.-H.; Dong, W.-L.; Shin, D.-S.; Miao, J.-Y. Design, synthesis, and preliminary biological evaluation of novel ethyl 1-(2′-hydroxy-3′-aroxypropyl)-3-aryl-1H-pyrazole-5-carboxylate. Bioorg. Med. Chem. Lett. 2006, 16, 6342–6347. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.-L.; Zhang, H.-Y.; Qi, L.; Zhao, B.-X.; Lian, S.; Lv, H.-S.; Miao, J.-Y. Synthesis of novel pyrazole carboxamide derivatives and discovery of modulators for apoptosis or autophagy in A549 lung cancer cells. Bioorg. Med. Chem. Lett. 2009, 19, 5325–5328. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.-W.; Li, Y.; Ge, D.; Zhao, B.-X.; Liu, Y.-R.; Lv, H.-S.; Ding, J.; Miao, J.-Y. Synthesis of novel oxime-containing pyrazole derivatives and discovery of regulators for apoptosis and autophagy in A549 lung cancer cells. Bioorg. Med. Chem. Lett. 2010, 20, 4766–4770. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-R.; Luo, J.-Z.; Duan, P.-P.; Shaon, J.; Zhao, B.-X.; Miao, J.-Y. Synthesis of pyrazole peptidomimetics and their inhibition against A549 lung cancer cells. Bioorg. Med. Chem. Lett. 2012, 22, 6882–6887. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.-D.; Zhao, B.-X.; Wei, F.; Zhang, G.-H.; Dong, W.-L.; Miao, J.-Y. Synthesis and discovery of autophagy inducers for A549 and H460 lung cancer cells, novel 1-(2′-hydroxy-3′-aroxypropyl)-3-aryl-1H-pyrazole-5-carbohydrazide derivatives. Bioorg. Med. Chem. Lett. 2008, 18, 3860–3864. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.-L.; Zhu, J.; Li, M.; Zhao, B.-X.; Miao, J.-Y. Synthesis of ferrocenyl pyrazole-containing chiral aminoethanol derivatives and their inhibition against A549 and H322 lung cancer cells. Eur. J. Med. Chem. 2012, 54, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Farag, A.M.; Mayhoub, A.S.; Barakat, S.E.; Bayomi, A.H. Regioselective synthesis and antitumor screening of some novel N-phenylpyrazole derivatives. Bioorg. Med. Chem. 2008, 16, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.H.; Krishnaiah, M.; Sreenu, D.; Subrahmanyam, V.B.; Rao, K.S.; Mohan, A.V.N.; Park, C.-Y.; Son, J.-Y.; Sheen, Y.Y. Synthesis and biological evaluation of 1-substituted-3-(6-methylpyridin-2-yl)-4-([1,2,4] triazolo[1,5-a]pyridin-6-yl) pyrazoles as transforming growth factor-β type 1 receptor kinase inhibitors. Bioorg. Med. Chem. Lett. 2011, 21, 6049–6053. [Google Scholar] [CrossRef] [PubMed]
- Newhouse, B.J.; Hansen, J.D.; Grina, J.; Welch, M.; Topalov, G.; Littman, N.; Callejo, M.; Martinsona, M.; Galbraitha, S.; Laird, E.R.; et al. Non-oxime pyrazole based inhibitors of B-Raf kinase. Bioorg. Med. Chem. Lett. 2011, 21, 3488–3492. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wang, G.; Zhao, G.; Xu, W.; Huo, L. Synthesis and cytotoxic activity of novel 3-(1H-indol-3-yl)-1H-pyrazole-5-carbohydrazide derivatives. Eur. J. Med. Chem. 2011, 46, 5868–5877. [Google Scholar] [CrossRef] [PubMed]
- Baciu-Atudosie, L.; Ghinet, A.; Farce, A.; Dubois, J.; Belei, D.; Bîcu, E. Synthesis and biological evaluation of new phenothiazine derivatives bearing a pyrazole unit as protein farnesyltransferase inhibitors. Bioorg. Med. Chem. Lett. 2012, 22, 6896–6902. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.-G.; Yu, D.-K.; Wang, J.-X.; Zhang, H.; He, H.-W.; Shao, R.-G.; Li, X.-M.; Wang, Y.-C. Design, synthesis and anticancer activity of 1-acyl-3-amino-1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole derivatives. Bioorg. Med. Chem. Lett. 2012, 22, 6947–6951. [Google Scholar] [CrossRef] [PubMed]
- Bavetsias, V.; Crumpler, S.; Sun, C.; Avery, S.; Atrash, B.; Faisal, A.; Moore, A.S.; Kosmopoulou, M.; Brown, N.; Sheldrake, P.W.; et al. Optimization of imidazo[4,5-b]pyridine-based kinase inhibitors: Identification of a dual FLT3/Aurora kinase inhibitor as an orally bioavailable preclinical development candidate for the treatment of acute myeloid leukemia. J. Med. Chem. 2012, 55, 8721–8734. [Google Scholar] [CrossRef] [PubMed]
- Bondock, S.; Adel, S.; Etman, H.A.; Badria, F.A. Synthesis and antitumor evaluation of some new 1,3,4-oxadiazole-based heterocycles. Eur. J. Med. Chem. 2012, 48, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.J.; McTigue, M.; Nambu, M.; Tran-Dubé, M.; Pairish, M.; Shen, H.; Jia, L.; Cheng, H.; Hoffman, J.; Le, P.; et al. Discovery of a Novel Class of Exquisitely Selective Mesenchymal-Epithelial Transition Factor (c-MET) Protein Kinase Inhibitors and Identification of the Clinical Candidate 2-(4-(1-(Quinolin-6-ylmethyl)-1H-[1,2,3]triazolo[4,5-b]pyrazin-6-yl)-1H-pyrazol-1-yl)ethanol (PF-04217903) for the Treatment of Cancer. J. Med. Chem. 2012, 55, 8091–8109. [Google Scholar] [CrossRef] [PubMed]
- El Hamid, M.K.A.; Mihovilovic, M.D.; El-Nassan, H.B. Synthesis of novel pyrazolo[3,4-d]pyrimidine derivatives as potential anti-breast cancer agents. Eur. J. Med. Chem. 2012, 57, 323–328. [Google Scholar] [CrossRef] [PubMed]
- El-Borai, M.; Rizk, H.; Abd-Aal, M.; El-Deeb, I. Synthesis of pyrazolo[3,4-b]pyridines under microwave irradiation in multi-component reactions and their antitumor and antimicrobial activities–Part 1. Eur. J. Med. Chem. 2012, 48, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Hanan, E.J.; Van Abbema, A.; Barrett, K.; Blair, W.S.; Blaney, J.; Chang, C.; Eigenbrot, C.; Flynn, S.; Gibbons, P.; Hurley, C.A.; et al. Discovery of potent and selective pyrazolopyrimidine janus kinase 2 inhibitors. J. Med. Chem. 2012, 55, 10090–100107. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-Y.; Wang, L.-Y.; Chang, C.-H.; Kuo, Y.-H.; Kaneko, K.; Takayama, H.; Kimura, M.; Juang, S.-H.; Wong, F.F. One-pot synthesis and antiproliferative evaluation of pyrazolo[3,4-d]pyrimidine derivatives. Tetrahedron 2012, 68, 9658–9664. [Google Scholar] [CrossRef]
- Li, X.; Lu, X.; Xing, M.; Yang, X.-H.; Zhao, T.-T.; Gong, H.-B.; Zhu, H.-L. Synthesis, biological evaluation, and molecular docking studies of N,1,3-triphenyl-1H-pyrazole-4-carboxamide derivatives as anticancer agents. Bioorg. Med. Chem. Lett. 2012, 22, 3589–3593. [Google Scholar] [CrossRef] [PubMed]
- Metwally, M.; Gouda, M.; Harmal, A.N.; Khalil, A. Synthesis, antitumor, cytotoxic and antioxidant evaluation of some new pyrazolotriazines attached to antipyrine moiety. Eur. J. Med. Chem. 2012, 56, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Mohareb, R.M.; Al-Omran, F. Reaction of pregnenolone with cyanoacetylhydrazine: Novel synthesis of hydrazide–hydrazone, pyrazole, pyridine, thiazole, thiophene derivatives and their cytotoxicity evaluations. Steroids 2012, 77, 1551–1559. [Google Scholar] [CrossRef] [PubMed]
- Mohareb, R.M.; Wardakhan, W.W.; Elmegeed, G.A.; Ashour, R.M. Heterocyclizations of pregnenolone: Novel synthesis of thiosemicarbazone, thiophene, thiazole, thieno[2,3-b]pyridine derivatives and their cytotoxicity evaluations. Steroids 2012, 77, 1560–1569. [Google Scholar] [CrossRef] [PubMed]
- Puthiyapurayil, P.; Poojary, B.; Chikkanna, C.; Buridipad, S.K. Design, synthesis and biological evaluation of a novel series of 1,3,4-oxadiazole bearing N-methyl-4-(trifluoromethyl) phenyl pyrazole moiety as cytotoxic agents. Eur. J. Med. Chem. 2012, 53, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Strocchi, E.; Fornari, F.; Minguzzi, M.; Gramantieri, L.; Milazzo, M.; Rebuttini, V.; Breviglieri, S.; Camaggi, C.M.; Locatelli, E.; Bolondi, L.; et al. Design, synthesis and biological evaluation of pyrazole derivatives as potential multi-kinase inhibitors in hepatocellular carcinoma. Eur. J. Med. Chem. 2012, 48, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Vujasinović, I.; Paravić-Radičević, A.; Mlinarić-Majerski, K.; Brajša, K.; Bertoša, B. Synthesis and biological validation of novel pyrazole derivatives with anticancer activity guided by 3D-QSAR analysis. Bioorg. Med. Chem. 2012, 20, 2101–2110. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Tomita, N.; Suzuki, Y.; Suzaki, T.; Kaku, T.; Hara, T.; Yamaokaa, M.; Kanzakia, N.; Hasuokaa, A.; Babaa, A.; et al. Design, synthesis, and biological evaluation of 4-arylmethyl-1-phenylpyrazole and 4-aryloxy-1-phenylpyrazole derivatives as novel androgen receptor antagonists. Bioorg. Med. Chem. 2012, 20, 2338–2352. [Google Scholar] [CrossRef] [PubMed]
- Al-Adiwish, W.M.; Tahir, M.; Siti-Noor-Adnalizawati, A.; Hashim, S.F.; Ibrahim, N.; Yaacob, W. Synthesis, antibacterial activity and cytotoxicity of new fused pyrazolo[1,5-a]pyrimidine and pyrazolo[5,1-c][1,2,4]triazine derivatives from new 5-aminopyrazoles. Eur. J. Med. Chem. 2013, 64, 464–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bavetsias, V.; Faisal, A.; Crumpler, S.; Brown, N.; Kosmopoulou, M.; Joshi, A.; Atrash, B.; Pérez-Fuertes, Y.; Schmitt, J.A.; Boxall, K.J.; et al. Aurora isoform selectivity: Design and synthesis of imidazo[4,5-b]pyridine derivatives as highly selective inhibitors of Aurora-A kinase in cells. J. Med. Chem. 2013, 56, 9122–9135. [Google Scholar] [CrossRef] [PubMed]
- Desai, B.; Dixon, K.; Farrant, E.; Feng, Q.; Gibson, K.R.; Van Hoorn, W.P.; Mills, J.; Morgan, T.; Parry, D.M.; Ramjee, M.K.; et al. Rapid discovery of a novel series of Abl kinase inhibitors by application of an integrated microfluidic synthesis and screening platform. J. Med. Chem. 2013, 56, 3033–3047. [Google Scholar] [CrossRef] [PubMed]
- Kamal, A.; Tamboli, J.R.; Vishnuvardhan, M.; Adil, S.; Nayak, V.L.; Ramakrishna, S. Synthesis and anticancer activity of heteroaromatic linked 4β-amido podophyllotoxins as apoptotic inducing agents. Bioorg. Med. Chem. Lett. 2013, 23, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Koca, I.; Özgür, A.; Coşkun, K.A.; Tutar, Y. Synthesis and anticancer activity of acyl thioureas bearing pyrazole moiety. Bioorg. Med. Chem. 2013, 21, 3859–3865. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, N.; Sakai, N.; Hirayama, T.; Miwa, K.; Oguro, Y.; Oki, H.; Okada, K.; Takagi, T.; Iwata, H.; Awazu, Y.; et al. Discovery of N-[5-({2-[(cyclopropylcarbonyl) amino]imidazo[1,2-b]pyridazin-6-yl}oxy)-2-methylphenyl]-1,3-dimethyl-1H-pyrazole-5-carboxamide (TAK-593), a highly potent VEGFR2 kinase inhibitor. Bioorg. Med. Chem. 2013, 21, 2333–2345. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.-L.; Shao, J.-H.; Luo, J.-Z.; Liu, J.-T.; Miao, J.-Y.; Zhao, B.-X. Novel chiral ferrocenylpyrazolo[1,5-a][1,4]diazepin-4-one derivatives–synthesis, characterization and inhibition against lung cancer cells. Eur. J. Med. Chem. 2013, 63, 256–268. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.-L.; Wu, Y.; Liu, C.-J.; Wei, C.-Y.; Tao, J.-C.; Liu, H.-M. Synthesis and in vitro cytotoxic activity evaluation of novel heterocycle bridged carbothioamide type isosteviol derivatives as antitumor agents. Bioorg. Med. Chem. Lett. 2013, 23, 1343–1346. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.-L.; Wu, Y.; Liu, C.-J.; Wei, C.-Y.; Tao, J.-C.; Liu, H.-M. Design and stereoselective synthesis of novel isosteviol-fused pyrazolines and pyrazoles as potential anticancer agents. Eur. J. Med. Chem. 2013, 65, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.R.; El-Bendary, E.R.; Ghaly, M.A.; Shehata, I.A. Synthesis, in vitro anticancer evaluation and in silico studies of novel imidazo[2,1-b]thiazole derivatives bearing pyrazole moieties. Eur. J. Med. Chem. 2014, 75, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Lv, X.-H.; Qiu, H.-Y.; Wang, Y.-T.; Du, Q.-R.; Li, D.-D.; Yang, Y.-H.; Zhu, H.-L. Synthesis, biological evaluation and molecular docking studies of pyrazole derivatives coupling with a thiourea moiety as novel CDKs inhibitors. Eur. J. Med. Chem. 2013, 68, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zheng, M.; Ling, X.; Liu, Y.; Xue, Y.; An, L.; Gu, N.; Jin, M. Design, synthesis, quantum chemical studies and biological activity evaluation of pyrazole–benzimidazole derivatives as potent Aurora A/B kinase inhibitors. Bioorg. Med. Chem. Lett. 2013, 23, 3523–3530. [Google Scholar] [CrossRef] [PubMed]
- Cankara, P.Ş.; Çalışkan, B.; Durmaz, I.; Atalay, R.; Banoglu, E. Synthesis and preliminary mechanistic evaluation of 5-(p-tolyl)-1-(quinolin-2-yl)pyrazole-3-carboxylic acid amides with potent antiproliferative activity on human cancer cell lines. Eur. J. Med. Chem. 2014, 87, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Hopa, C.; Yildirim, H.; Kara, H.; Kurtaran, R.; Alkan, M. Synthesis, characterization and anti-proliferative activity of Cd (II) complexes with NNN type pyrazole-based ligand and pseudohalide ligands as coligand. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 121, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.H.; Krishnaiah, M.; Sreenu, D.; Subrahmanyam, V.B.; Park, H.-J.; Park, S.-J.; Sheena, Y.Y.; Kim, D.-K. 4-([1,2,4]Triazolo[1,5-a]pyridin-6-yl)-5(3)-(6-methylpyridin-2-yl) imidazole and-pyrazole derivatives as potent and selective inhibitors of transforming growth factor-β type I receptor kinase. Bioorg. Med. Chem. 2014, 22, 2724–2732. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xu, S.; Tang, Y.; Ding, S.; Zhang, J.; Wang, S.; Zhou, G.; Zhou, C.; Li, X. Synthesis, anticancer activity and DNA-binding properties of novel 4-pyrazolyl-1,8-naphthalimide derivatives. Bioorg. Med. Chem. Lett. 2014, 24, 586–590. [Google Scholar] [CrossRef] [PubMed]
- Park, B.S.; Al-Sanea, M.M.; Abdelazem, A.Z.; Park, H.M.; Roh, E.J.; Park, H.-M.; Yoo, K.H.; Sim, T.; Tae, J.S.; Lee, S.H. Structure-based optimization and biological evaluation of trisubstituted pyrazole as a core structure of potent ROS1 kinase inhibitors. Bioorg. Med. Chem. 2014, 22, 3871–3878. [Google Scholar] [CrossRef] [PubMed]
- Reddy, G.L.; Guru, S.K.; Srinivas, M.; Pathania, A.S.; Mahajan, P.; Nargotra, A.; Bhushan, S.; Vishwakarma, R.A.; Sawantad, S.D. Synthesis of 5-substituted-1H-pyrazolo[4,3-d]pyrimidin-7(6H)-one analogs and their biological evaluation as anticancer agents: MTOR inhibitors. Eur. J. Med. Chem. 2014, 80, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-F.; Zhu, Y.-L.; Zhu, P.-T.; Makawana, J.A.; Zhang, Y.-L.; Zhao, M.-Y.; Lv, P.-C.; Zhu, H.-L. Design, synthesis and biological evaluation of novel 5-phenyl-1H-pyrazole derivatives as potential BRAF V600E inhibitors. Bioorg. Med. Chem. 2014, 22, 6201–6208. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Liao, C.; Li, Z.; Wang, Z.; Sun, Q.; Liu, C.; Yang, Y.; Tu, Z.; Jiang, S. Design, synthesis, and biological evaluation of 1,3-disubstituted-pyrazole derivatives as new class I and IIb histone deacetylase inhibitors. Eur. J. Med. Chem. 2014, 86, 639–652. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-F.; Li, M.; Miao, J.-Y.; Zhao, B.-X. Biological activities of novel pyrazolyl hydroxamic acid derivatives against human lung cancer cell line A549. Eur. J. Med. Chem. 2014, 83, 516–525. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Karim, S.S.; Anwar, M.M.; Mohamed, N.A.; Nasr, T.; Elseginy, S.A. Design, synthesis, biological evaluation and molecular docking studies of novel benzofuran–pyrazole derivatives as anticancer agents. Bioorg. Chem. 2015, 63, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Aware, V.; Gaikwad, N.; Chavan, S.; Manohar, S.; Bose, J.; Khanna, S.; B-Rao, C.; Dixit, N.; Singhd, K.S.; Damred, A.; et al. Cyclopentyl-pyrimidine based analogues as novel and potent IGF-1R inhibitor. Eur. J. Med. Chem. 2015, 92, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, H.S.; Abou-Seri, S.M.; Tanc, M.; Elaasser, M.M.; Abdel-Aziz, H.A.; Supuran, C.T. Isatin-pyrazole benzenesulfonamide hybrids potently inhibit tumor-associated carbonic anhydrase isoforms IX and XII. Eur. J. Med. Chem. 2015, 103, 583–593. [Google Scholar] [CrossRef] [PubMed]
- Kamal, A.; Shaik, A.B.; Polepalli, S.; Kumar, G.B.; Reddy, V.S.; Mahesh, R.; Garimella, S.; Jain, N. Synthesis of arylpyrazole linked benzimidazole conjugates as potential microtubule disruptors. Bioorg. Med. Chem. 2015, 23, 1082–1095. [Google Scholar] [CrossRef] [PubMed]
- Khloya, P.; Ceruso, M.; Ram, S.; Supuran, C.T.; Sharma, P.K. Sulfonamide bearing pyrazolylpyrazolines as potent inhibitors of carbonic anhydrase isoforms I, II, IX and XII. Bioorg. Med. Chem. Lett. 2015, 25, 3208–3212. [Google Scholar] [CrossRef] [PubMed]
- Maggio, B.; Raimondi, M.V.; Raffa, D.; Plescia, F.; Cascioferro, S.; Cancemi, G.; Tolomeo, M.; Grimaudo, S.; Daidone, G. Synthesis and antiproliferative activity of 3-(2-chloroethyl)-5-methyl-6-phenyl-8-(trifluoromethyl)-5,6-dihydropyrazolo[3,4-f][1,2,3,5]tetrazepin-4-(3H)-one. Eur. J. Med. Chem. 2015, 96, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Nitulescu, G.M.; Draghici, C.; Olaru, O.T.; Matei, L.; Ioana, A.; Dragu, L.D.; Bleotu, C. Synthesis and apoptotic activity of new pyrazole derivatives in cancer cell lines. Bioorg. Med. Chem. 2015, 23, 5799–5808. [Google Scholar] [CrossRef] [PubMed]
- Nitulescu, G.M.; Matei, L.; Aldea, I.M.; Draghici, C.; Olaru, O.T.; Bleotu, C. Ultrasound-assisted synthesis and anticancer evaluation of new pyrazole derivatives as cell cycle inhibitors. Arab. J. Chem. 2015. [Google Scholar] [CrossRef]
- Rai, U.S.; Isloor, A.M.; Shetty, P.; Pai, K.; Fun, H.-K. Synthesis and in vitro biological evaluation of new pyrazole chalcones and heterocyclic diamides as potential anticancer agents. Arab. J. Chem. 2015, 8, 317–321. [Google Scholar] [CrossRef]
- Reddy, T.S.; Kulhari, H.; Reddy, V.G.; Bansal, V.; Kamal, A.; Shukla, R. Design, synthesis and biological evaluation of 1,3-diphenyl-1H-pyrazole derivatives containing benzimidazole skeleton as potential anticancer and apoptosis inducing agents. Eur. J. Med. Chem. 2015, 101, 790–805. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, T.; Alam, M.G.; Dar, A.M. Synthesis, characterization and anticancer studies of new steroidal oxadiazole, pyrrole and pyrazole derivatives. J. Saudi Chem. Soc. 2015, 19, 387–391. [Google Scholar] [CrossRef]
- Shi, J.B.; Tang, W.J.; Li, R.; Liu, X.H. Novel pyrazole-5-carboxamide and pyrazole–pyrimidine derivatives: Synthesis and anticancer activity. Eur. J. Med. Chem. 2015, 90, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Alam, R.; Wahi, D.; Singh, R.; Sinha, D.; Tandon, V.; Grover, A. Design, synthesis, cytotoxicity, HuTopoIIα inhibitory activity and molecular docking studies of pyrazole derivatives as potential anticancer agents. Bioorg. Chem. 2016, 69, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.-H.; Ren, Z.-L.; Zhou, B.-G.; Li, Q.-S.; Chu, M.-J.; Liu, D.-H.; Zhang, L.-S.; Yao, X.-K.; Cao, H.-Q. Discovery of N-(benzyloxy)-1,3-diphenyl-1H-pyrazole-4-carboxamide derivatives as potential antiproliferative agents by inhibiting MEK. Bioorg. Med. Chem. 2016, 24, 4652–4659. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.-Q.; Yang, H.; He, B.; Jia, Y.-K.; Meng, S.-Y.; Zhang, C.; Liu, H.-M.; Liu, F.-W. A novel domino approach for synthesis of indolyl tetrahydropyrano[4,3-c]pyrazole derivatives as anticancer agents. Tetrahedron 2016, 72, 5769–5775. [Google Scholar] [CrossRef]
- Wen, J.; Bao, Y.; Niu, Q.; Yang, J.; Fan, Y.; Li, J.; Jing, Y.; Zhao, L.; Liu, D. Identification of N-(6-mercaptohexyl)-3-(4-pyridyl)-1H-pyrazole-5-carboxamide and its disulfide prodrug as potent histone deacetylase inhibitors with in vitro and in vivo anti-tumor efficacy. Eur. J. Med. Chem. 2016, 109, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Galal, S.A.; Abdelsamie, A.S.; Shouman, S.A.; Attia, Y.M.; Ali, H.I.; Tabll, A.; El-Shenawye, R.; El Abd, Y.S.; Ali, M.M.; Mahmoud, A.E.; et al. Part I: Design, synthesis and biological evaluation of novel pyrazole-benzimidazole conjugates as checkpoint kinase 2 (Chk2) inhibitors with studying their activities alone and in combination with genotoxic drugs. Eur. J. Med. Chem. 2017, 134, 392–405. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Zhang, S.; Zhang, S.; Wang, K.; Xiao, Y. Solvent and Copper Ion-Induced Synthesis of Pyridyl–Pyrazole-3-One Derivatives: Crystal Structure, Cytotoxicity. Molecules 2017, 22, 1813. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Huo, H.; Guo, R.; Liu, B.; Li, L.; Dan, W.; Xiao, X.; Zhang, J.; Shi, B. Facile and efficient access to Androsten-17-(1′,3′,4′)-pyrazoles and Androst-17β-(1′,3′,4′)-pyrazoles via Vilsmeier reagents, and their antiproliferative activity evaluation in vitro. Eur. J. Med. Chem. 2017, 130, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Hu, J.; Bao, N.; Li, D.; Chen, L.; Sun, J. Design, synthesis and cytotoxic activities of scopoletin-isoxazole and scopoletin-pyrazole hybrids. Bioorg. Med. Chem. Lett. 2017, 27, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Xu, S.; Lei, H.; Wang, C.; Xiao, Z.; Jia, S.; Zhi, J.; Zheng, P.; Zhu, W. Design, synthesis and antitumor activity of Novel Sorafenib derivatives bearing pyrazole scaffold. Bioorg. Med. Chem. 2017, 25, 5754–5763. [Google Scholar] [CrossRef] [PubMed]
- Daidone, G.; Maggio, B.; Raffa, D.; Plescia, S.; Schillaci, D.; Raimondi, M.V. Synthesis and in vitro antileukemic activity of new 4-triazenopyrazole derivatives. Farmaco 2004, 59, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Kamble, R.D.; Meshram, R.J.; Hese, S.V.; More, R.A.; Kamble, S.S.; Gacche, R.N.; Dawane, B.S. Synthesis and in silico investigation of thiazoles bearing pyrazoles derivatives as anti-inflammatory agents. Comput. Biol. Chem. 2016, 61, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Bekhit, A.A.; Abdel-Aziem, T. Design, synthesis and biological evaluation of some pyrazole derivatives as anti-inflammatory-antimicrobial agents. Bioorg. Med. Chem. 2004, 12, 1935–1945. [Google Scholar] [CrossRef] [PubMed]
- Bekhit, A.A.; Ashour, H.M.A.; Abdel Ghany, Y.S.; Bekhit, A.-A.; Baraka, A. Synthesis and biological evaluation of some thiazolyl and thiadiazolyl derivatives of 1H-pyrazole as anti-inflammatory antimicrobial agents. Eur. J. Med. Chem. 2008, 43, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Girisha, K.S.; Kalluraya, B.; Narayana, V.; Padmashree, V. Synthesis and pharmacological study of 1-acetyl/propyl-3-aryl-5-(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)-2-pyrazoline. Eur. J. Med. Chem. 2010, 45, 4640–4644. [Google Scholar] [CrossRef] [PubMed]
- Brullo, C.; Spisani, S.; Selvatici, R.; Bruno, O. N-Aryl-2-phenyl-2,3-dihydro-imidazo[1,2-b]pyrazole-1-carboxamides 7-substituted strongly inhibiting both fMLP-OMe-and IL-8-induced human neutrophil chemotaxis. Eur. J. Med. Chem. 2012, 47, 573–579. [Google Scholar] [CrossRef] [PubMed]
- El-Moghazy, S.; Barsoum, F.; Abdel-Rahman, H.; Marzouk, A. Synthesis and anti-inflammatory activity of some pyrazole derivatives. Med. Chem. Res. 2012, 21, 1722–1733. [Google Scholar] [CrossRef]
- Magda, A.-A.; Abdel-Aziz, N.I.; Alaa, A.-M.; El-Azab, A.S.; ElTahir, K.E. Synthesis, biological evaluation and molecular modeling study of pyrazole and pyrazoline derivatives as selective COX-2 inhibitors and anti-inflammatory agents. Part 2. Bioorg. Med. Chem. 2012, 20, 3306–3316. [Google Scholar] [CrossRef]
- Qiu, K.-M.; Yan, R.; Xing, M.; Wang, H.-H.; Cui, H.-E.; Gong, H.-B.; Zhu, H.-L. Synthesis, biological evaluation and molecular modeling of dihydro-pyrazolyl-thiazolinone derivatives as potential COX-2 inhibitors. Bioorg. Med. Chem. 2012, 20, 6648–6654. [Google Scholar] [CrossRef] [PubMed]
- Alegaon, S.G.; Alagawadi, K.R.; Garg, M.K.; Dushyant, K.; Vinod, D. 1,3,4-Trisubstituted pyrazole analogues as promising anti-inflammatory agents. Bioorg. Chem. 2014, 54, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Hassan, G.S.; Abou-Seri, S.M.; Kamel, G.; Ali, M.M. Celecoxib analogs bearing benzofuran moiety as cyclooxygenase-2 inhibitors: Design, synthesis and evaluation as potential anti-inflammatory agents. Eur. J. Med. Chem. 2014, 76, 482–493. [Google Scholar] [CrossRef] [PubMed]
- Karrouchi, K.; Chemlal, L.; Doudach, L.; Taoufik, J.; Cherrah, Y.; Radi, S.; Fouzi, M.A.; Ansar, M. Synthesis, anti-inflammatory and antioxidant activities of some new pyrazole derivatives. J. Pharm. Res. 2014, 8, 1171–1177. [Google Scholar]
- Selvam, T.P.; Kumar, P.V.; Saravanan, G.; Prakash, C.R. Microwave-assisted synthesis, characterization and biological activity of novel pyrazole derivatives. J. Saudi Chem. Soc. 2014, 18, 1015–1021. [Google Scholar] [CrossRef]
- Tewari, A.K.; Singh, V.P.; Yadav, P.; Gupta, G.; Singh, A.; Goel, R.K.; Shinde, P.; Mohan, C.G. Synthesis, biological evaluation and molecular modeling study of pyrazole derivatives as selective COX-2 inhibitors and anti-inflammatory agents. Bioorg. Chem. 2014, 56, 8–15. [Google Scholar] [CrossRef] [PubMed]
- El-Feky, S.A.; El-Samii, Z.K.A.; Osman, N.A.; Lashine, J.; Kamel, M.A.; Thabet, H.K. Synthesis, molecular docking and anti-inflammatory screening of novel quinoline incorporated pyrazole derivatives using the Pfitzinger reaction II. Bioorg. Chem. 2015, 58, 104–116. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Kaushik, D. Noval 1-substituted-3,5-dimethyl-4-[(substituted phenyl)diazenyl] pyrazole derivatives: Synthesis and pharmacological activity. J. Saudi Chem. Soc. 2015, 19, 274–281. [Google Scholar] [CrossRef]
- Surendra Kumar, R.; Arif, I.A.; Ahamed, A.; Idhayadhulla, A. Anti-inflammatory and antimicrobial activities of novel pyrazole analogues. Saudi J. Biol. Sci. 2016, 23, 614–620. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-R.; Li, C.; Liu, J.-C.; Guo, M.; Zhang, T.-Y.; Sun, L.-P.; Zheng, C.-J.; Piao, H.-R. Synthesis and biological evaluation of 1,3-diaryl pyrazole derivatives as potential antibacterial and anti-inflammatory agents. Bioorg. Med. Chem. Lett. 2015, 25, 5052–5057. [Google Scholar] [CrossRef] [PubMed]
- Pelcman, B.; Sanin, A.; Nilsson, P.; Schaal, W.; Olofsson, K.; Krog-Jensen, C.; Forsell, P.; Hallberg, A.; Larhed, M.; Boesend, T.; et al. N-Substituted pyrazole-3-carboxamides as inhibitors of human 15-lipoxygenase. Bioorg. Med. Chem. Lett. 2015, 25, 3017–3023. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Banerjee, D.; Bohnert, T.; Chao, J.; Enyedy, I.; Fontenot, J.; Guertina, K.; Jones, H.; Lina, E.Y.; Marcotte, D.; et al. Discovery of novel pyrazole-containing benzamides as potent RORγ inverse agonists. Bioorg. Med. Chem. Lett. 2015, 25, 2985–2990. [Google Scholar] [CrossRef] [PubMed]
- Thore, S.; Gupta, S.V.; Baheti, K.G. Novel ethyl-5-amino-3-methylthio-1H-pyrazole-4-carboxylates: Synthesis and pharmacological activity. J. Saudi Chem. Sci. 2016, 20, 259–264. [Google Scholar] [CrossRef]
- Nossier, E.; Fahmy, H.; Khalifa, N.; El-Eraky, W.; Baset, M. Design and Synthesis of Novel Pyrazole-Substituted Different Nitrogenous Heterocyclic Ring Systems as Potential Anti-Inflammatory Agents. Molecules 2017, 22, 512. [Google Scholar] [CrossRef] [PubMed]
- Maggio, B.; Daidone, G.; Raffa, D.; Plescia, S.; Mantione, L.; Cutuli, V.M.C.; Mangano, N.G.; Caruso, A. Synthesis and pharmacological study of ethyl 1-methyl-5-(substituted 3,4-dihydro-4-oxoquinazolin-3-yl)-1H-pyrazole-4-acetates. Eur. J. Med. Chem. 2001, 36, 737–742. [Google Scholar] [CrossRef]
- Hall, A.; Billinton, A.; Brown, S.H.; Clayton, N.M.; Chowdhury, A.; Giblin, G.M.P.; Goldsmith, P.; Hayhow, T.G.; Hurst, D.N.; Kilford, I.R.; et al. Non-acidic pyrazole EP1 receptor antagonists with in vivo analgesic efficacy. Bioorg. Med. Chem. Lett. 2008, 18, 3392–3399. [Google Scholar] [CrossRef] [PubMed]
- De Moura, S.S.; de Ávila, R.I.; Brito, L.B.; de Oliveira, R.; de Oliveira, G.A.R.; Pazini, F.; Aline, R.M.; Cesar, C.B.; Marize, K.G.; Valadares, C. In vitro genotoxicity and in vivo subchronic evaluation of the anti-inflammatory pyrazole compound LQFM021. Chem. Biol. Interact. 2017, 277, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Ragab, F.A.; Abdel Gawad, N.M.; Georgey, H.H.; Said, M.F. Synthesis of novel 1,3,4-trisubstituted pyrazoles as anti-inflammatory and analgesic agents. Eur. J. Med. Chem. 2013, 63, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Vijesh, A.M.; Isloor, A.M.; Shetty, P.; Sundershan, S.; Fun, H.K. New pyrazole derivatives containing 1,2,4-triazoles and benzoxazoles as potent antimicrobial and analgesic agents. Eur. J. Med. Chem. 2013, 62, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Viveka, S.; Dinesha, S.P.; Nagaraja, G.K.; Ballav, S.; Kerkar, S. Design and synthesis of some new pyrazolyl-pyrazolines as potential anti-inflammatory, analgesic and antibacterial agents. Eur. J. Med. Chem. 2015, 101, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Thore, S.N.; Gupta, S.V.; Baheti, K.G. Synthesis and pharmacological evaluation of 5-methyl-2-phenylthiazole-4-substituted heteroazoles as a potential anti-inflammatory and analgesic agents. J. Saudi Chem. Soc. 2016, 20, S46–S52. [Google Scholar] [CrossRef]
- Chowdhury, M.A.; Abdellatif, K.R.; Dong, Y.; Knaus, E.E. Synthesis of new 4-[2-(4-methyl(amino) sulfonylphenyl)-5-trifluoromethyl-2H-pyrazol-3-yl]-1,2,3,6-tetrahydropyridines: A search for novel nitric oxide donor anti-inflammatory agents. Bioorg. Med. Chem. 2008, 16, 8882–8888. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.A.; Abdellatif, K.R.; Dong, Y.; Yu, G.; Huang, Z.; Rahman, M.; Das, D.; Velázquez, C.A.; Suresh, M.R.; Knaus, E.E. Celecoxib analogs possessing a N-(4-nitrooxybutyl) piperidin-4-yl or N-(4-nitrooxybutyl)-1,2,3,6-tetrahydropyridin-4-yl nitric oxide donor moiety: Synthesis, biological evaluation and nitric oxide release studies. Bioorg. Med. Chem. Lett. 2010, 20, 1324–1329. [Google Scholar] [CrossRef] [PubMed]
- Chavan, H.V.; Bandgar, B.P.; Adsul, L.K.; Dhakane, V.D.; Bhale, P.S.; Thakare, V.N.; Masand, V. Design, synthesis, characterization and anti-inflammatory evaluation of novel pyrazole amalgamated flavones. Bioorg. Med. Chem. Lett. 2013, 23, 1315–1321. [Google Scholar] [CrossRef] [PubMed]
- Abdelgawad, M.A.; Labib, L.B.; Abdel-Latif, M. Pyrazole-hydrazone derivatives as anti-inflammatory agents: Design, synthesis, biological evaluation, COX-1,2/5-LOX inhibition and docking study. Bioorg. Chem. 2017, 74, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Reddy, P.G.; Rao, K.S.; Lohray, B.B.; Misra, P.; Rajjak, S.A.; Rao, Y.K.; Venkateswarlu, A. Polar substitutions in the benzenesulfonamide ring of celecoxib afford a potent 1,5-diarylpyrazole class of COX-2 inhibitors. Bioorg. Med. Chem. Lett. 2004, 14, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; DeMello, K.M.L.; Cheng, H.; Sakya, S.M.; Bronk, B.S.; Rafka, R.J.; Jaynes, B.H.; Ziegler, C.B.; Kilroy, C.; Mann, D.W.; et al. Discovery of a potent, selective and orally active canine COX-2 inhibitor, 2-(3-difluoromethyl-5-phenyl-pyrazol-1-yl)-5-methanesulfonyl-pyridine. Bioorg. Med. Chem. Lett. 2004, 14, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; DeMello, K.M.L.; Li, J.; Sakya, S.M.; Ando, K.; Kawamura, K.; Kato, T.; Rafka, R.J.; Jaynes, B.H.; Ziegler, C.B.; et al. Synthesis and SAR of heteroaryl-phenyl-substituted pyrazole derivatives as highly selective and potent canine COX-2 inhibitors. Bioorg. Med. Chem. Lett. 2006, 16, 2076–2080. [Google Scholar] [CrossRef] [PubMed]
- Sakya, S.M.; DeMello, K.M.L.; Minich, M.L.; Rast, B.; Shavnya, A.; Rafka, R.J. 5-Heteroatom substituted pyrazoles as canine COX-2 inhibitors. Part 1: Structure-activity relationship studies of 5-alkylamino pyrazoles and discovery of a potent, selective, and orally active analog. Bioorg. Med. Chem. Lett. 2006, 16, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Sakya, S.M.; Cheng, H.; DeMello, K.M.L.; Shavnya, A.; Minich, M.L.; Rast, B. 5-Heteroatom-substituted pyrazoles as canine COX-2 inhibitors: Part 2. Structure-activity relationship studies of 5-alkylethers and 5-thioethers. Bioorg. Med. Chem. Lett. 2006, 16, 1202–1206. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, R.; Bansal, A.; Rozas, I.; Kelly, B.; Kaushik, P.; Kaushik, D. Synthesis, biological evaluation and molecular modeling study of 5-trifluoromethyl-Δ2-pyrazoline and isomeric 5/3-trifluoromethylpyrazole derivatives as anti-inflammatory agents. Eur. J. Med. Chem. 2013, 70, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Habeeb, A.G.; Praveen, R.P.; Knaus, E.E. Design and synthesis of celecoxib and rofecoxib analogues as selective cyclooxygenase-2 (COX-2) inhibitors: Replacement of sulfonamide and methylsulfonyl pharmacophores by an azido bioisostere. J. Med. Chem. 2001, 44, 3039–3042. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.J.; Rao, P.P.; Knaus, E.E. Design and synthesis of novel celecoxib analogues as selective cyclooxygenase-2 (COX-2) inhibitors: Replacement of the sulfonamide pharmacophore by a sulfonylazide bioisostere. Bioorg. Med. Chem. 2003, 11, 5273–5280. [Google Scholar] [CrossRef] [PubMed]
- Bansal, S.; Bala, M.; Suthar, S.K.; Choudhary, S.; Bhattacharya, S.; Bhardwaj, V. Design and synthesis of novel 2-phenyl-5-(1,3-diphenyl-1H-pyrazol-4-yl)-1,3,4-oxadiazoles as selective COX-2 inhibitors with potent anti-inflammatory activity. Eur. J. Med. Chem. 2014, 80, 167–174. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, M.A.A.; Abdel-Aziz, N.I.; Abdel-Aziz, A.A.M.; El-Azab, A.S.; Asiri, Y.A.; ElTahir, K.E.H. Design, synthesis, and biological evaluation of substituted hydrazone and pyrazole derivatives as selective COX-2 inhibitors: Molecular docking study. Bioorg. Med. Chem. 2011, 19, 3416–3424. [Google Scholar] [CrossRef] [PubMed]
- Bekhit, A.A.; Ashour, H.M.; Bekhit, A.E.D.A.; Abdel-Rahman, H.M.; Bekhit, S.A. Synthesis of some pyrazolyl benzenesulfonamide derivatives as dual anti-inflammatory antimicrobial agents. J. Enzym. Inhib. Med. Chem. 2009, 24, 296–309. [Google Scholar] [CrossRef] [PubMed]
- Tewari, A.K.; Srivastava, P.; Singh, V.P.; Singh, A.; Goel, R.K.; Mohan, C.G. Novel anti-inflammatory agents based on pyrazole based dimeric compounds; design, synthesis, docking and in vivo activity. Chem. Pharm. Bull. 2010, 58, 634–638. [Google Scholar] [CrossRef] [PubMed]
- Alegaon, S.G.; Hirpara, M.B.; Alagawadi, K.R.; Hullatti, K.K.; Kashniyal, K. Synthesis of novel pyrazole–thiadiazole hybrid as potential potent and selective cyclooxygenase-2 (COX-2) inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 5324–5329. [Google Scholar] [CrossRef] [PubMed]
- Manetti, F.; Magnani, M.; Castagnolo, D.; Passalacqua, L.; Botta, M.; Corelli, F. Ligand-Based Virtual Screening, Parallel Solution-Phase and Microwave-Assisted Synthesis as Tools to Identify and Synthesize New Inhibitors of Mycobacterium tuberculosis. Chem. Med. Chem. 2006, 1, 973–989. [Google Scholar] [CrossRef] [PubMed]
- Almeida, P.E.; Ramos, D.F.; Bonacorso, H.G.; de la Iglesia, A.I.; Oliveira, M.R.; Coelho, T. Synthesis and in vitro antimycobacterial activity of 3-substituted 5-hydroxy-5-trifluoro[chloro]methyl-4,5-dihydro-1H-1-(isonicotinoyl)pyrazoles. Int. J. Antimicrob. Agents 2008, 32, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Castagnolo, D.; De Logu, A.; Radi, M.; Bechi, B.; Manetti, F.; Magnani, M. Synthesis, biological evaluation and SAR study of novel pyrazole analogues as inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem. 2008, 16, 8587–85891. [Google Scholar] [CrossRef] [PubMed]
- Velaparthi, S.; Brunsteiner, M.; Uddin, R.; Wan, B.; Franzblau, S.G.; Petukhov, P.A. 5-tert-Butyl-N-pyrazol-4-yl-4,5,6,7-tetrahydrobenzo[d]isoxazole-3-carboxamide derivatives as novel potent inhibitors of Mycobacterium tuberculosis pantothenate synthetase: Initiating a quest for new antitubercular drugs. J. Med. Chem. 2008, 51, 1999–2002. [Google Scholar] [CrossRef] [PubMed]
- Castagnolo, D.; Manetti, F.; Radi, M.; Bechi, B.; Pagano, M.; De Logu, A.; Meleddu, R.; Saddi, M.; Botta, M. Synthesis, biological evaluation, and SAR study of novel pyrazole analogues as inhibitors of Mycobacterium tuberculosis: Part 2. Synthesis of rigid pyrazolones. Bioorg. Med. Chem. 2009, 17, 5716–5721. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, M.J.; Samy, J.G.; Soni, S.; Jain, N.; Kumar, L.; Sharma, L.K.; Yadav, H.; Saini, L.; Kalyansing, R.G.; Devenda, N.S. Discovery of novel antitubercular 3a,4-dihydro-3H-indeno[1,2-c]pyrazole-2-carboxamide/carbothioamide analogues. Bioorg. Med. Chem. Lett. 2011, 21, 5259–5261. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, A.R.; Dodiya, D.K.; Dholariya, B.H.; Kataria, V.B.; Bhuva, V.R.; Shah, V.H. Synthesis and biological evaluation of some novel N-aryl-1,4-dihydropyridines as potential antitubercular agents. Bioorg. Med. Chem. Lett. 2011, 21, 5181–5183. [Google Scholar] [CrossRef] [PubMed]
- Khunt, R.C.; Khedkar, V.M.; Chawda, R.S.; Chauhan, N.A.; Parikh, A.R.; Coutinho, E.C. Synthesis, antitubercular evaluation and 3D-QSAR study of N-phenyl-3-(4-fluorophenyl)-4-substituted pyrazole derivatives. Bioorg. Med. Chem. Lett. 2012, 22, 666–678. [Google Scholar] [CrossRef] [PubMed]
- Shelke, S.N.; Mhaske, G.R.; Bonifácio, V.D.; Gawande, M.B. Green synthesis and anti-infective activities of fluorinated pyrazoline derivatives. Bioorg. Med. Chem. Lett. 2012, 22, 5727–5730. [Google Scholar] [CrossRef] [PubMed]
- Anand, N.; Ramakrishna, K.; Gupt, M.P.; Chaturvedi, V.; Singh, S.; Srivastava, K.K.; Sharma, P.; Rai, N.; Ramachandran, R.; Dwivedi, A. Identification of 1-[4-benzyloxyphenyl)-but-3-enyl]-1H-azoles as new class of antitubercular and antimicrobial agents. ACS Med. Chem. Lett. 2013, 4, 958–963. [Google Scholar] [CrossRef] [PubMed]
- Fullam, E.; Talbot, J.; Abuhammed, A.; Westwood, I.; Davies, S.G.; Russell, A.J.; Sim, E. Design, synthesis and structure-activity relationships of 3,5-diaryl-1H-pyrazoles as inhibitors of arylamine N-acetyltransferase. Bioorg. Med. Chem. Lett. 2013, 23, 2759–2764. [Google Scholar] [CrossRef] [PubMed]
- Hernández, P.; Rojas, R.; Gilman, R.H.; Sauvain, M.; Lima, L.M.; Barreiro, E.J.; González, M.; Cerecetto, H. Hybrid furoxanyl N-acylhydrazone derivatives as hits for the development of neglected diseases drug candidates. Eur. J. Med. Chem. 2013, 59, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Maurya, H.K.; Verma, R.; Alam, S.; Pandey, S.; Pathak, V.; Sharma, S.; Srivastava, K.K.; Negi, A.S.; Gupta, A. Studies on substituted benzo[h]quinazolines, benzo[g]indazoles, pyrazoles, 2,6-diarylpyridines as anti-tubercular agents. Bioorg. Med. Chem. Lett. 2013, 23, 5844–5849. [Google Scholar] [CrossRef] [PubMed]
- North, E.J.; Scherman, M.S.; Bruhn, D.F.; Scarborough, J.S.; Maddox, M.M.; Jones, V.; Grzegorzewicz, A.; Yang, L.; Hess, T.; Morisseau, C. Design, synthesis and anti-tuberculosis activity of 1-adamantyl-3-heteroaryl ureas with improved in vitro pharmacokinetic properties. Bioorg. Med. Chem. 2013, 21, 2587–2599. [Google Scholar] [CrossRef] [PubMed]
- Palanisamy, P.; Jenniefer, S.J.; Muthiah, P.T.; Kumaresan, S. Synthesis, characterization, antimicrobial, anticancer, and antituberculosis activity of some new pyrazole, isoxazole, pyrimidine and benzodiazepine derivatives containing thiochromeno and benzothiepino moieties. RSC Adv. 2013, 3, 19300–19310. [Google Scholar] [CrossRef]
- Samala, G.; Devi, P.B.; Nallangi, R.; Yogeeswari, P.; Sriram, D. Development of 3-phenyl-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine derivatives as novel Mycobacterium tuberculosis pantothenate synthetase inhibitors. Eur. J. Med. Chem. 2013, 69, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Shirude, P.S.; Madhavapeddi, P.; Naik, M.; Murugan, K.; Shinde, V.; Nandishaiah, R.; Bhat, J.; Kumar, A.; Hameed, S.; Holdgate, G. Methyl-thiazoles: A novel mode of inhibition with the potential to develop novel inhibitors targeting InhA in Mycobacterium tuberculosis. J. Med. Chem. 2013, 56, 8533–8542. [Google Scholar] [CrossRef] [PubMed]
- Kalaria, P.N.; Satasia, S.P.; Raval, D.K. Synthesis, characterization and pharmacological screening of some novel 5-imidazopyrazole incorporated polyhydroquinoline derivatives. Eur. J. Med. Chem. 2014, 78, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Karad, S.C.; Purohit, V.B.; Raval, D.K. Design, synthesis and characterization of fluoro substituted novel pyrazolylpyrazolines scaffold and their pharmacological screening. Eur. J. Med. Chem. 2014, 84, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Pathak, V.; Maurya, H.K.; Sharma, S.; Srivastava, K.K.; Gupta, A. Synthesis and biological evaluation of substituted 4,6-diarylpyrimidines and 3,5-diphenyl-4,5-dihydro-1H-pyrazoles as anti-tubercular agents. Bioorg. Med. Chem. Lett. 2014, 24, 2892–2896. [Google Scholar] [CrossRef] [PubMed]
- Villemagne, B.; Flipo, M.; Blondiaux, N.; Crauste, C.; Malaquin, S.; Leroux, F.; Piveteau, C.; Villeret, V.; Brodin, P.; Villoutreix, B.O.; et al. Ligand Efficiency Driven Design of New Inhibitors of Mycobacterium tuberculosis Transcriptional Repressor EthR Using Fragment Growing, Merging, and Linking Approaches. J. Med. Chem. 2014, 57, 4876–4888. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, J.D.; Chudasama, C.J.; Patel, K.D. Pyrazole clubbed triazolo[1,5-a]pyrimidine hybrids as an anti-tubercular agents: Synthesis, in vitro screening and molecular docking study. Bioorg. Med. Chem. 2015, 23, 7711–7716. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, C.; Ribeiro, L.B.; Furuno, C.C.; da Cunha, G.A.; de Souza, R.F.; Netto, A.V.; Mauro, A.E.; Frem, R.C.; Fernandes, J.A.; Paz, F.A.A. Pyrazolyl Pd (II) complexes containing triphenylphosphine: Synthesis and antimycobacterial activity. Polyhedron 2015, 100, 10–16. [Google Scholar] [CrossRef]
- De Melo, C.S.; Feng, T.-S.; van der Westhuyzen, R.; Gessner, R.K.; Street, L.J.; Morgans, G.L.; Warner, D.F.; Moosa, A.; Naran, K.; Lawrence, N. Aminopyrazolo[1,5-a]pyrimidines as potential inhibitors of Mycobacterium tuberculosis: Structure activity relationships and ADME characterization. Bioorg. Med. Chem. 2015, 23, 7240–7250. [Google Scholar] [CrossRef] [PubMed]
- Mutai, P.; Pavadai, E.; Wiid, I.; Ngwane, A.; Baker, B.; Chibale, K. Synthesis, antimycobacterial evaluation and pharmacophore modeling of analogues of the natural product formononetin. Bioorg. Med. Chem. Lett. 2015, 25, 2510–2513. [Google Scholar] [CrossRef] [PubMed]
- Nayak, N.; Ramprasad, J.; Dalimba, U. New INH-pyrazole analogs: Design, synthesis and evaluation of antitubercular and antibacterial activity. Bioorg. Med. Chem. Lett. 2015, 25, 5540–5545. [Google Scholar] [CrossRef] [PubMed]
- Tantry, S.J.; Degiacomi, G.; Sharma, S.; kumar Jena, L.; Narayan, A.; Guptha, S.; Shanbhag, G.; Menasinakai, S.; Mallya, M.; Awasthy, D. Whole cell screen based identification of spiropiperidines with potent antitubercular properties. Bioorg. Med. Chem. Lett. 2015, 25, 3234–3245. [Google Scholar] [CrossRef] [PubMed]
- Guardia, A.; Gulten, G.; Fernandez, R.; Gómez, J.; Wang, F.; Convery, M.; Blanco, D.; Martínez, M.; Pérez-Herrán, E.; Alonso, M. N-Benzyl-4-((heteroaryl)methyl) benzamides: A New Class of Direct NADH-Dependent 2-trans Enoyl–Acyl Carrier Protein Reductase (InhA) Inhibitors with Antitubercular Activity. Chem. Med. Chem. 2016, 11, 687–701. [Google Scholar] [CrossRef] [PubMed]
- Kavanagh, M.E.; Coyne, A.G.; McLean, K.J.; James, G.G.; Levy, C.W.; Marino, L.B.; De Carvalho, L.P.S.; Chan, D.S.; Hudson, S.A.; Surade, S. Fragment-based approaches to the development of Mycobacterium tuberculosis CYP121 inhibitors. J. Med. Chem. 2016, 59, 3272–3302. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Tang, J.; Liu, Z.; Li, M.; Zhang, T.; Zhang, X.; Ding, K. Discovery of new chemical entities as potential leads against Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett. 2016, 26, 5916–5919. [Google Scholar] [CrossRef] [PubMed]
- Nayak, N.; Ramprasad, J.; Dalimba, U. Synthesis and antitubercular and antibacterial activity of some active fluorine containing quinoline–pyrazole hybrid derivatives. J. Fluor. Chem. 2016, 183, 59–68. [Google Scholar] [CrossRef]
- Ramesh, R.; Shingare, R.D.; Kumar, V.; Anand, A.; Swetha, B.; Veeraraghavan, S.; Viswanadha, S.; Ummanni, R.; Gokhale, R.; Reddy, D.S. Repurposing of a drug scaffold: Identification of novel sila analogues of rimonabant as potent antitubercular agents. Eur. J. Med. Chem. 2016, 122, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Amaroju, S.; Kalaga, M.N.; Srinivasarao, S.; Napiorkowska, A.; Augustynowicz-Kopec, E.; Murugesan, S.; Chander, S.; Krishnan, R.; Chandra Sekhar, K.V.G. Identification and development of pyrazolo[4,3-c]pyridine carboxamides as Mycobacterium tuberculosis pantothenate synthetase inhibitors. New J. Chem. 2017, 41, 347–357. [Google Scholar] [CrossRef]
- Angelova, V.T.; Valcheva, V.; Pencheva, T.; Voynikov, Y.; Vassilev, N.; Mihaylova, R.; Momekov, G.; Shivachev, B. Synthesis, antimycobacterial activity and docking study of 2-aroyl-[1]benzopyrano[4,3-c]pyrazol-4(1H)-one derivatives and related hydrazide-hydrazones. Bioorg. Med. Chem. Lett. 2017, 27, 2996–3002. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Preiss, L.; Wang, B.; Fu, L.; Wen, H.; Zhang, X.; Cui, H.; Meier, T.; Yin, D. Structural Simplification of Bedaquiline: The Discovery of 3-(4-(N,N-Dimethylaminomethyl)phenyl) quinoline-Derived Antitubercular Lead Compounds. Chem. Med. Chem. 2017, 12, 106–119. [Google Scholar] [CrossRef] [PubMed]
- Aragade, P.; Palkar, M.; Ronad, P.; Satyanarayana, D. Coumarinyl pyrazole derivatives of INH: Promising antimycobacterial agents. Med. Chem. Res. 2013, 22, 2279–2283. [Google Scholar] [CrossRef]
- Gajbhiye, J.; More, N.; Patil, M.D.; Ummanni, R.; Kotapalli, S.; Yogeeswari, P.; Sriram, D.; Masand, V. Discovery of Rimonabant and its potential analogues as anti-TB drug candidates. Med. Chem. Res. 2015, 24, 2960–2971. [Google Scholar] [CrossRef]
- Nayak, N.; Ramprasad, J.; Dalimba, U. Design, Synthesis, and Biological Evaluation of New 8-Trifluoromethylquinoline Containing Pyrazole-3-carboxamide Derivatives. J. Heterocycl. Chem. 2017, 54, 171–182. [Google Scholar] [CrossRef]
- Trivedi, A.R.; Dholariya, B.H.; Vakhariya, C.P.; Dodiya, D.K.; Ram, H.K.; Kataria, V.B.; Siddiqui, A.B.; Shah, V.H. Synthesis and anti-tubercular evaluation of some novel pyrazolo[3,4-d]pyrimidine derivatives. Med. Chem. Res. 2012, 21, 1887–1891. [Google Scholar] [CrossRef]
- Labana, B.M.; Brahmbhatt, G.C.; Sutariya, T.R.; Parmar, N.J.; Padrón, J.M.; Kant, R.; Gupta, V.K. Efficient synthesis and biological evaluation of new benzopyran-annulated pyrano[2,3-c]pyrazole derivatives. Mol. Divers. 2017, 21, 339–354. [Google Scholar] [CrossRef] [PubMed]
- Encinas, L.; O’Keefe, H.; Neu, M.; Remuiñán, M.J.; Patel, A.M.; Guardia, A.; Davie, C.P.; Pérez-Macías, N.; Yang, H.; Convery, M.A. Encoded library technology as a source of hits for the discovery and lead optimization of a potent and selective class of bactericidal direct inhibitors of Mycobacterium tuberculosis InhA. J. Med. Chem. 2014, 57, 1276–1288. [Google Scholar] [CrossRef] [PubMed]
- Rachakonda, V.; Alla, M.; Kotipalli, S.S.; Ummani, R. Design, diversity-oriented synthesis and structure activity relationship studies of quinolinyl heterocycles as antimycobacterial agents. Eur. J. Med. Chem. 2013, 70, 536–547. [Google Scholar] [CrossRef] [PubMed]
- Pandit, U.; Dodiya, A. Synthesis and antitubercular activity of novel pyrazole–quinazolinone hybrid analogs. Med. Chem. Res. 2013, 22, 3364–3371. [Google Scholar] [CrossRef]
- Mistry, P.T.; Kamdar, N.R.; Haveliwala, D.D.; Patel, S.K. Synthesis, characterization, and in vitro biological studies of some novel pyran fused pyrimidone derivatives. J. Heterocycl. Chem. 2012, 49, 349–357. [Google Scholar] [CrossRef]
- Naik, M.; Humnabadkar, V.; Tantry, S.J.; Panda, M.; Narayan, A.; Guptha, S.; Panduga, V.; Manjrekar, P.; Jena, L.K.; Koushik, K. 4-aminoquinolone piperidine amides: Noncovalent inhibitors of DprE1 with long residence time and potent antimycobacterial activity. J. Med. Chem. 2014, 57, 5419–5434. [Google Scholar] [CrossRef] [PubMed]
- Manfredini, S.; Bazzanini, R.; Baraldi, P.G.; Guarneri, M.; Simoni, D.; Marongiu, M.E.; Pani, A.; La Colla, P.; Tramontano, E. Pyrazole-related nucleosides. Synthesis and antiviral/antitumor activity of some substituted pyrazole and pyrazolo[4,3-d]-1,2,3-triazin-4-one nucleosides. J. Med. Chem. 1992, 35, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Schneller, S.W.; Ikeda, S.; Snoeck, R.; Andrei, G.; Balzarini, J.; De Clercq, E. Synthesis and antiviral activity of 5′-deoxypyrazofurin. J. Med. Chem. 1993, 36, 3727–3730. [Google Scholar] [CrossRef] [PubMed]
- Storer, R.; Ashton, C.J.; Baxter, A.D.; Hann, M.M.; Marr, C.L.P.; Mason, A.M.; Mo, C.-L.; Myers, P.L.; Noble, S.A.; Penn, C.R.; et al. The Synthesis and Antiviral Activity of 4-Fluoro-1-β-d-ribofuranosyl-1H-pyrazole-3-carboxamide. Nucleosides Nucleotides 1999, 18, 203–216. [Google Scholar] [CrossRef] [PubMed]
- Genin, M.J.; Biles, C.; Keiser, B.J.; Poppe, S.M.; Swaney, S.M.; Tarpley, W.G.; Yagi, Y.; Romero, D.L. Novel 1,5-Diphenylpyrazole Nonnucleoside HIV-1 Reverse Transcriptase Inhibitors with Enhanced Activity versus the Delavirdine-Resistant P236L Mutant: Lead Identification and SAR of 3- and 4-Substituted Derivatives. J. Med. Chem. 2000, 43, 1034–1040. [Google Scholar] [CrossRef] [PubMed]
- Rostom, S.A.F.; Shalaby, M.A.; El-Demellawy, M.A. Polysubstituted pyrazoles, part 5. Synthesis of new 1-(4-chlorophenyl)-4-hydroxy-1H-pyrazole-3-carboxylic acid hydrazide analogs and some derived ring systems. A novel class of potential antitumor and anti-HCV agents. Eur. J. Med. Chem. 2003, 38, 959–974. [Google Scholar] [CrossRef] [PubMed]
- Shamroukh, A.H.; Zaki, M.E.; Morsy, E.M.; Abdel-Motti, F.M.; Abdel-Megeid, F.M. Synthesis of Pyrazolo [4′,3′:5,6] pyrano[2,3-d]pyrimidine Derivatives for Antiviral Evaluation. Arch. Pharm. 2007, 340, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Sun, A.; Chandrakumar, N.; Yoon, J.-J.; Plemper, R.K.; Snyder, J.P. Non-nucleoside inhibitors of the measles virus RNA-dependent RNA polymerase complex activity: Synthesis and in vitro evaluation. Bioorg. Med. Chem. Lett. 2007, 17, 5199–5203. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, G.; Chen, Z.; Cai, X.-J.; Song, B.-A.; Bhadury, P.S.; Yang, S.; Jin, L.-H.; Xue, W.; Hu, D.-Y.; Zeng, S. Synthesis and antiviral activity of novel pyrazole derivatives containing oxime esters group. Bioorg. Med. Chem. 2008, 16, 9699–9707. [Google Scholar] [CrossRef] [PubMed]
- Rashad, A.E.; Hegab, M.I.; Abdel-Megeid, R.E.; Micky, J.A.; Abdel-Megeid, F.M. Synthesis and antiviral evaluation of some new pyrazole and fused pyrazolopyrimidine derivatives. Bioorg. Med. Chem. 2008, 16, 7102–7106. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.-F.; Zhang, H.-S.; Wang, Y.-H.; Sanchez, T.; Zheng, Y.-T.; Neamati, N.; Long, Y.-Q. Efficient synthesis and utilization of phenyl-substituted heteroaromatic carboxylic acids as aryl diketo acid isosteres in the design of novel HIV-1 integrase inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 4521–4524. [Google Scholar] [CrossRef] [PubMed]
- Mowbray, C.E.; Burt, C.; Corbau, R.; Gayton, S.; Hawes, M.; Perros, M.; Tran, I.; Price, D.A.; Quinton, F.J.; Selby, M.D. Pyrazole NNRTIs 4: Selection of UK-453,061 (lersivirine) as a development candidate. Bioorg. Med. Chem. Lett. 2009, 19, 5857–5860. [Google Scholar] [CrossRef] [PubMed]
- Mowbray, C.E.; Burt, C.; Corbau, R.; Perros, M.; Tran, I.; Stupple, P.A.; Webster, R.; Wood, A. Pyrazole NNRTIs 1: Design and initial optimisation of a novel template. Bioorg. Med. Chem. Lett. 2009, 19, 5599–5602. [Google Scholar] [CrossRef] [PubMed]
- Sidique, S.; Shiryaev, S.A.; Ratnikov, B.I.; Herath, A.; Su, Y.; Strongin, A.Y.; Cosford, N.D. Structure–activity relationship and improved hydrolytic stability of pyrazole derivatives that are allosteric inhibitors of West Nile Virus NS2B-NS3 proteinase. Bioorg. Med. Chem. Lett. 2009, 19, 5773–5777. [Google Scholar] [CrossRef] [PubMed]
- Sujatha, K.; Shanthi, G.; Selvam, N.P.; Manoharan, S.; Perumal, P.T.; Rajendran, M. Synthesis and antiviral activity of 4,4′-(arylmethylene)bis(1H-pyrazol-5-ols) against peste des petits ruminant virus (PPRV). Bioorg. Med. Chem. Lett. 2009, 19, 4501–4503. [Google Scholar] [CrossRef] [PubMed]
- Riyadh, S.M.; Farghaly, T.A.; Abdallah, M.A.; Abdalla, M.M.; El-Aziz, M.R.A. New pyrazoles incorporating pyrazolylpyrazole moiety: Synthesis, anti-HCV and antitumor activity. Eur. J. Med. Chem. 2010, 45, 1042–1050. [Google Scholar] [CrossRef] [PubMed]
- Shih, S.-R.; Chu, T.-Y.; Reddy, G.R.; Tseng, S.-N.; Chen, H.-L.; Tang, W.-F.; Wu, M.-S.; Yeh, J.-Y.; Chao, Y.-S.; Hsu, J.T. Pyrazole compound BPR1P0034 with potent and selective anti-influenza virus activity. J. Biomed. Sci. 2010, 17, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Su, D.-S.; Lim, J.J.; Tinney, E.; Tucker, T.J.; Saggar, S.; Sisko, J.T.; Wan, B.-L.; Young, M.B.; Anderson, K.D.; Rudd, D. Biaryl ethers as potent allosteric inhibitors of reverse transcriptase and its key mutant viruses: Aryl substituted pyrazole as a surrogate for the pyrazolopyridine motif. Bioorg. Med. Chem. Lett. 2010, 20, 4328–4332. [Google Scholar] [CrossRef] [PubMed]
- Dawood, K.M.; Abdel-Gawad, H.; Mohamed, H.A.; Badria, F.A. Synthesis, anti-HSV-1, and cytotoxic activities of some new pyrazole-and isoxazole-based heterocycles. Med. Chem. Res. 2011, 20, 912–919. [Google Scholar] [CrossRef]
- Wu, L.; Song, B.; Bhadury, P.S.; Yang, S.; Hu, D.; Jin, L. Synthesis and antiviral activity of novel pyrazole amides containing α-aminophosphonate moiety. J. Heterocycl. Chem. 2011, 48, 389–396. [Google Scholar] [CrossRef]
- Di Francesco, M.E.; Avolio, S.; Pompei, M.; Pesci, S.; Monteagudo, E.; Pucci, V.; Giuliano, C.; Fiore, F.; Rowley, M.; Summa, V. Synthesis and antiviral properties of novel 7-heterocyclic substituted 7-deaza-adenine nucleoside inhibitors of Hepatitis C NS5B polymerase. Bioorg. Med. Chem. 2012, 20, 4801–4811. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, D.; Park, C.; So, W.; Jo, M.; Ok, T.; Kwon, J.; Kong, S.; Jo, S.; Kim, Y. Discovery of phenylaminopyridine derivatives as novel HIV-1 non-nucleoside reverse transcriptase inhibitors. ACS Med. Chem. Lett. 2012, 3, 678–682. [Google Scholar] [CrossRef] [PubMed]
- Ndungu, J.M.; Krumm, S.A.; Yan, D.; Arrendale, R.F.; Reddy, G.P.; Evers, T.; Howard, R.; Natchus, M.G.; Saindane, M.T.; Liotta, D.C. Non-nucleoside inhibitors of the measles virus RNA-dependent RNA polymerase: Synthesis, structure-activity relationships, and pharmacokinetics. J. Med. Chem. 2012, 55, 4220–4230. [Google Scholar] [CrossRef] [PubMed]
- Tantawy, A.S.; Nasr, M.N.; El-Sayed, M.A.; Tawfik, S.S. Synthesis and antiviral activity of new 3-methyl-1,5-diphenyl-1H-pyrazole derivatives. Med. Chem. Res. 2012, 21, 4139–4149. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Xu, G.F.; Fan, Z.J.; Wang, D.Q.; Yang, X.L.; Yuan, D.K. Synthesis and anti-TMV activity of novel N-(3-alkyl-1H-pyrazol-4-yl)-3-alkyl-4-substituted-1H-pyrazole-5-carboxamides. Chin. Chem. Lett. 2012, 23, 669–672. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Kim, H.-Y.; Park, D.-S.; Choi, J.; Baek, S.M.; Kim, K.; Kim, S.; Seong, S.; Choi, I.; Lee, H.-G. Identification of a series of 1,3,4-trisubstituted pyrazoles as novel hepatitis C virus entry inhibitors. Bioorg. Med. Chem. Lett. 2013, 23, 6467–6473. [Google Scholar] [CrossRef] [PubMed]
- Mizuhara, T.; Kato, T.; Hirai, A.; Kurihara, H.; Shimada, Y.; Taniguchi, M.; Maeta, H.; Togami, H.; Shimura, K.; Matsuoka, M. Structure-activity relationship study of phenylpyrazole derivatives as a novel class of anti-HIV agents. Bioorg. Med. Chem. Lett. 2013, 23, 4557–4561. [Google Scholar] [CrossRef] [PubMed]
- Moreau, B.; O’Meara, J.A.; Bordeleau, J.E.; Garneau, M.; Godbout, C.; Gorys, V.; Leblanc, M.L.; Villemure, E.; White, P.W.; Llinàs-Brunet, M. Discovery of hepatitis C virus NS3-4A protease inhibitors with improved barrier to resistance and favorable liver distribution. J. Med. Chem. 2013, 57, 1770–1776. [Google Scholar] [CrossRef] [PubMed]
- Bhadoriya, K.S.; Sharma, M.C.; Jain, S.V. 2,4-Dihydropyrano[2,3-c]pyrazole: Discovery of new lead as through pharmacophore modelling, atom-based 3D-QSAR, virtual screening and docking strategies for improved anti-HIV-1 chemotherapy. J. Taibah Univ. Sci. 2015, 9, 521–530. [Google Scholar] [CrossRef]
- Fioravanti, R.; Desideri, N.; Biava, M.; Droghini, P.; Atzori, E.M.; Ibba, C.; Collu, G.; Sanna, G.; Delogu, I.; Loddo, R. N-((1,3-Diphenyl-1H-pyrazol-4-yl)methyl) anilines: A novel class of anti-RSV agents. Bioorg. Med. Chem. Lett. 2015, 25, 2401–2404. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Guo, Y.-C.; Wang, D.-D.; Dai, X.-J.; Wu, F.-J.; Liu, H.-F.; Dai, G.-F.; Tao, J.-C. Novel pyrazole fused heterocyclic ligands: Synthesis, characterization, DNA binding/cleavage activity and anti-BVDV activity. Chin. Chem. Lett. 2015, 26, 534–538. [Google Scholar] [CrossRef]
- Manvar, D.; Pelliccia, S.; La Regina, G.; Famiglini, V.; Coluccia, A.; Ruggieri, A.; Anticoli, S.; Lee, J.-C.; Basu, A.; Cevik, O. New 1-phenyl-5-(1H-pyrrol-1-yl)-1H-pyrazole-3-carboxamides inhibit hepatitis C virus replication via suppression of cyclooxygenase-2. Eur. J. Med. Chem. 2015, 90, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Chuang, H.; Huang, L.-C.S.; Kapoor, M.; Liao, Y.-J.; Yang, C.-L.; Chang, C.-C.; Wu, C.-Y.; Hwu, J.R.; Huang, T.-J.; Hsu, M.-H. Design and synthesis of pyridine-pyrazole-sulfonate derivatives as potential anti-HBV agents. MedChemComm 2016, 7, 832–836. [Google Scholar] [CrossRef]
- Ouyang, G.; Cai, X.-J.; Chen, Z.; Song, B.-A.; Bhadury, P.S.; Yang, S.; Jin, L.-H.; Xue, W.; Hu, D.-Y.; Zeng, S. Synthesis and Antiviral Activities of Pyrazole Derivatives Containing an Oxime Moiety. J. Agric. Food Chem. 2008, 56, 10160–10167. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Bai, F.; Liu, N.; Liang, X.; Zhan, P.; Ma, C.; Jiang, X.; Liu, X. Design, synthesis and evaluation of pyrazole derivatives as non-nucleoside hepatitis B virus inhibitors. Eur. J. Med. Chem. 2016, 123, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.-N.; Luo, R.-H.; Zhou, Y.; Zhang, X.-J.; Li, J.; Yang, L.-M.; Zheng, Y.-T.; Liu, H. Synthesis and Anti-HIV-1 Activity Evaluation for Novel 3a,6a-Dihydro-1H-pyrrolo[3,4-c]pyrazole-4,6-dione Derivatives. Molecules 2016, 21, 1198. [Google Scholar] [CrossRef] [PubMed]
- Johns, B.A.; Gudmundsson, K.S.; Allen, S.H. Pyrazolo[1,5-a]pyridine antiherpetics: Effects of the C3 substituent on antiviral activity. Bioorg. Med. Chem. Lett. 2007, 17, 2858–2862. [Google Scholar] [CrossRef] [PubMed]
- Chimenti, F.; Fioravanti, R.; Bolasco, A.; Manna, F.; Chimenti, P.; Secci, D.; Befani, O.; Turini, P.; Ortuso, F.; Alcaro, S. Monoamine Oxidase Isoform-Dependent Tautomeric Influence in the Recognition of 3,5-Diaryl Pyrazole Inhibitors. J. Med. Chem. 2007, 50, 425–428. [Google Scholar] [CrossRef] [PubMed]
- Kuduk, S.D.; Di Marco, C.N.; Cofre, V.; Pitts, D.R.; Ray, W.J.; Ma, L.; Wittmann, M.; Veng, L.; Seager, M.A.; Koeplinger, K. N-Heterocyclic derived M 1 positive allosteric modulators. Bioorg. Med. Chem. Lett. 2010, 20, 1334–1337. [Google Scholar] [CrossRef] [PubMed]
- Malamas, M.S.; Erdei, J.; Gunawan, I.; Barnes, K.; Hui, Y.; Johnson, M.; Robichaud, A.; Zhou, P.; Yan, Y.; Solvibile, W. New pyrazolyl and thienyl aminohydantoins as potent BACE1 inhibitors: Exploring the S2′ region. Bioorg. Med. Chem. Lett. 2011, 21, 5164–5170. [Google Scholar] [CrossRef] [PubMed]
- Probst, G.; Aubele, D.L.; Bowers, S.; Dressen, D.; Garofalo, A.W.; Hom, R.K.; Konradi, A.W.; Marugg, J.L.; Mattson, M.N.; Neitzel, M.L. Discovery of (R)-4-Cyclopropyl-7,8-difluoro-5-(4-(trifluoromethyl)phenylsulfonyl)-4,5-dihydro-1H-pyrazolo[4,3-c]quinoline (ELND006) and (R)-4-Cyclopropyl-8-fluoro-5-(6-(trifluoromethyl)pyridin-3-ylsulfonyl)-4,5-dihydro-2H-pyrazolo[4,3-c]quinoline (ELND007): Metabolically Stable γ-Secretase Inhibitors that Selectively Inhibit the Production of Amyloid-β over Notch. J. Med. Chem. 2013, 56, 5261–5274. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Xu, L.; Chen, W.; Zhu, Y.; Chen, T.; Fu, Y.; Li, L.; Ma, L.; Xiong, B.; Wang, X. Discovery of pyrazole as C-terminus of selective BACE1 inhibitors. Eur. J. Med. Chem. 2013, 68, 270–283. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.T.; Kim, K.; Choi, G.-I.; An, H.; Son, D.; Kim, H.; Ha, H.-J.; Son, J.-H.; Chung, S.-J.; Park, H.-J. Pyrazole-5-carboxamides, novel inhibitors of receptor for advanced glycation end products (RAGE). Eur. J. Med. Chem. 2014, 79, 128–142. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.; Chioua, M.; Samadi, A.; Carreiras, M.C.; Jimeno, M.-L.; Mendes, E.; de los Ríos, C.; Romero, A.; Villarroya, M.; López, M.G. Synthesis and pharmacological assessment of diversely substituted pyrazolo[3,4-b]quinoline, and benzo[b]pyrazolo[4,3-g][1,8]naphthyridine derivatives. Eur. J. Med. Chem. 2011, 46, 4676–4681. [Google Scholar] [CrossRef] [PubMed]
- Khoobi, M.; Ghanoni, F.; Nadri, H.; Moradi, A.; Hamedani, M.P.; Moghadam, F.H.; Emami, S.; Vosooghi, M.; Zadmard, R.; Foroumadi, A. New tetracyclic tacrine analogs containing pyrano[2,3-c]pyrazole: Efficient synthesis, biological assessment and docking simulation study. Eur. J. Med. Chem. 2015, 89, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Zanaletti, R.; Bettinetti, L.; Castaldo, C.; Ceccarelli, I.; Cocconcelli, G.; Comery, T.A.; Dunlop, J.; Genesio, E.; Ghiron, C.; Haydar, S.N. N-[5-(5-Fluoropyridin-3-yl)-1H-pyrazol-3-yl]-4-piperidin-1-ylbutyramide (SEN78702, WYE-308775): A Medicinal Chemistry Effort toward an α7 Nicotinic Acetylcholine Receptor Agonist Preclinical Candidate. J. Med. Chem. 2012, 55, 10277–10281. [Google Scholar] [CrossRef] [PubMed]
- Zanaletti, R.; Bettinetti, L.; Castaldo, C.; Cocconcelli, G.; Comery, T.; Dunlop, J.; Gaviraghi, G.; Ghiron, C.; Haydar, S.N.; Jow, F. Discovery of a novel alpha-7 nicotinic acetylcholine receptor agonist series and characterization of the potent, selective, and orally efficacious agonist 5-(4-acetyl[1,4]diazepan-1-yl)pentanoic acid[5-(4-methoxyphenyl)-1H-pyrazol-3-yl] amide (SEN15924, WAY-361789). J. Med. Chem. 2012, 55, 4806–4823. [Google Scholar] [CrossRef] [PubMed]
- Nencini, A.; Castaldo, C.; Comery, T.A.; Dunlop, J.; Genesio, E.; Ghiron, C.; Haydar, S.; Maccari, L.; Micco, I.; Turlizzi, E.; et al. Design and synthesis of a hybrid series of potent and selective agonists of α7 nicotinic acetylcholine receptor. Eur. J. Med. Chem. 2014, 78, 401–418. [Google Scholar] [CrossRef] [PubMed]
- Ernst, G.; Frietze, W.; Simpson, T. Novel Pyrazole Derivatives and Their Use as Modulators of Nicotinic Acetylcholine Receptors. Google Patents. 2008. Available online: https://www.google.com/patents/US20080081833 (accessed on 2 October 2017).
- Thuring, J.W.J.F.; MacDonald, G.J.; Zhuang, W. Trisubstituted Pyrazoles as Acetylcholine Receptor Modulators. Google Patents. 2014. Available online: https://www.google.com/patents/US8779158 (accessed on 2 October 2017).
- Cottineau, B.; Toto, P.; Marot, C.; Pipaud, A.; Chenault, J. Synthesis and hypoglycemic evaluation of substituted pyrazole-4-carboxylic acids. Bioorg. Med. Chem. Lett. 2002, 12, 2105–2108. [Google Scholar] [CrossRef]
- Sharon, A.; Pratap, R.; Tiwari, P.; Srivastava, A.; Maulik, P.R.; Ram, V.J. Synthesis and in vivo antihyperglycemic activity of 5-(1H-pyrazol-3-yl)methyl-1H-tetrazoles. Bioorg. Med. Chem. Lett. 2005, 15, 2115–2117. [Google Scholar] [CrossRef] [PubMed]
- Humphries, P.S.; Lafontaine, J.A.; Agree, C.S.; Alexander, D.; Chen, P.; Do, Q.-Q.T.; Li, L.Y.; Lunney, E.A.; Rajapakse, R.J.; Siegel, K. Synthesis and SAR of 4-substituted-2-aminopyrimidines as novel c-Jun N-terminal kinase (JNK) inhibitors. Bioorg. Med. Chem. Lett. 2009, 19, 2099–2102. [Google Scholar] [CrossRef] [PubMed]
- Brigance, R.P.; Meng, W.; Fura, A.; Harrity, T.; Wang, A.; Zahler, R.; Kirby, M.S.; Hamann, L.G. Synthesis and SAR of azolopyrimidines as potent and selective dipeptidyl peptidase-4 (DPP4) inhibitors for type 2 diabetes. Bioorg. Med. Chem. Lett. 2010, 20, 4395–4398. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Park, Y.; Lee, H.S.; Yang, Y.; Yoon, S. 1,3-Diphenyl-1H-pyrazole derivatives as a new series of potent PPARγ partial agonists. Bioorg. Med. Chem. 2010, 18, 8315–8323. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.-M.; Brady, E.J.; Candelore, M.R.; Dallas-Yang, Q.; Ding, V.D.H.; Feeney, W.P.; Jiang, G.; McCann, M.E.; Mock, S.; Qureshi, S.A.; et al. Discovery of novel, potent, selective, and orally active human glucagon receptor antagonists containing a pyrazole core. Bioorg. Med. Chem. Lett. 2011, 21, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Fushimi, N.; Fujikura, H.; Shiohara, H.; Teranishi, H.; Shimizu, K.; Yonekubo, S.; Ohno, K.; Miyagi, T.; Itoh, F.; Shibazaki, T. Structure-activity relationship studies of 4-benzyl-1H-pyrazol-3-ylβ-d-glucopyranoside derivatives as potent and selective sodium glucose co-transporter 1 (SGLT1) inhibitors with therapeutic activity on postprandial hyperglycemia. Bioorg. Med. Chem. 2012, 20, 6598–6612. [Google Scholar] [CrossRef] [PubMed]
- Rikimaru, K.; Wakabayashi, T.; Abe, H.; Imoto, H.; Maekawa, T.; Ujikawa, O.; Murase, K.; Matsuo, T.; Matsumoto, M.; Nomura, C. A new class of non-thiazolidinedione, non-carboxylic-acid-based highly selective peroxisome proliferator-activated receptor (PPAR) γ agonists: Design and synthesis of benzylpyrazole acylsulfonamides. Bioorg. Med. Chem. 2012, 20, 714–733. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Guo, J.; Candelore, M.R.; Liang, R.; Miller, C.; Dallas-Yang, Q.; Jiang, G.; McCann, P.E.; Qureshi, S.A.; Tong, X. Discovery of a Novel Glucagon Receptor Antagonist N-[(4-{(1S)-1-[3-(3,5-Dichlorophenyl)-5-(6-methoxynaphthalen-2-yl)-1H-pyrazol-1-yl]ethyl}phenyl)carbonyl]-β-alanine (MK-0893) for the Treatment of Type II Diabetes. J. Med. Chem. 2012, 55, 6137–6148. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Akahoshi, F.; Sakashita, H.; Kitajima, H.; Nakamura, M.; Sonda, S.; Takeuchi, M.; Tanaka, Y.; Ueda, N.; Sekiguchi, S. Discovery and preclinical profile of teneligliptin (3-[(2S,4S)-4-[4-(3-methyl-1-phenyl-1H-pyrazol-5-yl)piperazin-1-yl]pyrrolidin-2-ylcarbonyl]thiazolidine): A highly potent, selective, long-lasting and orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. Bioorg. Med. Chem. 2012, 20, 5705–5719. [Google Scholar] [CrossRef] [PubMed]
- Futatsugi, K.; Mascitti, V.; Guimarães, C.R.; Morishita, N.; Cai, C.; DeNinno, M.P.; Gao, H.; Hamilton, M.D.; Hank, R.; Harris, A.R. From partial to full agonism: Identification of a novel 2,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole as a full agonist of the human GPR119 receptor. Bioorg. Med. Chem. Lett. 2013, 23, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Griffith, D.A.; Dow, R.L.; Huard, K.; Edmonds, D.J.; Bagley, S.W.; Polivkova, J.; Zeng, D.; Garcia-Irizarry, C.N.; Southers, J.A.; Esler, W. Spirolactam-based acetyl-CoA carboxylase inhibitors: Toward improved metabolic stability of a chromanone lead structure. J. Med. Chem. 2013, 56, 7110–7119. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Vázquez, E.; Aguayo-Ortiz, R.; Ramírez-Espinosa, J.J.; Estrada-Soto, S.; Hernández-Luis, F. Synthesis, hypoglycemic activity and molecular modeling studies of pyrazole-3-carbohydrazides designed by a CoMFA model. Eur. J. Med. Chem. 2013, 69, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Toda, N.; Hao, X.; Ogawa, Y.; Oda, K.; Yu, M.; Fu, Z.; Chen, Y.; Kim, Y.; Lizarzaburu, M.; Lively, S. Potent and orally bioavailable GPR142 agonists as novel insulin secretagogues for the treatment of type 2 diabetes. ACS Med. Chem. Lett. 2013, 4, 790–794. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Lizarzaburu, M.; Motani, A.; Fu, Z.; Du, X.; Liu, J.; Jiao, X.; Lai, S.; Fan, P.; Fu, A. Aminopyrazole–Phenylalanine Based GPR142 Agonists: Discovery of Tool Compound and in Vivo Efficacy Studies. ACS Med. Chem. Lett. 2013, 4, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Bhosle, M.R.; Mali, J.R.; Pal, S.; Srivastava, A.K.; Mane, R.A. Synthesis and antihyperglycemic evaluation of new 2-hydrazolyl-4-thiazolidinone-5-carboxylic acids having pyrazolyl pharmacophores. Bioorg. Med. Chem. Lett. 2014, 24, 2651–2654. [Google Scholar] [CrossRef] [PubMed]
- López-Viseras, M.E.; Fernández, B.; Hilfiker, S.; González, C.S.; González, J.L.; Calahorro, A.J.; Colacio, E.; Rodríguez-Diéguez, A. In vivo potential antidiabetic activity of a novel zinc coordination compound based on 3-carboxy-pyrazole. J. Inorg. Biochem. 2014, 131, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Kenchappa, R.; Bodke, Y.D.; Chandrashekar, A.; Sindhe, M.A.; Peethambar, S. Synthesis of coumarin derivatives containing pyrazole and indenone rings as potent antioxidant and antihyperglycemic agents. Arab. J. Chem. 2017, 10, S3895–S3906. [Google Scholar] [CrossRef]
- Doddaramappa, S.D.; Lokanatha Rai, K.M.; Srikantamurthy, N.; Chethan, J. Novel 5-functionalized-pyrazoles: Synthesis, characterization and pharmacological screening. Bioorg. Med. Chem. Lett. 2015, 25, 3671–3675. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Vázquez, E.; Salgado-Barrera, S.; Ramírez-Espinosa, J.J.; Estrada-Soto, S.; Hernández-Luis, F. Synthesis and molecular docking of N′-arylidene-5-(4-chlorophenyl)-1-(3,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carbohydrazides as novel hypoglycemic and antioxidant dual agents. Bioorg. Med. Chem. 2016, 24, 2298–2306. [Google Scholar] [CrossRef] [PubMed]
- Kashtoh, H.; Muhammad, M.T.; Khan, J.J.A.; Rasheed, S.; Khan, A.; Perveen, S.; Javaid, K.; Atia tul, W.; Khan, K.M.; Choudhary, M.I. Dihydropyrano[2,3-c]pyrazole: Novel in vitro inhibitors of yeast α-glucosidase. Bioorg. Chem. 2016, 65, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, F.; Naureen, S.; Huma, R.; Shaukat, A.; Al-Rashida, M.; Asif, N.; Ashraf, M.; Munawar, M.A.; Khan, M.A. In search of new α-glucosidase inhibitors: Imidazolylpyrazole derivatives. Bioorg. Chem. 2017, 71, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Vázquez, E.; Ocampo-Montalban, H.; Cerón-Romero, L.; Cruz, M.; Gómez-Zamudio, J.; Hiriart-Valencia, G.; Villalobos-Molina, R.; Flores-Flores, A.; Estrada-Soto, S. Antidiabetic, antidyslipidemic and toxicity profile of ENV-2: A potent pyrazole derivative against diabetes and related diseases. Eur. J. Pharmacol. 2017, 803, 159–166. [Google Scholar] [CrossRef] [PubMed]
- De Mello, H.; Echevarria, A.; Bernardino, A.M.; Canto-Cavalheiro, M.; Leon, L.L. Antileishmanial pyrazolopyridine derivatives: Synthesis and structure-activity relationship analysis. J. Med. Chem. 2004, 47, 5427–5432. [Google Scholar] [CrossRef] [PubMed]
- Bernardino, A.M.R.; Gomes, A.O.; Charret, K.S.; Freitas, A.C.C.; Machado, G.M.C.; Canto-Cavalheiro, M.M.; Leon, L.L.; Amaral, V.F. Synthesis and leishmanicidal activities of 1-(4-X-phenyl)-N′-[(4-Y-phenyl)methylene]-1H-pyrazole-4-carbohydrazides. Eur. J. Med. Chem. 2006, 41, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Dardari, Z.; Lemrani, M.; Sebban, A.; Bahloul, A.; Hassar, M.; Kitane, S.; Berrada, M.; Boudouma, M. Antileishmanial and Antibacterial Activity of a New Pyrazole Derivative Designated 4-[2-(1-(Ethylamino)-2-methyl-propyl) phenyl]-3-(4-methyphenyl)-1-phenylpyrazole. Arch. Pharm. 2006, 339, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, M.S.; Gomes, A.O.; Bernardino, A.M.; Souza, M.C.D.; Khan, M.A.; Brito, M.A.D.; Castro, H.C.; Abreu, P.A.; Rodrigues, C.R.; de Léo, R.M. Synthesis and antileishmanial activity of new 1-aryl-1H-pyrazole-4-carboximidamides derivatives. J. Braz. Chem. Soc. 2011, 22, 352–358. [Google Scholar] [CrossRef]
- Dos Santos, M.S.; Oliveira, M.L.; Bernardino, A.M.; de Léo, R.M.; Amaral, V.F.; de Carvalho, F.T.; Leon, L.L.; Canto-Cavalheiro, M.M. Synthesis and antileishmanial evaluation of 1-aryl-4-(4,5-dihydro-1H-imidazol-2-yl)-1H-pyrazole derivatives. Bioorg. Med. Chem. Lett. 2011, 21, 7451–7454. [Google Scholar] [CrossRef] [PubMed]
- Jacomini, A.P.; Silva, M.J.V.; Silva, R.G.M.; Gonçalves, D.S.; Volpato, H.; Basso, E.A.; Paula, F.R.; Nakamura, C.V.; Sarragiotto, M.H.; Rosa, F.A. Synthesis and evaluation against Leishmania amazonensis of novel pyrazolo[3,4-d]pyridazinone-N-acylhydrazone-(bi)thiophene hybrids. Eur. J. Med. Chem. 2016, 124, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Bekhit, A.A.; Hassan, A.M.M.; Abd El Razik, H.A.; El-Miligy, M.M.M.; El-Agroudy, E.J.; Bekhit, A.E.-D.A. New heterocyclic hybrids of pyrazole and its bioisosteres: Design, synthesis and biological evaluation as dual acting antimalarial-antileishmanial agents. Eur. J. Med. Chem. 2015, 94, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Mowbray, C.E.; Braillard, S.; Speed, W.; Glossop, P.A.; Whitlock, G.A.; Gibson, K.R.; Mills, J.E.J.; Brown, A.D.; Gardner, J.M.F.; Cao, Y.; et al. Novel Amino-pyrazole Ureas with Potent In Vitro and In Vivo Antileishmanial Activity. J. Med. Chem. 2015, 58, 9615–9624. [Google Scholar] [CrossRef] [PubMed]
- Marra, R.; Bernardino, A.; Proux, T.; Charret, K.; Lira, M.-L.; Castro, H.; Souza, A.; Oliveira, C.; Borges, J.; Rodrigues, C.; et al. 4-(1H-Pyrazol-1-yl)Benzenesulfonamide Derivatives: Identifying New Active Antileishmanial Structures for Use against a Neglected Disease. Molecules 2012, 17, 12961–12973. [Google Scholar] [CrossRef] [PubMed]
- Bekhit, A.A.; Haimanot, T.; Hymete, A. Evaluation of some 1H-pyrazole derivatives as a dual acting antimalarial and anti-leishmanial agents. Pak. J. Pharm. Sci. 2014, 27, 1767–1773. [Google Scholar] [PubMed]
- Figarella, K.; Marsiccobetre, S.; Galindo-Castro, I.; Urdaneta, N.; Herrera, J.; Canudas, N.; Galarraga, E. Antileishmanial and antitrypanosomal activity of synthesized hydrazones, pyrazoles, pyrazolo [1,5-a]-pyrimidines and pyrazolo[3,4-b]-pyridine. Curr. Bioact. Compd. 2017, 13. [Google Scholar] [CrossRef]
- Tuha, A.; Bekhit, A.A.; Seid, Y. Screening of some pyrazole derivatives as promising antileishmanial agent. Afr. J. Pharm. Pharmacol. 2017, 11, 32–37. [Google Scholar] [CrossRef]
- Reviriego, F.; Olmo, F.; Navarro, P.; Marín, C.; Ramírez-Macías, I.; García-España, E.; Albelda, M.T.; Gutiérrez-Sánchez, R.; Sánchez-Moreno, M.; Arán, V.J. Simple dialkyl pyrazole-3,5-dicarboxylates show in vitro and in vivo activity against disease-causing trypanosomatids. Parasitology 2017, 144, 1133–1143. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, J.N.; Charris, J.E.; Caparelli, M.; Riggione, F. Synthesis and antimalarial activity of substituted pyrazole derivatives. Arzneimittel-Forschung 2002, 52, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Karmodiya, K.; Surolia, N.; Surolia, A. Synthesis and exploration of novel curcumin analogues as anti-malarial agents. Bioorg. Med. Chem. 2008, 16, 2894–2902. [Google Scholar] [CrossRef] [PubMed]
- González Cabrera, D.; Douelle, F.; Feng, T.-S.; Nchinda, A.T.; Younis, Y.; White, K.L.; Wu, Q.; Ryan, E.; Burrows, J.N.; Waterson, D. Novel orally active antimalarial thiazoles. J. Med. Chem. 2011, 54, 7713–7719. [Google Scholar] [CrossRef] [PubMed]
- Quirante, J.; Ruiz, D.; Gonzalez, A.; López, C.; Cascante, M.; Cortés, R.; Messeguer, R.; Calvis, C.; Baldomà, L.; Pascual, A. Platinum (II) and palladium (II) complexes with (N,N′) and (C,N,N′)–ligands derived from pyrazole as anticancer and antimalarial agents: Synthesis, characterization and in vitro activities. J. Inorg. Biochem. 2011, 105, 1720–1728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Large, J.M.; Osborne, S.A.; Smiljanic-Hurley, E.; Ansell, K.H.; Jones, H.M.; Taylor, D.L.; Clough, B.; Green, J.L.; Holder, A.A. Imidazopyridazines as potent inhibitors of Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1): Preparation and evaluation of pyrazole linked analogues. Bioorg. Med. Chem. Lett. 2013, 23, 6019–6024. [Google Scholar] [CrossRef] [PubMed]
- Balaji, S.N.; Ahsan, M.J.; Jadav, S.S.; Trivedi, V. Molecular modelling, synthesis, and antimalarial potentials of curcumin analogues containing heterocyclic ring. Arab. J. Chem. 2015. [Google Scholar] [CrossRef]
- Niswender, C.M.; Lebois, E.P.; Luo, Q.; Kim, K.; Muchalski, H.; Yin, H.; Conn, P.J.; Lindsley, C.W. Positive allosteric modulators of the metabotropic glutamate receptor subtype 4 (mGluR4): Part I. Discovery of pyrazolo[3,4-d]pyrimidines as novel mGluR4 positive allosteric modulators. Bioorg. Med. Chem. Lett. 2008, 18, 5626–5630. [Google Scholar] [CrossRef] [PubMed]
- Chimenti, F.; Carradori, S.; Secci, D.; Bolasco, A.; Bizzarri, B.; Chimenti, P.; Granese, A.; Yanez, M.; Orallo, F. Synthesis and inhibitory activity against human monoamine oxidase of N1-thiocarbamoyl-3,5-di(hetero)aryl-4,5-dihydro-(1H)-pyrazole derivatives. Eur. J. Med. Chem. 2010, 45, 800–804. [Google Scholar] [CrossRef] [PubMed]
- Maher, P.; Akaishi, T.; Schubert, D.; Abe, K. A pyrazole derivative of curcumin enhances memory. Neurobiol. Aging 2010, 31, 706–709. [Google Scholar] [CrossRef] [PubMed]
- Chan, B.K.; Estrada, A.A.; Chen, H.; Atherall, J.; Baker-Glenn, C.; Beresford, A.; Burdick, D.J.; Chambers, M.; Dominguez, S.L.; Drummond, J. Discovery of a highly selective, brain-penetrant aminopyrazole LRRK2 inhibitor. ACS Med. Chem. Lett. 2012, 4, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, H.N.; Liu, K.G.; Hong, S.-P.; Reitman, M.S.; Uberti, M.A.; Bacolod, M.D.; Cajina, M.; Nattini, M.; Sabio, M.; Doller, D. 4-(1-Phenyl-1H-pyrazol-4-yl) quinolines as novel, selective and brain penetrant metabotropic glutamate receptor 4 positive allosteric modulators. Bioorg. Med. Chem. Lett. 2012, 22, 3235–3239. [Google Scholar] [CrossRef] [PubMed]
- Dore, A.; Asproni, B.; Scampuddu, A.; Pinna, G.A.; Christoffersen, C.T.; Langgård, M.; Kehler, J. Synthesis and SAR study of novel tricyclic pyrazoles as potent phosphodiesterase 10A inhibitors. Eur. J. Med. Chem. 2014, 84, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Estrada, A.A.; Chan, B.K.; Baker-Glenn, C.; Beresford, A.; Burdick, D.J.; Chambers, M.; Chen, H.; Dominguez, S.L.; Dotson, J.; Drummond, J. Discovery of highly potent, selective, and brain-penetrant aminopyrazole leucine-rich repeat kinase 2 (LRRK2) small molecule inhibitors. J. Med. Chem. 2014, 57, 921–936. [Google Scholar] [CrossRef] [PubMed]
- Fujinaga, M.; Yamasaki, T.; Nengaki, N.; Ogawa, M.; Kumata, K.; Shimoda, Y.; Yui, J.; Xie, L.; Zhang, Y.; Kawamura, K.; et al. Radiosynthesis and evaluation of 5-methyl-N-(4-[11C]methylpyrimidin-2-yl)-4-(1H-pyrazol-4-yl)thiazol-2-amine ([11C]ADX88178) as a novel radioligand for imaging of metabotropic glutamate receptor subtype 4 (mGluR4). Bioorg. Med. Chem. Lett. 2016, 26, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Sim, C.; Shin, D.; Suh, E.; Cho, K. Residual and sublethal effects of fenpyroximate and pyridaben on the instantaneous rate of increase of Tetranychus urticae. Crop Prot. 2006, 25, 542–548. [Google Scholar] [CrossRef]
- Selby, T.P.; Lahm, G.P.; Stevenson, T.M.; Hughes, K.A.; Cordova, D.; Annan, I.B. Discovery of cyantraniliprole, a potent and selective anthranilic diamide ryanodine receptor activator with cross-spectrum insecticidal activity. Bioorg. Med. Chem. Lett. 2013, 23, 6341–6345. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Xu, M.; Cheng, Y.; Wu, H.; Luo, Y.; Li, B. Synthesis and acaricidal activity of cyenopyrafen and its geometric isomer. Arkivoc 2012, 6, 26–34. [Google Scholar] [CrossRef]
- Marcic, D. Sublethal effects of tebufenpyrad on the eggs and immatures of two-spotted spider mite, Tetranychus urticae. Exp. Appl. Acarol. 2005, 36, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Nonaka, N. Tolfenpyrad—A New Insecticide with Wide Spectrum and Unique Action. Agrochem. Jpn. 2003, 83, 17–19. [Google Scholar]
- Finkelstein, B.L.; Strock, C.J. Synthesis and Insecticidal Activity of Novel Pyrazole Methanesulfonates. Pest. Sci. 1997, 50, 324–328. [Google Scholar] [CrossRef]
- Mao, M.; Li, Y.; Liu, Q.; Zhou, Y.; Zhang, X.; Xiong, L. Synthesis and insecticidal evaluation of novel N-pyridylpyrazolecarboxamides containing cyano substituent in the ortho-position. Bioorg. Med. Chem. Lett. 2013, 23, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Song, B.A.; Hu, D.Y.; Yue, M.; Yang, S. Design, synthesis and insecticidal activities of novel pyrazole amides containing hydrazone substructures. Pest. Manag. Sci. 2012, 68, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Xiao, Y.-S.; Li, Z.; Xu, X.-Y.; Qian, X.-H. The thiazoylmethoxy modification on pyrazole oximes: Synthesis and insecticidal biological evaluation beyond acaricidal activity. Chin. Chem. Lett. 2014, 25, 1014–1016. [Google Scholar] [CrossRef]
- Song, H.; Liu, Y.; Xiong, L.; Li, Y.; Yang, N.; Wang, Q. Design, synthesis, and insecticidal activity of novel pyrazole derivatives containing α-hydroxymethyl-N-benzyl carboxamide, α-chloromethyl-N-benzyl carboxamide, and 4,5-dihydrooxazole moieties. J. Agric. Food. Chem. 2012, 60, 1470–1479. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Pei, J.; Ning, Y.; Liu, M.; Shan, P.; Liu, J. Synthesis and insecticidal activities of novel pyrazole oxime ether derivatives with different substituted pyridyl rings. Pest. Manag. Sci. 2014, 70, 1207–1214. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.-J.; Li, Y.-H.; Zhao, Q.-F.; Zhang, T.; Xie, R.-L.; Mei, X.-D. Synthesis and herbicidal activity of novel N-(2,2,2)-trifluoroethylpyrazole derivatives. J. Agric. Food Chem. 2010, 58, 4356–4360. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Chen, J.; Li, H.; Dai, B.; He, H.; Fang, Y. Synthesis and Bioactivities of Novel Pyrazole Oxime Derivatives Containing a 5-Trifluoromethylpyridyl Moiety. Molecules 2016, 21, 276. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Liu, C.-L.; Yang, J.-C.; Zhang, J.-B.; Li, Z.-N.; Zhang, H. Synthesis and biological activity of new (E)-α-(methoxyimino)benzeneacetate derivatives containing a substituted pyrazole ring. J. Agric. Food Chem. 2009, 58, 2664–2667. [Google Scholar] [CrossRef] [PubMed]
- Fustero, S.; Román, R.; Sanz-Cervera, J.F.; Simón-Fuentes, A.; Bueno, J.; Villanova, S. Synthesis of new fluorinated tebufenpyrad analogs with acaricidal activity through regioselective pyrazole formation. J. Org. Chem. 2008, 73, 8545–8552. [Google Scholar] [CrossRef] [PubMed]
- Vicentini, C.B.; Mares, D.; Tartari, A.; Manfrini, M.; Forlani, G. Synthesis of pyrazole derivatives and their evaluation as photosynthetic electron transport inhibitors. J. Agric. Food Chem. 2004, 52, 1898–1906. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Li, Y.; Xiong, L.; Wang, Q. Design, synthesis and insecticidal activity of novel phenylpyrazoles containing a 2,2,2-trichloro-1-alkoxyethyl moiety. J. Agric. Food Chem. 2010, 58, 4992–4998. [Google Scholar] [CrossRef] [PubMed]
Starting Compound | R | R1 | Yields of 51 (%) |
---|---|---|---|
50a | (CH2)2Ph | Me | 81 |
(CH2)2Ph | t-Bu | 78 | |
50b | iPr | Me | 84 |
iPr | t-Bu | 86 | |
50c | t-Bu | Me | 72 |
t-Bu | t-Bu | 86 |
Starting Compound | R | R1 | Yields of 54 (%) | Ratio 54:53 |
---|---|---|---|---|
50d | (CH2)2Ph | Me | 81 | 1:0 |
(CH2)2Ph | t-Bu | 23 | 1:1.4 | |
50e | iPr | Me | 71 | 1:0 |
iPr | t-Bu | - | 1:9 | |
50f | t-Bu | Me | 72 | 11:1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y.N.; Al-aizari, F.A.; Ansar, M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018, 23, 134. https://doi.org/10.3390/molecules23010134
Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-aizari FA, Ansar M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules. 2018; 23(1):134. https://doi.org/10.3390/molecules23010134
Chicago/Turabian StyleKarrouchi, Khalid, Smaail Radi, Youssef Ramli, Jamal Taoufik, Yahia N. Mabkhot, Faiz A. Al-aizari, and M’hammed Ansar. 2018. "Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review" Molecules 23, no. 1: 134. https://doi.org/10.3390/molecules23010134
APA StyleKarrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Al-aizari, F. A., & Ansar, M. (2018). Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules, 23(1), 134. https://doi.org/10.3390/molecules23010134