Brassicaceae Mustards: Traditional and Agronomic Uses in Australia and New Zealand
Abstract
:1. Introduction
2. Main Active Ingredients of Mustards and Anti-Nutritional Factors
3. Use of Mustards as Food
4. Mustard in Food Processing
5. Use of Mustard in Agriculture
5.1. Use of Mustard as Livestock Feed
5.2. Use of Mustard for Companion Planting or Rotational Crop
5.3. Use of Mustard in Soil Amendments, Supplementation and Bioremediation
6. Use of Mustard to Treat Ailments and Disease
7. Mustards in Biodiesel Production
8. Research on Brassicaceae Mustards
9. Summary and Outlook
Acknowledgments
Conflicts of Interest
References
- Campbell, L.; Rempel, C.B.; Wanasundara, J.P. Canola/Rapeseed Protein: Future Opportunities and Directions—Workshop Proceedings of IRC 2015; Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2016. [Google Scholar]
- Raymer, P.L. Canola: An emerging oilseed crop. Trends New Crops New Uses 2002, 1, 122–126. [Google Scholar]
- Watson, R.R.; Preedy, V.R. Bioactive Foods and Extracts: Cancer Treatment and Prevention; Taylor & Francis: Queens Road, Australia, 2010. [Google Scholar]
- Azimova, S.S.; Glushenkova, A.I.; Vinogradova, V.I. Lipids, Lipophilic Components and Essential Oils from Plant Sources; Springer: London, UK, 2011. [Google Scholar]
- Charles, D.J. Antioxidant Properties of Spices, Herbs and Other Sources; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Du Val, J. A Family Manual: In Which Are Found Directions for the Use of His Family Antispasmodic, in More than Twenty Diseases, to Wit Asiatic Cholera; John W. Woods: Baltimore, MD, USA, 1851. [Google Scholar]
- Duke, J.A. Handbook of Medicinal Herbs, 2nd ed.; CRC Press: Melbourne, Australia, 2002. [Google Scholar]
- Ensminger, M.E.; Ensminger, A.H. Foods & Nutrition Encyclopedia, Two Volume Set; CRC Press: Melbourne, Australia, 1993. [Google Scholar]
- Ferreira, I.C.F.R.; Morales, P.; Barros, L. Wild Plants, Mushrooms and Nuts: Functional Food Properties and Applications; John Wiley & Sons Australia Ltd.: Milton, Australia, 2016. [Google Scholar]
- Greve, M.; Leyel, C.F. A Modern Herbal; Merchant Books: Dublin, Ireland, 1973. [Google Scholar]
- Laws, B. Fifty Plants that Changed the Course of History; Allen & Unwin: Crows Nest, Australia, 2011. [Google Scholar]
- Li, T.S. Medicinal Plants: Culture, Utilization and Phytopharmacology; CRC Press: Melbourne, Australia, 2000. [Google Scholar]
- Simon, J.E.; Chadwick, A.F.; Craker, L.E. Herbs, an Indexed Bibliography, 1971–1980; Elsevier: Chatswood, Australia, 1984. [Google Scholar]
- Webb, C.J.; Sykes, W.R.; Garnock-Jones, P.J. Flora of New Zealand. Volume IV. Naturalised Pteridophytes, Gymnosperms, Dicotyledons; Botany Division DSIR: Christchurch, New Zealand, 1988. [Google Scholar]
- Woodward, P. Penny Woodward’s Australian Herbal: A Practical Guide to Growing and Using Herbs in Temperate Australia and New Zealand; Hyland House Publishing Pty Ltd.: Flemington, Australia, 1996. [Google Scholar]
- Allen, D.E.; Hatfield, G. Medicinal Plants in Folk Tradition; Timber Press: Cambridge, UK, 2004. [Google Scholar]
- CABI. Invasive Species Compendium. Available online: www.cabi.org/isc (accessed on 7 November 2017).
- Collett, M.G.; Stegelmeier, B.L.; Tapper, B.A. Could nitrile derivatives of turnip (Brassica rapa) glucosinolates be hepato-or cholangiotoxic in cattle? J. Agric. Food Chem. 2014, 62, 7370–7375. [Google Scholar] [CrossRef] [PubMed]
- Genbank. Available online: http://blast.ncbi.nlm.nih.gov (accessed on 31 December 2017).
- Nesi, N.; Delourme, R.; Brégeon, M.; Falentin, C.; Renard, M. Genetic and molecular approaches to improve nutritional value of Brassica napus L. seed. Comptes Rendus Biol. 2008, 331, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Spragg, J. Australian Feed Grain Supply and Demand Report 2016; JCS Solutions Pty Ltd.: North Victoria, Australia, 2016; pp. 1–42. [Google Scholar]
- Answers, A. Australian Crop Update; Rural Bank Limited: Adelaide, Australia, 2016. [Google Scholar]
- Hemphill, P. Australian canola: European Union fuels demand. Newspaper article in The Weekly Times. 1 February 2017. Available online: http://www.weeklytimesnow.com.au/agribusiness/cropping/australian-canola-european-union-fuels-demand/news-story/90ef19fd3cc65f20adc1d393d81d0a53 (accessed on 10 November 2017).
- Australian Oilseeds Federation (AOF). The Australian Oilseed Industry-Delivering High Quality Products to Local and Global Markets; AOF: Australia Square, Australia, 2017. [Google Scholar]
- Przybylski, R.; Mag, T.; Eskin, N.; McDonald, B. Canola oil. In Bailey’s Industrial Oil and Fat Products, 6th ed.; Volume 2: Edible Oil and Fat Products: Oils and Oil Seeds; Shahidi, F., Ed.; John Wiley & Sons, Inc.: Milton, Australia, 2005; pp. 1–95. [Google Scholar]
- Slominski, B.A.; Kienzle, H.D.; Jiang, P.; Campbell, L.D.; Pickard, M.; Rakow, G. Chemical composition and nutritive value of canola-quality Sinapis alba mustared. In Proceedings of the 10th International Rapeseed Congress, Canberra, Australia, 26–29 September 1999; pp. 416–421. [Google Scholar]
- Tan, S.H.; Mailer, R.J.; Blanchard, C.L.; Agboola, S.O. Canola proteins for human consumption: Extraction, profile, and functional properties. J. Food Sci. 2011, 76, R16–R28. [Google Scholar] [CrossRef] [PubMed]
- Rashid, U.; Anwar, F. Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil. Fuel 2008, 87, 265–273. [Google Scholar] [CrossRef]
- Australia, N.L. Australian National Bibliography: 1992; National Library of Australia: Canberra, Australia, 1961.
- Ayton, J. Variability of Quality Traits in Canola Seed, Oil and Meal—A Review; NSW: Wagga Wagga, Australia, 2014.
- Te Ara The Encyclopaedia of New Zealand. Available online: https://teara.govt.nz/en (accessed on 10 November 2017).
- Millner, J.P.; Roskruge, N.R.; Dymond, J. The New Zealand arable industry. In Ecosystem Services in New Zealand: Conditions and Trends; Manaaki Whenua Press: Lincoln, New Zealand, 2013; pp. 102–114. [Google Scholar]
- Zijll, D.J.; Braithwaite, B.; Roush, T.; Stewart, A.; Hampton, J. Opportunities for developing value-added brassica seed. In Proceedings of the Seed symposium: Seeds for Futures, Palmerston North, New Zealand, 26–27 November 2008; pp. 139–146. [Google Scholar]
- Webby, J. World Record for Canola Set. News article in Oamaru Mail. 1 February 2015. Available online: http://www.oamarumail.co.nz/rural/world-record-for-canola-set/ (accessed on 10 November 2017).
- Hammami, R.; Hamida, J.B.; Vergoten, G.; Fliss, I. PhytAMP: A database dedicated to antimicrobial plant peptides. Nucleic Acids Res. 2009, 37, D963–D968. [Google Scholar] [CrossRef] [PubMed]
- Heenan, P.; FitzJohn, R.; Dawson, M. Diversity of Brassica (Brassicaceae) species naturalised in Canterbury, New Zealand. N. Z. J. Bot. 2004, 42, 815–832. [Google Scholar] [CrossRef]
- Wilson, H. ‘Alpine plants—Highest of all’, Te Ara—the Encyclopedia of New Zealand. Available online: http://www.TeAra.govt.nz/en/alpine-plants/page-4 (accessed on 10 November 2017).
- Clarke, A. Born to a Changing World: Childbirth in Nineteenth-Century New Zealand; Bridget Williams Books: Wellington, New Zealand, 2012. [Google Scholar]
- Murdoch, R. Maori Healing and Herbal: New Zealand Ethnobotanical Sourcebook; Paraparaumu: North Island, New Zealand, 1994. [Google Scholar]
- Williams, P.M. Te Rongoa Maori: Maori Medicine. In Birkenhead: Reed Books; Penguin Books: Auckland, New Zealand, 1996; p. 79. [Google Scholar]
- Research, L. Māori Plant Use Database; Landcare Research: Lincoln, New Zealand, 2017. [Google Scholar]
- Bangerter, E. New and interesting records of adventive plants from the Auckland IInstitute and Museum Herbarium: 11. In Records of the Auckland Institute and Museum; Auckland War Memorial Museum: Auckland, New Zealand, 1985; pp. 41–45. [Google Scholar]
- Ogle, J.D. Alliaria petiolata (M. Bieb.) Cavara & Grande [Brassicaceae], an Invasive Herb in the Southern Ozark Plateaus: A Comparison of Species Composition and Richness, Soil Properties, and Earthworm Composition and Biomass in Invaded Versus Non-Invaded Sites. Masters Thesis, University of Arkansas, Fayetteville, AR, USA, 2015. [Google Scholar]
- Garland, S. The Complete Book of Herbs & Spices: An Illustrated Guide to Growing and Using Culinary, Aromatic, Cosmetic and Medicinal Plants; Hodder & Stoughton (Aust) Pty Ltd., Sydney & Aukland: Rydalmere, Australia, 1993. [Google Scholar]
- Kumarasamy, Y.; Byres, M.; Cox, P.; Delazar, A.; Jaspars, M.; Nahar, L.; Shoeb, M.; Sarker, S. Isolation, structure elucidation, and biological activity of flavone 6-C-glycosides from Alliaria petiolata. Chem. Nat. Compd. 2004, 40, 122–128. [Google Scholar] [CrossRef]
- Cavers, P.B.; Heagy, M.I.; Kokron, R.F. The biology of Canadian weeds.: 35. Alliaria petiolata (M. Bieb.) Cavara and Grande. Can. J. Plant Sci. 1979, 59, 217–229. [Google Scholar] [CrossRef]
- Rodgers, V.L.; Stinson, K.A.; Finzi, A.C. Ready or Not, Garlic Mustard Is Moving In: Alliaria petiolata as a Member of Eastern North American Forests. BioScience 2008, 58, 426–436. [Google Scholar] [CrossRef]
- TGA. Substances that may be Used in Listed Medicines in Australia. Available online: https://www.tga.gov.au/sites/default/files/cm-listed-substances_0.pdf (accessed on 11 November 2017).
- Gilbert, A.; Cosgrove, L.; Wilkinson, J. The Royal Horticultural Society Vegetable and Fruit Gardening in Australia; Dorling Kindersly Australia Pty Ltd.: Melbourne, Australia, 2012. [Google Scholar]
- Lozano-Baena, M.-D.; Tasset, I.; Obregón-Cano, S.; de Haro-Bailon, A.; Muñoz-Serrano, A.; Alonso-Moraga, Á. Antigenotoxicity and tumor growing inhibition by leafy Brassica carinata and sinigrin. Molecules 2015, 20, 15748. [Google Scholar] [CrossRef] [PubMed]
- Wiersema, J.H.; Leon, B. World Economic Plants: A Standard Reference; CRC press: Melbourne, Australia, 2016. [Google Scholar]
- Dubey, N.K. Natural Products in Plant Pest Management; Centre for Agriculture and Bioscience International: Oxfordshire, UK, 2010. [Google Scholar]
- Lazarides, M.; Cowley, K.; Hohnen, P. CSIRO Handbook of Australian Weeds; CSIRO Publishing: Clayton, Australia, 1997. [Google Scholar]
- Hedrick, U. Sturtevant’s Edible Plants of the World; Dover Pubns: New York, NY, USA, 1972; p. 686. [Google Scholar]
- Hill, F. How to Grow Microgreens: Nature’s Own Superfood; David Bateman: Auckland, New Zeland, 2011. [Google Scholar]
- Houbein, L. One Magic Square: Grow Your Own Food on One Square Metre; Wakefield Press: Adelaide, Australia, 2008. [Google Scholar]
- Jham, G.N.; Moser, B.R.; Shah, S.N.; Holser, R.A.; Dhingra, O.D.; Vaughn, S.F.; Berhow, M.A.; Winkler-Moser, J.K.; Isbell, T.A.; Holloway, R.K. Wild Brazilian mustard (Brassica juncea L.) seed oil methyl esters as biodiesel fuel. J. Am. Oil Chem. Soc. 2009, 86, 917–926. [Google Scholar] [CrossRef]
- Salama, H.M.; Al Watban, A.A.; Al-Fughom, A.T. Effect of ultraviolet radiation on chlorophyll, carotenoid, protein and proline contents of some annual desert plants. Saudi J. Biol. Sci. 2011, 18, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Kirk, J.; Oram, R. Isolation of erucic acid-free lines of Brassica juncea: Indian mustard now a potential oilseed crop in Australia. J. Aust. Inst. Agric. Sci. 1981, 47, 51–52. [Google Scholar]
- Norton, R.; Burton, W.; Salisbury, P. Agronomy for canola quality Brassica juncea in modern cropping systems. In Proceedings of the 14th Australian Research Assembly on Brassicas (ARAB14), Port Lincoln, Australia, 3–7 October 2005; pp. 111–115. [Google Scholar]
- Thirumalai, T.; Therasa, S.V.; Elumalai, E.K.; David, E. Hypoglycemic effect of Brassica juncea (seeds) on streptozotocin induced diabetic male albino rat. Asian Pac. J. Trop. Biomed. 2011, 1, 323–325. [Google Scholar] [CrossRef]
- Gulati, V. Investigation of Traditional Australian Aboriginal and Indian Ayurvedic Medicinal Plants for Their Role in Management of Type 2 Diabetes. Ph.D. Thesis, Swinburne University of Technology, Melbourne, Australia, 2013. [Google Scholar]
- Agnihotri, A.; Prem, D.; Gupta, K. Biotechnology in quality improvement of oilseed Brassicas. In Plant Biotechnology and Molecular Markers; Springer: Berlin, Germany, 2004; pp. 144–155. [Google Scholar]
- Saeidnia, S.; Gohari, A.R. Importance of Brassica napus as a medicinal food plant. J. Med. Plants Res. 2012, 6, 2700–2703. [Google Scholar] [CrossRef]
- Sinha, S.; Jha, J.K.; Maiti, M.K.; Basu, A.; Mukhopadhyay, U.K.; Sen, S.K. Metabolic engineering of fatty acid biosynthesis in Indian mustard (Brassica juncea) improves nutritional quality of seed oil. Plant Biotechnol. Rep. 2007, 1, 185–197. [Google Scholar] [CrossRef]
- Garnock-Jones, P. Checklist of dicotyledons naturalised in New Zealand 4. Rhoeadales. N. Z. J. Bot. 1979, 17, 303–310. [Google Scholar] [CrossRef]
- Pengelly, A. The Constituents of Medicinal Plants: An Introduction to the Chemistry and Therapeutics of Herbal Medicine; Sunflower Herbals: Muswellbrook, Australia, 2004. [Google Scholar]
- Unnikrishnan, P.S.; Suthindhiran, K.; Jayasri, M.A. Alpha-amylase Inhibition and Antioxidant Activity of Marine Green Algae and its Possible Role in Diabetes Management. Pharmacogn. Mag. 2015, 11, S511–S515. [Google Scholar] [PubMed]
- Mailer, R.J.; McFadden, A.; Ayton, J.; Redden, B. Anti-nutritional components, fibre, sinapine and glucosinolate content, in Australian canola (Brassica napus L.) meal. J. Am. Oil Chem. Soc. 2008, 85, 937–944. [Google Scholar] [CrossRef]
- Rękas, A.; Wroniak, M.; Krygier, K. Effects of different roasting conditions on the nutritional value and oxidative stability of high-oleic and yellow-seeded Brassica napus oils. Grasas y Aceites 2015, 66, e092. [Google Scholar] [CrossRef]
- ANCW, A.N.C.W. Australian New Crops Info 2016-Listing of Interesting Plants of the World. Available online: http://www.newcrops.info/ (accessed on 29 December 2017).
- Blagrove, S.; Hundloe, T.; Ditton, H. Australia’s Role in Feeding the World: The Future of Australian Agriculture; Csiro Publishing: Clayton, Australia, 2016. [Google Scholar]
- Gunstone, F.D.; Harwood, J.L.; Dijkstra, A.J. The Lipid Handbook with CD-ROM, 3rd ed.; CRC Press: Parkway, Australia, 2007. [Google Scholar]
- Zareba, G.; Serradelf, N. Chemoprotective effects of broccoli and other Brassica vegetables. Drugs Future 2004, 29, 1097–1104. [Google Scholar] [CrossRef]
- Zekic, M.; Radonic, A.; Marijanovic, Z. Glucosinolate profiling of Calepina irregularis. Nat. Prod. Commun. 2016, 11, 1329–1332. [Google Scholar]
- Walsh, N.G.; Entwisle, T.J. Flora of Victoria: Dicotyledons: Winteraceae to Myrtaceae; Inkata Press: Melbourne, Australia, 1996. [Google Scholar]
- HerbiGuide. Hare’s-ear. Available online: http://www.herbiguide.com.au/Descriptions/hg_Haresear.htm (accessed on 15 December 2017).
- Howell, C.J.; Sawyer, J.W.D. New Zealand Naturalised Vascular Plant Checklist; New Zealand Plant Conservation Network: Wellington, New Zealand, 2006. [Google Scholar]
- Angelo, R.; Boufford, D.E. Atlas of the flora of New England: Salicaceae to Brassicaceae. Phytoneuron 2011, 12, 1–12. [Google Scholar]
- Grieve, M. A Modern Herbal; Penguin Books Australia: Melbourne, Australia, 1984. [Google Scholar]
- Lust, J. The Herb Book; Penguin Books Australia: Melbourne, Australia, 1983. [Google Scholar]
- Biosecurity. Weeds of Australia—Biosecurity Queensland Edition Fact Sheet-Sisymbrium officinale. Available online: https://keyserver.lucidcentral.org/weeds/data/media/Html/sisymbrium_officinale.pdf (accessed on 13 November 2017).
- Stern, G. Australian Weeds; Harper and Row, Publishers: Sydney, Australia, 1986. [Google Scholar]
- Buckley, R. Alien plants in central Australia. Bot. J. Linn. Soc. 1981, 82, 369–379. [Google Scholar] [CrossRef]
- Gruenwald, J.; Brendler, T.; Jaenicke, C. PDR for Herbal Medicines; Medical Economics Company, Inc.: Montvale, NJ, USA, 2000. [Google Scholar]
- Quattrocchi, U. CRC World Dictionary of Medicinal and Poisonous Plants: Common Names, Scientific Names, Eponyms, Synonyms, and Etymology; CRC Press: Melbourne, Australia, 2016. [Google Scholar]
- Awaad, A.S.; Al-Jaber, N.A. Antioxidant natural plant. RPMP Ethnomed. Source Mech. 2010, 27, 1–35. [Google Scholar]
- Azimova, S.S.; Glushenkova, A.I. Sisymbrium erysimoides (Desf.). In Lipids, Lipophilic Components and Essential Oils from Plant Sources; Azimova, S.S., Glushenkova, A.I., Eds.; Springer: London, UK, 2012; p. 274. [Google Scholar]
- Iranshahi, M. A review of volatile sulfur-containing compounds from terrestrial plants: Biosynthesis, distribution and analytical methods. J. Essent. Oil Res. 2012, 24, 393–434. [Google Scholar] [CrossRef]
- Lohr, M.T.; Keighery, G. The status and distribution of naturalised alien plants on the islands of the west coast of Western Australia. Conserv. Sci. West. Aust. 2016, 10, 1. [Google Scholar]
- Westbrooke, M.E.; Leversha, J.; Gibson, M.; O’Keefe, M.; Milne, R.; Gowans, S.; Harding, C.; Callister, K. The Vegetation of Peery Lake Area, Paroo-Darling National Park, Western New South Wales. Cunninghamia 2003, 8, 111–128. [Google Scholar]
- Spudlydoo. Some useful “weeds”. Available online: https://www.curezone.org/forums/am.asp?i=1752594 (accessed on 10 November 2017).
- Mustard (condiment). Available online: https://en.wikipedia.org/wiki/Mustard_(condiment) (accessed on 14 October 2017).
- Guimaraes, M.Z.; Jordt, S.-E. TRPA1: A sensory channel of many talents. In TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades; Liedtke, W., Ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 151–161. [Google Scholar]
- Khajali, F.; Slominski, B. Factors that affect the nutritive value of canola meal for poultry. Poult. Sci. 2012, 91, 2564–2575. [Google Scholar] [CrossRef] [PubMed]
- Naczk, M.; Oickle, D.; Pink, D.; Shahidi, F. Protein precipitating capacity of crude canola tannins: Effect of pH, tannin, and protein concentrations. J. Agric. Food Chem. 1996, 44, 2144–2148. [Google Scholar] [CrossRef]
- Mitaru, B.N.; Blair, R.; Bell, J.; Reichert, R. Tannin and fiber contents of rapeseed and canola hulls. Can. J. Anim. Sci. 1982, 62, 661–663. [Google Scholar] [CrossRef]
- Kozlowska, H.; Naczk, M.; Shahidi, F.; Zadernowski, R. Phenolic acids and tannins in rapeseed and canola. In Canola and Rapeseed; Springer: Berlin, Germany, 1990; pp. 193–210. [Google Scholar]
- Lorusso, L.; Lacki, K.; Duvnjak, Z. Decrease of tannin content in canola meal by an enzyme preparation from Trametes versicolor. Biotechnol. Lett. 1996, 18, 309–314. [Google Scholar] [CrossRef]
- Mailer, R.; Colton, R.; O’Bree, B. Quality of Australian Canola. Canola Association of Australia: Wagga Wagga, Australia, 1998; pp. 1322–9397. [Google Scholar]
- McBarron, E.J. Medical and Veterinary Aspects of Plant Poisons in New South Wales; New South Wales Department of Agriculture: Glenfield, Australia, 1976.
- Perez-Maldonado, R.A. Canola Meal and Cottonseed Meal in Broiler and Layer Diets; Australian Egg Corporation Limited: Sydney, Australia, 2003. [Google Scholar]
- Perez-Maldonado, R.A. Elimination of Fishy Taint in Eggs from Hens Fed Diets Containing Canola Meal; DAQ-303A; Australian Egg Corporation Limited: Sydney, Australia, 2005. [Google Scholar]
- Simmonds, H.; Bourke, C.; Holst, P. The Palatability and Potential Toxicity of Australian Weeds to Goats; Rural Industries Research and Development Corporation Kingston: Wagga Wagga, Australia, 2000. [Google Scholar]
- Seberry, D.; McCaffery, D.; Kingham, T. Quality of Australian Canola 2016–2017; Department of Primary Industries and Australian Oilseed Federation: Wagga Wagga, Australia, 2017. [Google Scholar]
- Glencross, B.; Hawkins, W.; Curnow, J. Nutritional assessment of Australian canola meals. II. Evaluation of the influence of the canola oil extraction method on the protein value of canola meals fed to the red seabream (Pagrus auratus, Paulin). Aquac. Res. 2004, 35, 25–34. [Google Scholar] [CrossRef]
- Agrifutures. Canola. Available online: http://www.agrifutures.com.au/farm-diversity/canola/ (accessed on 15 December 2017).
- Maršalkienė, N.; Sliesaravičius, A.; Karpavičienė, B.; Dastikaitė, A. Oil content and fatty acid composition of seeds of some Lithuanian wild crucifer species. Agron. Res. 2009, 7, 654–661. [Google Scholar]
- Food Standard Australia New Zealand (FSANZ). FSANZ Technical Report 21—Erucic Acid in Food: A Toxicological Review and Risk Assessment; FSANZ: Canberra, Australia, 2003.
- Duke, J.A. Handbook of Energy Crops; Center for New Crops & Plants Products: Sydney, Australia, 1983. [Google Scholar]
- Oduor, A.M.; Lankau, R.A.; Strauss, S.Y.; Gómez, J.M. Introduced Brassica nigra populations exhibit greater growth and herbivore resistance but less tolerance than native populations in the native range. New Phytol. 2011, 191, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Glatzel, H. Physiological aspects of flavour compounds. In Minor Constituents in Foods; Karger Publishers: Berlin, Germany, 1967; pp. 71–86. [Google Scholar]
- Nielsen, P.V.; Rios, R. Inhibition of fungal growth on bread by volatile components from spices and herbs, and the possible application in active packaging, with special emphasis on mustard essential oil. Int. J. Food Microbiol. 2000, 60, 219–229. [Google Scholar] [CrossRef]
- Kizilarslan, Ç.; Özhatay, N. Wild plants used as medicinal purpose in the south part of İzmit (Northwest Turkey). Turk. J. Pharm. Sci. 2012, 9, 199–218. [Google Scholar]
- Patterson, C. Mustard: Protein, Mucilage and Bioactives; The Saskatchewan Mustard Development Commission: Saskatoon, SK, Canada, 2016. [Google Scholar]
- Daniere, S. New Zealand Wasabi Limited. Br. Food J. 2003, 105. [Google Scholar] [CrossRef]
- Cartea, M.E.; Soengas, P.; Picoaga, A.; Ordás, A. Relationships among Brassica napus (L.) germplasm from Spain and Great Britain as determined by RAPD markers. Genet. Resour. Crop Evol. 2005, 52, 655–662. [Google Scholar] [CrossRef]
- Ramakrishna Rao, R.; Platel, K.; Srinivasan, K. In vitro influence of spices and spice-active principles on digestive enzymes of rat pancreas and small intestine. Food Nahr. 2003, 47, 408–412. [Google Scholar] [CrossRef] [PubMed]
- Bonnardeaux, J. Uses for Canola Meal; Department of Agriculture and Food, Western Australia: Perth, Australia, 2007.
- Pedersen, A.; Baumstark, M.W.; Marckmann, P.; Gylling, H.; Sandström, B. An olive oil-rich diet results in higher concentrations of LDL cholesterol and a higher number of LDL subfraction particles than rapeseed oil and sunflower oil diets. J. Lip. Res. 2000, 41, 1901–1911. [Google Scholar]
- Turgis, M.; Han, J.; Caillet, S.; Lacroix, M. Antimicrobial activity of mustard essential oil against Escherichia coli O157: H7 and Salmonella typhi. Food Control 2009, 20, 1073–1079. [Google Scholar] [CrossRef]
- Parikh, H.; Pandita, N.; Khanna, A. Phytoextract of Indian mustard seeds acts by suppressing the generation of ROS against acetaminophen-induced hepatotoxicity in HepG2 cells. Pharm. Biol. 2015, 53, 975–984. [Google Scholar] [CrossRef] [PubMed]
- Stanley, M.; Potter, T. Canola industry in South Australia. In Proceedings of the 10th International Rapeseed Congress, Canberra, Australia, 26–29 September 1999; Available online: http://www.regional.org.au/au/gcirc/2/128.htm (accessed on 10 November 2017).
- Wendlinger, C.; Hammann, S.; Vetter, W. Various concentrations of erucic acid in mustard oil and mustard. Food Chem. 2014, 153, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F. Canola and Rapeseed: Production, Chemistry, Nutrition, and Processing Technology; Springer Science & Business Media: New York, NY, USA, 1990. [Google Scholar]
- Tajkarimi, M.M.; Ibrahim, S.A.; Cliver, D.O. Antimicrobial herb and spice compounds in food. Food Control 2010, 21, 1199–1218. [Google Scholar] [CrossRef]
- Kasprzak, M.; Houdijk, J.; Liddell, S.; Davis, K.; Olukosi, O.; Kightley, S.; White, G.; Wiseman, J. Rapeseed napin and cruciferin are readily digested by poultry. J. Anim. Physiol. Anim. Nutr. 2017, 101, 658–666. [Google Scholar] [CrossRef] [PubMed]
- Borek, V.; Morra, M.J.; Brown, P.D.; McCaffrey, J.P. Allelochemicals produced during sinigrin decomposition in soil. J. Agric. Food Chem. 1994, 42, 1030–1034. [Google Scholar] [CrossRef]
- Brown, P.D.; Morra, M.J.; McCaffrey, J.P.; Auld, D.L.; Williams, L. Allelochemicals produced during glucosinolate degradation in soil. J. Chem. Ecol. 1991, 17, 2021–2034. [Google Scholar] [CrossRef] [PubMed]
- Snyder, A.; Morra, M.J.; Johnson-Maynard, J.; Thill, D.C. Seed meals from Brassicaceae oilseed crops as soil amendments: Influence on carrot growth, microbial biomass nitrogen, and nitrogen mineralization. HortScience 2009, 44, 354–361. [Google Scholar]
- Vaughn, S.F.; Berhow, M.A. Allelochemicals isolated from tissues of the invasive weed garlic mustard (Alliaria petiolata). J. Chem. Ecol. 1999, 25, 2495–2504. [Google Scholar] [CrossRef]
- Wolfe, B.E.; Rodgers, V.L.; Stinson, K.A.; Pringle, A. The invasive plant Alliaria petiolata (garlic mustard) inhibits ectomycorrhizal fungi in its introduced range. J. Ecol. 2008, 96, 777–783. [Google Scholar] [CrossRef]
- Oram, R.N.; Kirk, J.T.O.; Veness, P.E.; Hurlstone, C.J.; Edlington, J.P.; Halsall, D.M. Breeding Indian mustard [Brassica juncea (L.) Czern.] for cold-pressed, edible oil productiona review. Aust. J. Agric. Res. 2005, 56, 581–596. [Google Scholar] [CrossRef]
- Walker, S.; Taylor, I.; Milne, G.; Osten, V.; Hoque, Z.; Farquharson, R. A survey of management and economic impact of weeds in dryland cotton cropping systems of subtropical Australia. Aust. J. Exp. Agric. 2005, 45, 79–91. [Google Scholar] [CrossRef]
- Stewart, A. A review of Brassica species, cross-pollination and implications for pure seed production in New Zealand. Agron. N. Z. 2002, 32, 63–82. [Google Scholar]
- Fernandez, A.L.; Sheaffer, C.C.; Wyse, D.L. Productivity of field pea and lentil with cereal and Brassica intercrops. Agron. J. 2015, 107, 249–256. [Google Scholar] [CrossRef]
- Callaway, R.M.; Ridenour, W.M. Novel weapons: Invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2004, 2, 436–443. [Google Scholar] [CrossRef]
- Casida, J.E.; Gammon, D.W.; Glickman, A.H.; Lawrence, L.J. Mechanisms of selective action of pyrethroid insecticides. Annu. Rev. Pharmacol. Toxicol. 1983, 23, 413–438. [Google Scholar] [CrossRef] [PubMed]
- Oklešt′ková, J.; Rárová, L.; Strnad, M. Brassinosteroids and their biological activities. In Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes; Ramawat, K.G., Mérillon, J.-M., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2013; pp. 3851–3871. [Google Scholar]
- Oram, R.; Salisbury, P.; Kirk, J.; Burton, W. Brassica juncea breeding. In Canola in Australia: The First Thirty Years, In Proceedings of the 10th International Rapeseed Congress, Canberra, Australia, 1999; Salisbury, P.A., Potter, T.D., McDonald, G., Green, A.G., Eds.; pp. 37–40. [Google Scholar]
- Allardice, P. A-Z of Companion Planting; Angus & Robertson: Melbourne, Australia, 1993. [Google Scholar]
- Gonzalez-Coloma, A.; Reina, M.; Diaz, C.; Fraga, B.; Santana-Meridas, O. Natural product-based biopesticides for insect control. Compr. Nat. Prod. 2010, 3, 237–268. [Google Scholar]
- Smissman, E.E.; Beck, S.D.; Boots, M.R. Growth inhibition of insects and a fungus by indole-3-acetonitrile. Science 1961, 133, 462. [Google Scholar] [CrossRef] [PubMed]
- Ostdiek, D. Canola Research May Lead to Additional Crop Option. News article in Cropwatch. 17 May 2016. Available online: https://cropwatch.unl.edu/2016/canola-research-may-lead-additional-crop-option (accessed on 10 November 2017).
- Butool, F.; Haseeb, A.; Shukla, P. Management of root-knot nematode, Meloidogyne incognita, infesting Egyptian henbane, Hyoscyamus muticus L., by the use of nematicides and oilcakes. Int. J. Pest Manag. 1998, 44, 199–202. [Google Scholar] [CrossRef]
- Martone, P.T.; Estevez, J.M.; Lu, F.; Ruel, K.; Denny, M.W.; Somerville, C.; Ralph, J. Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr. Biol. 2009, 19, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Balesh, T.; Zapata, F.; Aune, J. Evaluation of mustard meal as organic fertiliser on tef (Eragrostis tef (Zucc) Trotter) under field and greenhouse conditions. Nutr. Cycl. Agroecosyst. 2005, 73, 49–57. [Google Scholar] [CrossRef]
- Bañuelos, G.S.; Hanson, B.D. Use of selenium-enriched mustard and canola seed meals as potential bioherbicides and green fertilizer in strawberry production. HortScience 2010, 45, 1567–1572. [Google Scholar]
- Min, K.; Freeman, C.; Kang, H.; Choi, S.-U. The regulation by phenolic compounds of soil organic matter dynamics under a changing environment. BioMed Res. Int. 2015, 2015, 825098. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.M. Bioactivity against phytonematodes. Neem Res. Dev. 1993, 123–143. [Google Scholar]
- Van der Laan, P. The influence of organic manuring on the development of the potato root eelworm, Heterodera rostochiensis. Nematologica 1956, 1, 112–125. [Google Scholar] [CrossRef]
- Lasat, M. Use of plants for the removal of toxic metals from contaminated soil. In Use of Plants for the Removal of Toxic Metals from Contaminated Soil; American Association for the Advancement of Science, Environmental Science and Engineering: Washington, DC, USA, 2000; p. 33. [Google Scholar]
- Johnson, A.; Gunawardana, B.; Singhal, N. Amendments for enhancing copper uptake by Brassica juncea and Lolium perenne from solution. Int. J. Phytoremed. 2009, 11, 215–234. [Google Scholar] [CrossRef]
- David, H. The New Holistic Herbal; Element Books Limited: Brisbane, Australia, 1992. [Google Scholar]
- Hashem, M.; Alamri, S.A.; Alrumman, S.A.; Moustafa, M.F. Suppression of phytopathogenic fungi by plant extract of some weeds and the possible mode of action. Br. Microbiol. Res. J. 2016, 15, 1–13. [Google Scholar] [CrossRef]
- Chiej, R. Encyclopaedia of Medicinal Plants; Macdonald & Co (Publishers) Ltd.: London, UK, 1984. [Google Scholar]
- Kloss, J. Back to Eden: The Classic Guide to Medicine, Natural Foods and Home remEdies, 4th ed.; Lifeline Books: Adelaide, Australia, 1974. [Google Scholar]
- Zargari, A. Medicinal Plants, 5 ed.; Tehran University Publications: Tehran, Iran, 2001. [Google Scholar]
- Roia, F.C. The use of plants in hair and scalp preparations. Econ. Botany 1966, 20, 17–30. [Google Scholar] [CrossRef]
- Pahl, G. Biodiesel: Growing a New Energy Economy; Chelsea Green Publishing Company: Vermont, VT, USA, 2008. [Google Scholar]
- Stuff. Canola-Seed Cost Lifting Biodiesel Price. Newspaper Article in Stuff. 18 February 2009. Available online: http://www.stuff.co.nz/business/farming/204551/Canola-seed-cost-lifting-biodiesel-price (accessed on 10 November 2017).
- Kingwell, R. An economic evaluation of canola for food and fuel in Western Australia. Aust. Oilseeds 2016, 12. [Google Scholar]
- Midlands. Oilseed Rape has Moved from a Biodiesel Ccrop to Food-Grade Oil in Canterbury, Writes Heather Chalmers. Available online: http://www.midlands.co.nz/oilseed-rape-goes-from-biodiesel-to-a-food-oil-crop (accessed on 28 December 2017).
- Tongson, E.J. Development of Frost Tolerance in Brassica Napus Using Arabidopsis ACYL-COENZYME A-BINDING PROTEIN6. Ph.D. Thesis, The University of Melbourne, Melbourne, Australia, 2017. [Google Scholar]
- Choi, S.R.; Teakle, G.R.; Plaha, P.; Kim, J.H.; Allender, C.J.; Beynon, E.; Piao, Z.Y.; Soengas, P.; Han, T.H.; King, G.J. The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor. Appl. Genet. 2007, 115, 777–792. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Cogan, N.; Ye, G.; Baillie, R.C.; Hand, M.L.; Ling, A.E.; McGearey, A.; Kaur, J.; Hopkins, C.J.; Todorovic, M.; et al. Genetic Map Construction and QTL Mapping of Resistance to Blackleg (Leptosphaeria Maculans) Disease in Australian Canola (Brassica napus L.) Cultivars. Theor. Appl. Genet. 2009, 120, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Long, Y.; Wang, N.; Zou, J.; Ding, G.; Broadley, M.R.; White, P.J.; Yuan, P.; Zhang, Q.; Luo, Z. Breeding histories and selection criteria for oilseed rape in Europe and China identified by genome wide pedigree dissection. Sci. Rep. 2017, 7, 1916. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.K. Isothiocyanate Induction of Apoptosis in Cells Overexpressing Bcl-2. Masters Thesis, University of Cantebury, Christchurch, New Zealand, 2006. [Google Scholar]
- Chalhoub, B.; Denoeud, F.; Liu, S.; Parkin, I.A.; Tang, H.; Wang, X.; Chiquet, J.; Belcram, H.; Tong, C.; Samans, B.; et al. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 2014, 345, 950–953. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, H.; Wang, J.; Sun, R.; Wu, J.; Liu, S.; Bai, Y.; Mun, J.-H.; Bancroft, I.; Cheng, F. The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 2011, 43, 1035–1039. [Google Scholar] [CrossRef] [PubMed]
Anti-Nutritional Factors | Efforts to reduce adverse effects |
---|---|
Tannins—Rapeseeds and canola contain high amount of tannin ranging up to 1973 mg of catechin equivalents/100 g of hulls [95,96]; meal constitutes about 3% tannin [97]. | Tannins are less water soluble and mostly present in seed hull [95]. With the advent of a number of new procedures for dehulling and application of enzymatic processing [96,98,99,100], tannin content can lowered from rapeseed and canola meal. |
Sinapine—Rapeseed contains high amount of phenolic compounds. For example, phenolics in rapeseed flour contains about 30 times more phenolic compounds than soybean flour [98]. One of these compounds, sinapine, which accounts for about 1–1.5% of the meal [94,96,100] has been found to be responsible to produce a “fishy” smell in brown-shelled eggs when rapeseed meal is fed to chickens [95]. | Sinapine is a choline ester of sinapic acid. Its characteristic fishy taint is associated with a genetic disorder of some brown layers which cannot metabolize the choline esters properly [95,101,102,103]. The genes responsible for the fishy taint have been identified and eliminated from the chicken population by screening and breeding [102,103]. Moreover, limiting the supplementation of choline in diet, can overcome the problem and diets including 10–12% canola meal are not harmful to the poultry [95,103]. |
Phytic acid—Regarded as an anti-nutritional factor, phytic acid, which is composed primarily of phosphorous and inositol, strongly binds to metallic cations (Ca, Fe, Zn, Mn, Mg), forming insoluble complexes and interfering with their absorption [95]. | Recombinant DNA technology has led to the production of phytases enzyme with improved functional properties that hydrolyses phytic acid to inositol and inorganic phosphorus, resulting high phosphorus utilization and overall growth performance of monogastric animals [95]. |
Nitriles—Indoles present in the mustard seeds in varying amounts can cause a pneumonia type syndrome in goats. Nitriles have the potential to create preliminary liver damage with secondary photosensitization, and/or brain damage characterized by loss of sight. Build up of nitrates can also cause respiratory problems and death [104]. | Before feeding, levels of secondary metabolites including erucic acid and glucosinolates should be checked and selection of meal containing low levels will avoid toxicities [101,105,106]. |
Isothiocyanates—Another group of plant secondary metabolite, isothiocyanates can produce digestive disturbances in goats involving rumen stasis and constipation. Non-protein amino acids present in the seed meal can create anemia with blood colored urine [104]. | Selection of meal containing low levels of isothiocyanates will avoid the deleterious effects [104,107,108]. |
Common Use | Mustards | References |
---|---|---|
Edible oil | All mustards mentioned here produce seeds which contain significant amounts of oil. Mustard seed oil is popular in Indian cooking and often used as a substitute for ghee, an Asian form of clarified butter. | [50,108,110] |
Condiment | Seeds of B. alba, Neslia paniculata, B. nigra, B. napus, and B. juncea are widely used as a condiment to impart a hot pungent flavor to food, either alone or with other spices. The seeds of B. nigra have the strongest intensity because of the high glucosinolate content. Raw whole mustard seeds, toasted, and ground as paste are used in hundreds of curries, snacks, sauces and recipes for the addition of heat and a depth of flavor. | [49,50,51,110,111,112,113] |
Vegetable | Brassica mustard species are cooked similar to spinach. They are also fermented and used as popular mild flavored leafy vegetables, Kimchi, a popular traditional Korean dish, which is popular in Australia is made from fermented B. juncea, B. nigra and S. officinale. | [50,110] |
Salad | Leaves from B. nigra, B. alba, B. juncea, B. napus, and C. irregularis are consumed as salad greens. | [49,56,113,114] |
Sauce | Mustards are used to enhance the piquancy and texture of several types of sauces, and are important ingredients of English mustard, Dijon mustard, vinaigrettes and Chinese hot mustard. | [115] |
Artificial wasabi | Powdered mustard is blended with dried horseradish and green dye to produce wasabi paste. | [116] |
Fodder | Both the leaves and seed residues of B. napus, and Neslia paniculata are used as fodder for both monogastric and ruminant livestock. | [117] |
Traditional Use | Mustards | References |
---|---|---|
Anti-microbial activity | Alliaria petiolata, Sisymbrium officinale, S. erysimoides, Brassica hirta, B. nigra | [44,45,110,121,126,155] |
Anti-diabetic activity | B. juncea, B. nigra | [7,110] |
Treatment in vitamin C deficiency | A. petiolata, B. rapa, B. napus | [110] |
Diuretic activity | A. petiolata, B. juncea, B. napus, B. nigra, B. rapa, S. officinale, S. orientale | [80,81,156] |
Expectorant activity | A. petiolata, S. orientale, S. officinale, S. erysimoides | [80,81,156] |
Stimulant activity | A. petiolata, B. alba, B. juncea, B. nigra | [157] |
Analgesic activity | B. carinata, B. juncea, B. napus, B. rapa, Calepina irregularis, Neslia paniculata, S. erysimoides, S. officinale | [110] |
Activity in cold and flu | B. alba, S. officinale, S. erysimoides, B. napus, B. nigra | [44,156] |
Anti-catarrhal activity | B. alba, S. officinale, S. erysimoides, B. napus, B. nigra | [44,156] |
Bronchitis | S. officinale, S. orientale, S. erysimoides. | [86] |
Anti-asthmatic activity | S. officinale | [80,81] |
Emetic activity | B. alba, B. nigra, B. juncea, S. officinale, B. nigra | [110] |
Anti-cancer activity | B. juncea, B. napus, B. rapa, S. officinale | [110] |
Laxative | B. alba, B. nigra, B. juncea, S. officinale | [110] |
Rubefacient | B. juncea, S. officinale, B. rapa, B. juncea | [80,81] |
Galactagogue | B. juncea | [110] |
Anti-gout potential | B. napus, B. rapa | [64,110,158] |
Use in gall stone | B. napus, B. rapa | [44,54,66,84] |
Use against alopecia | B. nigra | [159] |
Anti-dandruff activity | B. nigra | [44,67] |
Use in neuralgia | B. nigra | [44,67] |
Anti-spasmodic activity | B. nigra, S. officinale. | [44,67,84] |
Aphrodisiac activity | B. rapa, B. nigra | [44,53,67] |
Use in hepatic and kidney colic | B. rapa | [44,53,84] |
Anti-inflammatory activity | B. rapa, S. erysimoides, S. officinale | [44,53,84] |
Anthelmintic activity | B. rapa,S. orientale | [44,53,66,84] |
Remedial use in fever | S. orientale | [76,79,86] |
Use in dysentery | S. orientale | [76,79,86] |
Anti- addiction activity | S. officinale | [83] |
Appetizing, digestive and aperitif activity | S. officinale, B. nigra, B. juncea | [44,79,83] |
Snake bite antidote | B. rapa, S. officinale | [14,44,52,78,82,85] |
Skin disorders | Neslia paniculata | [4] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.; Khatun, A.; Liu, L.; Barkla, B.J. Brassicaceae Mustards: Traditional and Agronomic Uses in Australia and New Zealand. Molecules 2018, 23, 231. https://doi.org/10.3390/molecules23010231
Rahman M, Khatun A, Liu L, Barkla BJ. Brassicaceae Mustards: Traditional and Agronomic Uses in Australia and New Zealand. Molecules. 2018; 23(1):231. https://doi.org/10.3390/molecules23010231
Chicago/Turabian StyleRahman, Mahmudur, Amina Khatun, Lei Liu, and Bronwyn J. Barkla. 2018. "Brassicaceae Mustards: Traditional and Agronomic Uses in Australia and New Zealand" Molecules 23, no. 1: 231. https://doi.org/10.3390/molecules23010231
APA StyleRahman, M., Khatun, A., Liu, L., & Barkla, B. J. (2018). Brassicaceae Mustards: Traditional and Agronomic Uses in Australia and New Zealand. Molecules, 23(1), 231. https://doi.org/10.3390/molecules23010231