Influence of Eugenia uniflora Extract on Adhesion to Human Buccal Epithelial Cells, Biofilm Formation, and Cell Surface Hydrophobicity of Candida spp. from the Oral Cavity of Kidney Transplant Recipients
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Plant Material and Eugenia uniflora Extract
3.2. High-Performance Liquid Chromatography (HPLC) Analysis of Eugenia uniflora Extract
3.3. Strain and Culture Conditions
3.4. MIC of Eugenia uniflora Extract
3.5. Hemolytic Activity of Eugenia uniflora Extract on Human Erythrocytes
3.6. Cytotoxicity Assay of E. uniflora Extract to HBEC
3.7. Candida spp. Virulence Factors
3.7.1. Candida spp. Adherence to HBEC in the Presence of Eugenia uniflora
3.7.2. CSH
3.7.3. Candida spp. Biofilm Formation in the Presence of Eugenia uniflora
3.7.4. Analysis of Candida spp. Biofilm Formation in the Presence of Eugenia uniflora Extract by Electronic Scan Microscopy (SEM)
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Williams, D.W.; Jordan, R.P.C.; Wei, X.-Q.; Alves, C.T.; Wise, M.P.; Wilson, M.J.; Lewis, M.A. Interactions of Candida albicans with host epithelial surfaces. J. Oral Microbiol. 2013, 5, 22434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaves, G.M.; Diniz, M.G.; Silva-Rocha, W.P.; de Souza, L.B.F.C.; Gondim, L.A.M.; Ferreira, M.A.F.; Svidzinski, T.I.E.; Milan, E.P. Species Distribution and Virulence Factors of Candida spp. Isolated from the Oral Cavity of Kidney Transplant Recipients in Brazil. Mycopathologia 2013, 175, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Nobile, C.J.; Johnson, A.D. Candida albicans Biofilms and Human Disease. Annu. Rev. Microbiol. 2015, 69, 71–92. [Google Scholar] [CrossRef] [PubMed]
- Maurya, V.; Srivastava, A.; Mishra, J.; Gaind, R.; Marak, R.S.K.; Tripathi, A.K.; Singh, M.; Venkatesh, V. Oropharyngeal candidiasis and Candida colonization in HIV positive patients in northern India. J. Infect. Dev. Ctries. 2013, 7, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Ieda, S.; Moriyama, M.; Takashita, T.; Maehara, T.; Imabayashi, Y.; Shinozaki, S.; Tanaka, A.; Hayashida, J.N.; Furukawa, S.; Ohta, M.; et al. Molecular analysis of fungal populations in patients with oral candidiasis using internal transcribed spacer region. PLoS ONE 2014, 9, e101156. [Google Scholar] [CrossRef] [PubMed]
- Vijayalakshmi, P.; Thenmozhi, S.; Rajeswari, P. The Evaluation of the virulence factors of clinical Candida isolates and the anti-biofilm activity of Elettaria cardamomum against multi-drug resistant Candida albicans. Curr. Med. Mycol. 2016, 2, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Araújo, D.; Henriques, M.; Silva, S. Portrait of Candida Species Biofilm Regulatory Network Genes. Trends Microbiol. 2017, 25, 62–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muzyka, B.C.; Epifanio, R.N. Update on Oral Fungal Infections. Dent. Clin. N. Am. 2013, 57, 561–581. [Google Scholar] [CrossRef] [PubMed]
- Zahir, R.A.; Himratul-Aznita, W.H. Distribution of Candida in the oral cavity and its differentiation based on the internally transcribed spacer (ITS) regions of rDNA. Yeast 2013, 30, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Gow, N.A.R. A developmental program for Candida commensalism. Nat. Genet. 2013, 45, 967–968. [Google Scholar] [CrossRef] [PubMed]
- Menezes, T.O.A.; Gillet, L.C.S.; Menezes, S.A.F.; Feitosa, R.N.M.; Ishak, M.O.G.; Ishak, R.; Marques-da-Silva, S.H.; Vallinoto, A.C.R. Virulence factors of Candida albicans isolates from the oral cavities of HIV-1-positive patients. Curr. HIV Res. 2013, 11, 304–308. [Google Scholar] [CrossRef] [PubMed]
- Mayer, F.L.; Wilson, D.; Hube, B. Candida albicans pathogenicity mechanisms. Virulence 2013, 4, 119–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.-N.; Srikantha, T.; Daniels, K.J.; Jacob, M.R.; Agarwal, A.K.; Li, X.-C.; Soll, D.R. Protocol for Identifying Natural Agents That Selectively Affect Adhesion, Thickness, Architecture, Cellular Phenotypes, Extracellular Matrix, and Human White Blood Cell Impenetrability of Candida albicans Biofilms. Antimicrob. Agents Chemother. 2017, 61, e01319-17. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Negri, M.; Henriques, M.; Oliveira, R.; Williams, D.W.; Azeredo, J. Adherence and biofilm formation of non-Candida albicans Candida species. Trends Microbiol. 2011, 19, 241–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katragkou, A.; Kruhlak, M.J.; Simitsopoulou, M.; Taparkou, A.; Cotten, C.J.; Paliogianni, F.; Tsantali, C.; Walsh, T.J.; Roilides, E. Interactions between Human Phagocytes and Candida albicans Biofilms Alone and in Combination with Antifungal Agents. J. Infect. Dis. 2011, 201, 1941–1949. [Google Scholar] [CrossRef] [PubMed]
- Winter, M.B.; Salcedo, E.C.; Lohse, M.B.; Hartooni, N.; Gulati, M.; Sanchez, H.; Takagi, J.; Hube, B.; Andes, D.R.; Johnson, A.D.; et al. Global identification of biofilm-specific proteolysis in Candida albicans. MBio 2016, 7, e01514-16. [Google Scholar] [CrossRef] [PubMed]
- Nett, J.; Lincoln, L.; Marchillo, K.; Massey, R.; Holoyda, K.; Hoff, B.; VanHandel, M.; Andes, D. Putative role of β-1,3 glucans in Candida albicans biofilm resistance. Antimicrob. Agents Chemother. 2007, 51, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Karuthu, S.; Blumberg, E.A. Common infections in kidney transplant recipients. Clin. J. Am. Soc. Nephrol. 2012, 7, 2058–2070. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, G.; Antonopoulou, A.; Armaganidis, A.; Vincent, J.-L. How to select an antifungal agent in critically ill patients. J. Crit. Care 2013, 28, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, K.A.D.F.; Amorim, L.V.; De Oliveira, J.M.G.; Dias, C.N.; Moraes, D.F.C.; Andrade, E.H.D.A.; Maia, J.G.S.; Carneiro, S.M.P.; Carvalho, F.A.D.A. Eugenia uniflora L. essential oil as a potential anti-leishmania agent: Effects on Leishmania amazonensis and possible mechanisms of action. Evidence-based Complement. Altern. Med. 2013, 2013, 279726. [Google Scholar] [CrossRef] [PubMed]
- Martins, J.L.R.; Carvalho, A.G.; Santos, S.C.; Costa, E.A. Atividade anti-ulcerogênica da fração aquosa do extrato hidroacetônico (fhap) das folhas de Eugenia uniflora L. em modelo de lesões gástricas induzidas por estresse em camundongos. Rev. Biotecnol. Ciência 2013, 2, 68. [Google Scholar]
- Brandão, M.G.L.; Zanetti, N.N.S.; Oliveira, P.; Grael, C.F.F.; Santos, A.C.P.; Monte-Mór, R.L.M. Brazilian medicinal plants described by 19th century European naturalists and in the Official Pharmacopoeia. J. Ethnopharmacol. 2008, 120, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.R.A.; Santiago, R.R.; Langassner, S.M.Z.; Palazzo de Mello, J.C.; Svidzinski, T.I.E.; Soares, L.A.L. Antifungal activity of medicinal plants from Northeastern Brazil. J. Med. Plants Res. 2013, 7, 3008–3013. [Google Scholar] [CrossRef]
- Santos, K.K.A.; Matias, E.F.F.; Tintino, S.R.; Souza, C.E.S.; Braga, M.F.B.M.; Guedes, G.M.M.; Costa, J.G.M.; Menezes, I.R.A.; Coutinho, H.D.M. Enhancement of the antifungal activity of antimicrobial drugs by Eugenia uniflora L. J. Med. Food 2013, 16, 669–671. [Google Scholar] [CrossRef] [PubMed]
- Victoria, F.N.; Lenardão, E.J.; Savegnago, L.; Perin, G.; Jacob, R.G.; Alves, D.; da Silva, W.P.; da Motta Ade, S.; Nascente Pda, S. Essential oil of the leaves of Eugenia uniflora L.: Antioxidant and antimicrobial properties. Food Chem. Toxicol. 2012, 50, 2668–2674. [Google Scholar] [CrossRef] [PubMed]
- Silva-Rocha, W.P.; de Brito Lemos, V.L.; Ferreira, M.R.A.; Soares, L.A.L.; Svidzisnki, T.I.E.; Milan, E.P.; Chaves, G.M. Effect of the crude extract of Eugenia uniflora in morphogenesis and secretion of hydrolytic enzymes in Candida albicans from the oral cavity of kidney transplant recipients. BMC Complement. Altern. Med. 2015, 15, 6. [Google Scholar] [CrossRef] [PubMed]
- Silva-Rocha, W.P.; de Azevedo, M.F.; Ferreira, M.R.A.; da Silva Jde, F.; Svidzinski, T.I.E.; Milan, E.P.; Soares, L.A.L.; Rocha, K.B.F.; Uchôa, A.F.; Mendes-Giannini, M.J.S.; et al. Effect of the Ethyl Acetate Fraction of Eugenia uniflora on Proteins Global Expression during Morphogenesis in Candida albicans. Front. Microbiol. 2017, 8, 1788. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Cao, Y.Y.; Dai, B.D.; Sun, X.R.; Zhu, Z.Y.; Cao, Y.B.; Wang, Y.; Gao, P.H.; Jiang, Y.Y. In vitro synergism of fluconazole and baicalein against clinical isolates of Candida albicans resistant to fluconazole. Biol. Pharm. Bull. 2008, 31, 2234–2236. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.A.; Ahmad, I. Biofilm inhibition by Cymbopogon citratus and Syzygium aromaticum essential oils in the strains of Candida albicans. J. Ethnopharmacol. 2012, 140, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Biasi-Garbin, R.P.; Demitto, F.D.O.; do Amaral, R.C.R.; Ferreira, M.R.A.; Soares, L.A.L.; Svidzinski, T.I.E.; Baeza, L.C.; Yamada-Ogatta, S.F. Antifungal potential of plant species from brazilian caatinga against dermatophytes. Rev. Inst. Med. Trop. Sao Paulo 2016, 58, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Teodoro, G.R.; Ellepola, K.; Seneviratne, C.J.; Koga-Ito, C.Y. Potential Use of Phenolic Acids as Anti-Candida Agents: A Review. Front. Microbiol. 2015, 6, 1420. [Google Scholar] [CrossRef] [PubMed]
- Herrera, C.L.; Alvear, M.; Barrientos, L.; Montenegro, G.; Salazar, L.A. The antifungal effect of six commercial extracts of Chilean propolis on Candida spp. Cienc. Investig. Agrar. 2010, 37, 75–84. [Google Scholar] [CrossRef]
- Li, Z.-J.; Liu, M.; Dawuti, G.; Dou, Q.; Ma, Y.; Liu, H.-G.; Aibai, S. Antifungal Activity of Gallic Acid In Vitro and In Vivo. Phyther. Res. 2017, 31, 1039–1045. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.T.; Ferreira, I.C.; Barros, L.; Silva, S.; Azeredo, J.; Henriques, M. Antifungal activity of phenolic compounds identified in flowers from North Eastern Portugal against Candida species. Future Microbiol. 2014, 9, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Aranda, R.; Granados-Guzmán, G.; Pérez-Meseguer, J.; González, G.M.; De Torres, N.W. Activity of polyphenolic compounds against Candida glabrata. Molecules 2015, 20, 17903–17912. [Google Scholar] [CrossRef] [PubMed]
- Geusau, A.; Antoniewicz, L.; Poitschek, C.; Presterl, E.; Willinger, B. In vitro susceptibility of Candida isolates from organ transplant recipients to newer antifungals. Mycopathologia 2014, 177, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Dehghani Nazhvani, A.; Haddadi, P.; Badiee, P.; Malekhoseini, S.A.; Jafarian, H. Antifungal Effects of Common Mouthwashes on Candida Strains Colonized in the Oral Cavities of Liver Transplant Recipients in South Iran in 2014. Hepat. Mon. 2016, 16, e31245. [Google Scholar] [CrossRef] [PubMed]
- Rezvani, G.; Davarmanesh, M.; Azar, M.R.; Salehipour, M.; Sedaghat, R.; Karimi, F.; Pazhoohi, N.; Ansari, E.; Nazhvani, A.D. Oral Manifestations of Allograft Recipients Before and After Renal Transplantation. Saudi J. Kidney Dis. Transpl. 2014, 25, 278–284. [Google Scholar] [PubMed]
- Modrzewska, B.; Kurnatowski, P.; Modrezewka, B.; Kurnatowski, P. Adherence of Candida sp. to host tissues and cells as one of its pathogenicity features. Ann. Parasitol. 2015, 61, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Thaweboon, B.; Thaweboon, S. Effect of Phyllanthus emblica Linn. on Candida adhesion to oral epithelium and denture acrylic. Asian Pac. J. Trop. Med. 2011, 4, 41–45. [Google Scholar] [CrossRef]
- de Paula, S.B.; Bartelli, T.F.; Di Raimo, V.; Santos, J.P.; Morey, A.T.; Bosini, M.A.; Nakamura, C.V.; Yamauchi, L.M.; Yamada-Ogatta, S.F. Effect of Eugenol on Cell Surface Hydrophobicity, Adhesion, and Biofilm of Candida tropicalis and Candida dubliniensis Isolated from Oral Cavity of HIV-Infected Patients. Evid. Based. Complement. Altern. Med. 2014, 2014, 505204. [Google Scholar] [CrossRef] [PubMed]
- Lopes, G.; Pinto, E.; Andrade, P.B.; Valentão, P. Antifungal Activity of Phlorotannins against Dermatophytes and Yeasts: Approaches to the Mechanism of Action and Influence on Candida albicans Virulence Factor. PLoS ONE 2013, 8, e72203. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, E.; Godoy, J.S.R.; Bonfim-Mendonça, P.D.S.; De Mello, J.C.P.; Svidzinski, T.I.E.; Gasparetto, A.; Maciel, S.M. In vitro effect of Paullinia cupana (guaraná) on hydrophobicity, biofilm formation, and adhesion of Candida albicans to polystyrene, composites, and buccal epithelial cells. Arch. Oral Biol. 2015, 60, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Muadcheingka, T.; Tantivitayakul, P. Distribution of Candida albicans and non-albicans Candida species in oral candidiasis patients: Correlation between cell surface hydrophobicity and biofilm forming activities. Arch. Oral Biol. 2015, 60, 894–901. [Google Scholar] [CrossRef] [PubMed]
- Rajkowska, K.; Kunicka-Styczyńska, A.; Peczek, M. Hydrophobic properties of Candida spp. under the influence of selected essential oils. Acta Biochim. Pol. 2015, 62, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Zorić, N.; Kopjar, N.; Bobnjarić, I.; Horvat, I.; Tomić, S.; Kosalec, I. Antifungal Activity of Oleuropein against Candida albicans—The In Vitro Study. Molecules 2016, 21, 1631. [Google Scholar] [CrossRef] [PubMed]
- Shirley, K.P.; Windsor, L.J.; Eckert, G.J.; Gregory, R.L. In Vitro Effects of Plantago Major Extract, Aucubin, and Baicalein on Candida albicans Biofilm Formation, Metabolic Activity, and Cell Surface Hydrophobicity. J. Prosthodont. 2017, 26, 508–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, L.; Liao, K.; Wang, D. Effects of Magnolol and Honokiol on Adhesion, Yeast-Hyphal Transition, and Formation of Biofilm by Candida albicans. PLoS ONE 2015, 10, e0117695. [Google Scholar] [CrossRef] [PubMed]
- Nordin, M.A.F.; Harun, W.H.A.W.; Razak, F.A. An in vitro study on the anti-adherence effect of Brucea javanica and Piper betle extracts towards oral Candida. Arch. Oral Biol. 2013, 58, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
- Stepanović, S.; Vuković, D.; Hola, V.; Di Bonaventura, G.; Djukić, S.; Ćirković, I.; Ruzicka, F. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 2007, 115, 891–899. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, C.B.; Soares, D.G.D.S.; Paulo, M.D.Q.; Padilha, W.W.N. Atividade antimicrobiana in vitro da Eugenia uniflora L. (Pitanga) sobre Bactérias Cariogênicas. Rev. Bras. Ciências da Saúde 2008, 12, 239–250. [Google Scholar]
- Zeukoo, M.E.; Virginio, C.L.; Sara, M.S.; Fekam, B.F. Anti-Candida biofilm properties of Cameroonian plant extracts. J. Med. Plants Res. 2016, 10, 603–611. [Google Scholar] [CrossRef]
- Cannas, S.; Molicotti, P.; Usai, D.; Maxia, A.; Zanetti, S. Antifungal, anti-biofilm and adhesion activity of the essential oil of Myrtus communis L. against Candida species. Nat. Prod. Res. 2014, 28, 2173–2177. [Google Scholar] [CrossRef] [PubMed]
- Sardi, J.C.O.; Scorzoni, L.; Bernardi, T.; Fusco-Almeida, A.M.; Mendes Giannini, M.J.S. Candida species: Current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J. Med. Microbiol. 2013, 62, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Silva-Dias, A.; Miranda, I.M.; Branco, J.; Monteiro-Soares, M.; Pina-Vaz, C.; Rodrigues, A.G. Adhesion, biofilm formation, cell surface hydrophobicity, and antifungal planktonic susceptibility: Relationship among Candida spp. Front. Microbiol. 2015, 6, 205. [Google Scholar] [CrossRef] [PubMed]
- Raut, J.; Rathod, V.; Karuppayil, S.M. Cell surface hydrophobicity and adhesion: A study on fifty clinical isolates of Candida albicans. Nihon Ishinkin Gakkai Zasshi 2010, 51, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Yamada-Ogatta, S.; Kanoshiki, R.; de Paula, S.; Santos, J.; Morey, A.; Souza, N.; Yamauchi, L.; Dias Filho, B. Effects of fluconazole treatment of mice infected with fluconazole-susceptible and -resistant Candida tropicalis on fungal cell surface hydrophobicity, adhesion and biofilm formation. Indian J. Med. Microbiol. 2015, 33, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Panagoda, G.J.; Ellepola, A.N.B.; Samaranayake, L.P. Adhesion of Candida parapsilosis to epithelial and acrylic surfaces correlates with cell surface hydrophobicity. Mycoses 2001, 44, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Ishida, K.; Palazzo de Mello, J.C.; Garcia Cortez, D.A.; Dias Filho, B.P.; Ueda-Nakamura, T.; Nakamura, C.V. Influence of tannins from Stryphnodendron adstringens on growth and virulence factors of Candida albicans. J. Antimicrob. Chemother. 2006, 58, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, M.; Sherry, L.; Rajendran, R.; Edwards, C.A.; Combet, E.; Ramage, G. International Journal of Antimicrobial Agents Utilising polyphenols for the clinical management of Candida albicans biofilms. Int. J. Antimicrob. Agents 2014, 44, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-S.; Kim, Y. Development of Candida albicans Biofilms Is Diminished by Paeonia lactiflora via Obstruction of Cell Adhesion and Cell Lysis. J. Microbiol. Biotechnol. 2018, 28, 482–490. [Google Scholar] [CrossRef] [PubMed]
- de Araújo, A.A.; Soares, L.A.L.; Assunção Ferreira, M.R.; de Souza Neto, M.A.; da Silva, G.R.; de Araújo, R.F.; Guerra, G.C.B.; de Melo, M.C.N. Quantification of polyphenols and evaluation of antimicrobial, analgesic and anti-inflammatory activities of aqueous and acetone-water extracts of Libidibia ferrea, Parapiptadenia rigida and Psidium guajava. J. Ethnopharmacol. 2014, 156, 88–96. [Google Scholar] [CrossRef] [PubMed]
- CLSI. M27-A3 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard, 3rd ed.; CLSI: Wayne, PA, USA, 2008. [Google Scholar]
- Silva-Filho, M.A.; Siqueira, S.D.; Freire, L.B.; Araújo, I.B.; Holanda e Silva, K.G.; Medeiros Ada, C.; Araújo-Filho, I.; Oliveira, A.G.; Egito, E.S. How can micelle systems be rebuilt by a heating process? Int. J. Nanomedicine 2012, 7, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Crowley, L.C.; Marfell, B.J.; Christensen, M.E.; Waterhouse, N.J. Measuring Cell Death by Trypan Blue Uptake and Light Microscopy. Cold Spring Harb. Protoc. 2016, 2016. [Google Scholar] [CrossRef] [PubMed]
- Bates, S.; Hughes, H.B.; Munro, C.A.; Thomas, W.P.H.; MacCallum, D.M.; Bertram, G.; Atrih, A.; Ferguson, M.A.J.; Brown, A.J.P.; Odds, F.C.; et al. Outer chain N-glycans are required for cell wall integrity and virulence of Candida albicans. J. Biol. Chem. 2006, 281, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Pierce, C.G.; Uppuluri, P.; Tristan, A.R.; Wormley, F.L.; Mowat, E.; Ramage, G.; Lopez-Ribot, J.L. A simple and reproducible 96 well plate-based method for the formation of fungal biofilms and its applications to antifungal susceptibility testing. Nat. Protoc. 2008, 3, 1494–1500. [Google Scholar] [CrossRef] [PubMed]
- Pires, R.H.; Montanari, L.B.; Martins, C.H.G.; Zaia, J.E.; Almeida, A.M.F.; Matsumoto, M.T.; Mendes-Giannini, M.J.S. Anticandidal efficacy of cinnamon oil against planktonic and biofilm cultures of Candida parapsilosis and Candida orthopsilosis. Mycopathologia 2011, 172, 453–464. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds of E. uniflora extract are available from the authors. |
N° of Cells Adhered to 150 HBEC | |
---|---|
Absence of EUE ** vs. Presence of EUE ** | |
All Candida spp. (N = 42 strains) | 172 ± 86 vs. 87 ± 51 * |
Candida albicans (N = 26 strains) | 209 ± 75 vs. 108 ± 51 * |
NCAC species (N = 16 strains) | 125 ± 76 vs. 61 ± 39 * |
Species | N° of Strains | Mean + SD (Range) | |
---|---|---|---|
CSH (% Value) | |||
Absence of EUE ** | Presence of EUE ** | ||
C. albicans | 26 | 25.5 ± 0.9 (0.9 − 93.3) | 16.9 ± 0.8 (1.0 − 69.5) * |
Overall NCAC species | 16 | 20.4 ± 1.9 (0.6 − 72.4) | 12.6 ± 1.2 (1.2 − 48.4) * |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, L.B.F.C.; Silva-Rocha, W.P.; Ferreira, M.R.A.; Soares, L.A.L.; Svidzinski, T.I.E.; Milan, E.P.; Pires, R.H.; Fusco Almeida, A.M.; Mendes-Giannini, M.J.S.; Maranhão Chaves, G. Influence of Eugenia uniflora Extract on Adhesion to Human Buccal Epithelial Cells, Biofilm Formation, and Cell Surface Hydrophobicity of Candida spp. from the Oral Cavity of Kidney Transplant Recipients. Molecules 2018, 23, 2418. https://doi.org/10.3390/molecules23102418
Souza LBFC, Silva-Rocha WP, Ferreira MRA, Soares LAL, Svidzinski TIE, Milan EP, Pires RH, Fusco Almeida AM, Mendes-Giannini MJS, Maranhão Chaves G. Influence of Eugenia uniflora Extract on Adhesion to Human Buccal Epithelial Cells, Biofilm Formation, and Cell Surface Hydrophobicity of Candida spp. from the Oral Cavity of Kidney Transplant Recipients. Molecules. 2018; 23(10):2418. https://doi.org/10.3390/molecules23102418
Chicago/Turabian StyleSouza, Luanda B. F. C., Walicyranison P. Silva-Rocha, Magda R. A. Ferreira, Luiz Alberto L. Soares, Terezinha I. E. Svidzinski, Eveline P. Milan, Regina H. Pires, Ana Marisa Fusco Almeida, Maria José S. Mendes-Giannini, and Guilherme Maranhão Chaves. 2018. "Influence of Eugenia uniflora Extract on Adhesion to Human Buccal Epithelial Cells, Biofilm Formation, and Cell Surface Hydrophobicity of Candida spp. from the Oral Cavity of Kidney Transplant Recipients" Molecules 23, no. 10: 2418. https://doi.org/10.3390/molecules23102418
APA StyleSouza, L. B. F. C., Silva-Rocha, W. P., Ferreira, M. R. A., Soares, L. A. L., Svidzinski, T. I. E., Milan, E. P., Pires, R. H., Fusco Almeida, A. M., Mendes-Giannini, M. J. S., & Maranhão Chaves, G. (2018). Influence of Eugenia uniflora Extract on Adhesion to Human Buccal Epithelial Cells, Biofilm Formation, and Cell Surface Hydrophobicity of Candida spp. from the Oral Cavity of Kidney Transplant Recipients. Molecules, 23(10), 2418. https://doi.org/10.3390/molecules23102418