Solid-Phase Extraction of Polar Benzotriazoles as Environmental Pollutants: A Review
Abstract
:1. Introduction
2. Benzotriazoles
3. Analytical Techniques for the Determination of Polar Benzotriazoles
4. Solid-Phase Extraction of Benzotriazoles from Aqueous Samples
5. Solid-Phase Extraction of Benzotriazoles from Solid and Other Samples
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACN | acetonitrile |
ACO | acetone |
DCM | dichloromethane |
EA | ethyl acetate |
GC | gas chromatography |
LC | liquid chromatography |
LLE | liquid–liquid extraction |
LSE | liquid–solid extraction |
LOD | limit of detection |
LOQ | limit of quantification |
MeOH | methanol |
MS | mass spectrometry |
MTBE | methyl tert-butyl ether |
References
- Simpson, N.J.K. (Ed.) Solid-Phase Extraction: Principles, Techniques, and Applications; Marcel Dekker: New York, NY, USA, 2000. [Google Scholar]
- Reemtsma, T.; Miehe, U.; Duennbier, U.; Jekel, M. Polar pollutants in municipal wastewater and the water cycle: Occurrence and removal of benzotriazoles. Water Res. 2010, 44, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.; Reemtsma, T. Determination of Benzotriazole Corrosion Inhibitors from Aqueous Environmental Samples by Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry. Anal. Chem. 2005, 77, 7415–7420. [Google Scholar] [CrossRef] [PubMed]
- Herrero, P.; Borrull, F.; Pocurull, E.; Marcé, R. Efficient tandem solid-phase extraction and liquid chromatography-triple quadrupole mass spectrometry method to determine polar benzotriazole, benzothiazole and benzenesulfonamide contaminants in environmental water samples. J. Chromatogr. A 2013, 1309, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Kiss, A.; Fries, E. Occurrence of benzotriazoles in the rivers Main, Hengstbach, and Hegbach (Germany). Environ. Sci. Pollut. Res. 2009, 16, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Janna, H.; Scrimshaw, M.D.; Williams, R.J.; Churchley, J.; Sumpter, J.P. From Dishwasher to Tap? Xenobiotic Substances Benzotriazole and Tolyltriazole in the Environment. Environ. Sci. Technol. 2011, 45, 3858–3864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.S.; Ying, G.G.; Shareef, A.; Kookana, R.S. Simultaneous determination of benzotriazoles and ultraviolet filters in ground water, effluent and biosolid samples using gas chromatography–tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 5328–5335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carpinteiro, I.; Abuin, B.; Ramil, M.; Rodríguez, I.; Cela, R. Simultaneous determination of benzotriazole and benzothiazole derivatives in aqueous matrices by mixed-mode solid-phase extraction followed by liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 2012, 402, 2471–2478. [Google Scholar] [CrossRef] [PubMed]
- Nödler, K.; Voutsa, D.; Licha, T. Polar organic micropollutants in the coastal environment of different marine systems. Mar. Pollut. Bull. 2014, 85, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, J.; Sun, H.; Zhou, Q. Widespread Occurrence of Benzotriazoles and Benzothiazoles in Tap Water: Influencing Factors and Contribution to Human Exposure. Environ. Sci. Technol. 2016, 50, 2709–2717. [Google Scholar] [CrossRef] [PubMed]
- LeFevre, G.H.; Lipsky, A.; Hyland, K.C.; Blaine, A.C.; Higgins, C.P.; Luthy, R.G. Benzotriazole (BT) and BT plant metabolites in crops irrigated with recycled water. Environ. Sci. Water Res. Technol. 2017, 3, 213–223. [Google Scholar] [CrossRef]
- Xue, J.; Wan, Y.; Kannan, K. Occurrence of benzotriazoles (BTRs) in indoor air from Albany, New York, USA, and its implications for inhalation exposure. Toxicol. Environ. Chem. 2017, 99, 402–414. [Google Scholar] [CrossRef]
- Speltini, A.; Sturini, M.; Maraschi, F.; Porta, A.; Profumo, A. Fast low-pressurized microwave-assisted extraction of benzotriazole, benzothiazole and benezenesulfonamide compounds from soil samples. Talanta 2016, 147, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Cantwell, M.G.; Sullivan, J.C.; Katz, D.R.; Burgess, R.M.; Bradford Hubeny, J.; King, J. Source determination of benzotriazoles in sediment cores from two urban estuaries on the Atlantic Coast of the United States. Mar. Pollut. Bull. 2015, 101, 208–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Asimakopoulos, A.G.; Moon, H.B.; Nakata, H.; Kannan, K. Benzotriazole, Benzothiazole, and Benzophenone Compounds in Indoor Dust from the United States and East Asian Countries. Environ. Sci. Technol. 2013, 47, 4752–4759. [Google Scholar] [CrossRef] [PubMed]
- Luongo, G.; Avagyan, R.; Hongyu, R.; Östman, C. The washout effect during laundry on benzothiazole, benzotriazole, quinoline, and their derivatives in clothing textiles. Environ. Sci. Pollut. Res. 2016, 23, 2537–2548. [Google Scholar] [CrossRef] [PubMed]
- Asimakopoulos, A.G.; Bletsou, A.A.; Wu, Q.; Thomaidis, N.S.; Kannan, K. Determination of Benzotriazoles and Benzothiazoles in Human Urine by Liquid Chromatography-Tandem Mass Spectrometry. Anal. Chem. 2013, 85, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, L.; Asimakopoulos, A.G.; Sun, H.; Zhao, Z.; Zhang, J.; Zhang, L.; Wang, Q. Benzotriazoles and benzothiazoles in paired maternal urine and amniotic fluid samples from Tianjin, China. Chemosphere 2018, 199, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Voutsa, D.; Hartmann, P.; Schaffner, C.; Giger, W. Benzotriazoles, Alkylphenols and Bisphenol A in Municipal Wastewaters and in the Glatt River, Switzerland. Environ. Sci. Pollut. Res. 2006, 13, 333–341. [Google Scholar] [CrossRef]
- Liu, Y.S.; Ying, G.G.; Shareef, A.; Kookana, R.S. Biodegradation of three selected benzotriazoles under aerobic and anaerobic conditions. Water Res. 2011, 45, 5005–5014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Leerdam, J.A.; Hogenboom, A.C.; van der Kooi, M.M.; de Voogt, P. Determination of polar 1H-benzotriazoles and benzothiazoles in water by solid-phase extraction and liquid chromatography LTQ FT Orbitrap mass spectrometry. Int. J. Mass Spectrom. 2009, 282, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Alotaibi, M.D.; Patterson, B.M.; McKinley, A.J.; Reeder, A.Y.; Furness, A.J. Benzotriazole and 5-methylbenzotriazole in recycled water, surface water and dishwashing detergents from Perth, Western Australia: analytical method development and application. Environ. Sci. Process. Impacts 2015, 17, 448–457. [Google Scholar] [CrossRef] [PubMed]
- Deeb, A.A.; Schmidt, T.C. Tandem anion and cation exchange solid phase extraction for the enrichment of micropollutants and their transformation products from ozonation in a wastewater treatment plant. Anal. Bioanal. Chem. 2016, 408, 4219–4232. [Google Scholar] [CrossRef] [PubMed]
- Bahnmüller, S.; Loi, C.H.; Linge, K.L.; Gunten, U.V.; Canonica, S. Degradation rates of benzotriazoles and benzothiazoles under UV-C irradiation and the advanced oxidation process UV/H2O2. Water Res. 2015, 74, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Seeland, A.; Oetken, M.; Kiss, A.; Fries, E.; Oehlmann, J. Acute and chronic toxicity of benzotriazoles to aquatic organisms. Environ. Sci. Pollut. Res. 2012, 19, 1781–1790. [Google Scholar] [CrossRef] [PubMed]
- Harris, C.A.; Routledge, E.J.; Schaffner, C.; Brian, J.V.; Giger, W.; Sumpter, J.P. Benzotriazole is antiestrogenic in vitro but not in vivo. Environ. Toxicol. Chem. 2007, 26, 2367–2372. [Google Scholar] [CrossRef] [PubMed]
- Pervova, M.G.; Kirichenko, V.E.; Saloutin, V.I. Determination of 1,2,3-benzotriazole in aqueous solutions and air by reaction-gas-liquid chromatography. J. Anal. Chem. 2010, 65, 276–279. [Google Scholar] [CrossRef]
- Herrero, P.; Borrull, F.; Pocurull, E.; Marcé, R.M. A quick, easy, cheap, effective, rugged and safe extraction method followed by liquid chromatography-(Orbitrap) high resolution mass spectrometry to determine benzotriazole, benzothiazole and benzenesulfonamide derivates in sewage sludge. J. Chromatogr. A 2014, 1339, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Gilart, N.; Cormack, P.A.G.; Marcé, R.M.; Borrull, F.; Fontanals, N. Preparation of a polar monolithic coating for stir bar sorptive extraction of emerging contaminants from wastewaters. J. Chromatogr. A 2013, 1295, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Naccarato, A.; Gionfriddo, E.; Sindona, G.; Tagarelli, A. Simultaneous determination of benzothiazoles, benzotriazoles and benzosulfonamides by solid phase microextraction-gas chromatography-triple quadrupole mass spectrometry in environmental aqueous matrices and human urine. J. Chromatogr. A 2014, 1338, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Casado, J.; Rodríguez, I.; Ramil, M.; Cela, R. Polyethersulfone solid-phase microextraction followed by liquid chromatography quadrupole time-of-flight mass spectrometry for benzotriazoles determination in water samples. J. Chromatogr. A 2013, 1299, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Pena, M.T.; Vecino-Bello, X.; Casais, M.C.; Mejuto, M.C.; Cela, R. Optimization of a dispersive liquid–liquid microextraction method for the analysis of benzotriazoles and benzothiazoles in water samples. Anal. Bioanal. Chem. 2012, 402, 1679–1695. [Google Scholar] [CrossRef] [PubMed]
- Casado, J.; Nescatelli, R.; Rodríguez, I.; Ramil, M.; Marini, F.; Cela, R. Determination of benzotriazoles in water samples by concurrent derivatization–dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry. J. Chromatogr. A 2014, 1336, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, M.D.; McKinley, A.J.; Patterson, B.M.; Reeder, A.Y. Benzotriazoles in the Aquatic Environment: a Review of Their Occurrence, Toxicity, Degradation and Analysis. Water Air Soil Pollut. 2015, 226. [Google Scholar] [CrossRef]
- Herrero, P.; Borrull, F.; Pocurull, E.; Marcé, R.M. An overview of analytical methods and occurrence of benzotriazoles, benzothiazoles and benzenesulfonamides in the environment. Trends Anal. Chem. 2014, 62, 46–55. [Google Scholar] [CrossRef]
- Bruzzoniti, M.C.; Maina, R.; Tumiatti, V.; Sarzanini, C.; De Carlo, R.M. Simultaneous Determination of Passivator and Antioxidant Additives in Insulating Mineral Oils by High-Performance Liquid Chromatography. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 15–19. [Google Scholar] [CrossRef]
- Hogenboom, A.; van Leerdam, J.; de Voogt, P. Accurate mass screening and identification of emerging contaminants in environmental samples by liquid chromatography–hybrid linear ion trap Orbitrap mass spectrometry. J. Chromatogr. A 2009, 1216, 510–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salas, D.; Borrull, F.; Marcé, R.M.; Fontanals, N. Study of the retention of benzotriazoles, benzothiazoles and benzenesulfonamides in mixed-mode solid-phase extraction in environmental samples. J. Chromatogr. A 2016, 1444, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Asimakopoulos, A.G.; Ajibola, A.; Kannan, K.; Thomaidis, N.S. Occurrence and removal efficiencies of benzotriazoles and benzothiazoles in a wastewater treatment plant in Greece. Sci. Total Environ. 2013, 452–453, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Wolschke, H.; Xie, Z.; Möller, A.; Sturm, R.; Ebinghaus, R. Occurrence, distribution and fluxes of benzotriazoles along the German large river basins into the North Sea. Water Res. 2011, 45, 6259–6266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loos, R.; Tavazzi, S.; Mariani, G.; Suurkuusk, G.; Paracchini, B.; Umlauf, G. Analysis of emerging organic contaminants in water, fish and suspended particulate matter (SPM) in the Joint Danube Survey using solid-phase extraction followed by UHPLC-MS-MS and GC–MS analysis. Sci. Total Environ. 2017, 607–608, 1201–1212. [Google Scholar] [CrossRef] [PubMed]
- Molins-Delgado, D.; Távora, J.; Silvia Díaz-Cruz, M.; Barceló, D. UV filters and benzotriazoles in urban aquatic ecosystems: The footprint of daily use products. Sci. Total Environ. 2017, 601–602, 975–986. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ren, N.; Li, Y.F.; Kunisue, T.; Gao, D.; Kannan, K. Determination of benzotriazole and benzophenone UV filters in sediment and sewage sludge. Environ. Sci. Technol. 2011, 45, 3909–3916. [Google Scholar] [CrossRef] [PubMed]
- Spahr, S.; Huntscha, S.; Bolotin, J.; Maier, M.P.; Elsner, M.; Hollender, J.; Hofstetter, T.B. Compound-specific isotope analysis of benzotriazole and its derivatives. Anal. Bioanal. Chem. 2013, 405, 2843–2856. [Google Scholar] [CrossRef] [PubMed]
- Hurtado, C.; Montano-Chávez, Y.N.; Domínguez, C.; Bayona, J.M. Degradation of Emerging Organic Contaminants in an Agricultural Soil: Decoupling Biotic and Abiotic Processes. Water Air Soil Pollut. 2017, 228, 243. [Google Scholar] [CrossRef]
- Liu, Y.S.; Ying, G.G.; Shareef, A.; Kookana, R.S. Occurrence and removal of benzotriazoles and ultraviolet filters in a municipal wastewater treatment plant. Environ. Pollut. 2012, 165, 225–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jover, E.; Matamoros, V.; Bayona, J.M. Characterization of benzothiazoles, benzotriazoles and benzosulfonamides in aqueous matrixes by solid-phase extraction followed by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. J. Chromatogr. A 2009, 1216, 4013–4019. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.S.; Ying, G.G.; Shareef, A.; Kookana, R.S. Biodegradation of three selected benzotriazoles in aquifer materials under aerobic and anaerobic conditions. J. Contam. Hydrol. 2013, 151, 131–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulej, A.M.; Polkowska, Ż.; Astel, A.; Namieśnik, J. Analytical procedures for the determination of fuel combustion products, anti-corrosive compounds, and de-icing compounds in airport runoff water samples. Talanta 2013, 117, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Koroša, A.; Auersperger, P.; Mali, N. Determination of micro-organic contaminants in groundwater (Maribor, Slovenia). Sci. Total Environ. 2016, 571, 1419–1431. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, C.; Reyes-Contreras, C.; Bayona, J.M. Determination of benzothiazoles and benzotriazoles by using ionic liquid stationary phases in gas chromatography mass spectrometry. Application to their characterization in wastewaters. J. Chromatogr. A 2012, 1230, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Kiss, A.; Fries, E. Seasonal source influence on river mass flows of benzotriazoles. J. Environ. Monit. 2012, 14, 697. [Google Scholar] [CrossRef] [PubMed]
- Loos, R.; Tavazzi, S.; Paracchini, B.; Canuti, E.; Weissteiner, C. Analysis of polar organic contaminants in surface water of the northern Adriatic Sea by solid-phase extraction followed by ultrahigh-pressure liquid chromatography–QTRAP<Superscript>®</Superscript> MS using a hybrid triple-quadrupole linear ion trap instrument. Anal. Bioanal. Chem. 2013, 405, 5875–5885. [Google Scholar] [CrossRef] [PubMed]
- Osorio, V.; Schriks, M.; Vughs, D.; de Voogt, P.; Kolkman, A. A novel sample preparation procedure for effect-directed analysis of micro-contaminants of emerging concern in surface waters. Talanta 2018, 186, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Thellmann, P.; Köhler, H.R.; Rößler, A.; Scheurer, M.; Schwarz, S.; Vogel, H.J.; Triebskorn, R. Fish embryo tests with Danio rerio as a tool to evaluate surface water and sediment quality in rivers influenced by wastewater treatment plants using different treatment technologies. Environ. Sci. Pollut. Res. 2015, 22, 16405–16416. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Yu, Y.; Men, Y. Emerging investigators series: Occurrence and fate of emerging organic contaminants in wastewater treatment plants with an enhanced nitrification step. Environ. Sci. Water Res. Technol. 2018. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Zhao, J.L.; Liu, Y.S.; Liu, W.R.; Zhang, Q.Q.; Yao, L.; Hu, L.X.; Zhang, J.N.; Jiang, Y.X.; Ying, G.G. Pharmaceuticals and personal care products (PPCPs) and artificial sweeteners (ASs) in surface and ground waters and their application as indication of wastewater contamination. Sci. Total Environ. 2018, 616–617, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Karthikraj, R.; Kannan, K. Mass loading and removal of benzotriazoles, benzothiazoles, benzophenones, and bisphenols in Indian sewage treatment plants. Chemosphere 2017, 181, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Huntscha, S.; Singer, H.P.; McArdell, C.S.; Frank, C.E.; Hollender, J. Multiresidue analysis of 88 polar organic micropollutants in ground, surface and wastewater using online mixed-bed multilayer solid-phase extraction coupled to high performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2012, 1268, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Busetti, F.; Ruff, M.; Linge, K.L. Target screening of chemicals of concern in recycled water. Environ. Sci. Water Res. Technol. 2015, 1, 659–667. [Google Scholar] [CrossRef]
- Bourgin, M.; Beck, B.; Boehler, M.; Borowska, E.; Fleiner, J.; Salhi, E.; Teichler, R.; von Gunten, U.; Siegrist, H.; McArdell, C.S. Evaluation of a full-scale wastewater treatment plant upgraded with ozonation and biological post-treatments: Abatement of micropollutants, formation of transformation products and oxidation by-products. Water Res. 2018, 129, 486–498. [Google Scholar] [CrossRef] [PubMed]
- Loos, R.; Locoro, G.; Contini, S. Occurrence of polar organic contaminants in the dissolved water phase of the Danube River and its major tributaries using SPE-LC-MS2 analysis. Water Res. 2010, 44, 2325–2335. [Google Scholar] [CrossRef] [PubMed]
- Loos, R.; Locoro, G.; Comero, S.; Contini, S.; Schwesig, D.; Werres, F.; Balsaa, P.; Gans, O.; Weiss, S.; Blaha, L.; et al. Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Res. 2010, 44, 4115–4126. [Google Scholar] [CrossRef] [PubMed]
- Loos, R.; Carvalho, R.; António, D.C.; Comero, S.; Locoro, G.; Tavazzi, S.; Paracchini, B.; Ghiani, M.; Lettieri, T.; Blaha, L.; et al. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Res. 2013, 47, 6475–6487. [Google Scholar] [CrossRef] [PubMed]
- Mazioti, A.A.; Stasinakis, A.S.; Gatidou, G.; Thomaidis, N.S.; Andersen, H.R. Sorption and biodegradation of selected benzotriazoles and hydroxybenzothiazole in activated sludge and estimation of their fate during wastewater treatment. Chemosphere 2015, 131, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Gatidou, G.; Oursouzidou, M.; Stefanatou, A.; Stasinakis, A.S. Removal mechanisms of benzotriazoles in duckweed Lemna minor wastewater treatment systems. Sci. Total Environ. 2017, 596–597, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Molins-Delgado, D.; Silvia Díaz-Cruz, M.; Barceló, D. Removal of polar UV stabilizers in biological wastewater treatments and ecotoxicological implications. Chemosphere 2015, 119, S51–S57. [Google Scholar] [CrossRef] [PubMed]
- Serra-Roig, M.P.; Jurado, A.; Díaz-Cruz, M.S.; Vázquez-Suñé, E.; Pujades, E.; Barceló, D. Occurrence, fate and risk assessment of personal care products in river–groundwater interface. Sci. Total Environ. 2016, 568, 829–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, J.; Mao, H.; Li, H.; Wang, Q.; Yang, Z. Occurrence of and human exposure to parabens, benzophenones, benzotriazoles, triclosan and triclocarban in outdoor swimming pool water in Changsha, China. Sci. Total Environ. 2017, 605–606, 1064–1069. [Google Scholar] [CrossRef] [PubMed]
- Östman, M.; Lindberg, R.H.; Fick, J.; Björn, E.; Tysklind, M. Screening of biocides, metals and antibiotics in Swedish sewage sludge and wastewater. Water Res. 2017, 115, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.H.Y.; Lin, Y.C.; Lin, A.Y.C. The persistence and photostabilizing characteristics of benzotriazole and 5-methyl-1H-benzotriazole reduce the photochemical behavior of common photosensitizers and organic compounds in aqueous environments. Environ. Sci. Pollut. Res. 2018, 25, 5911–5920. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.W.P.; Lin, Y.C.; Wang, Y.H.; Guo, Y.L.; Lin, A.Y.C. Occurrence of Emerging Contaminants in Aquaculture Waters: Cross-Contamination between Aquaculture Systems and Surrounding Waters. Water Air Soil Pollut. 2018, 229, 249. [Google Scholar] [CrossRef]
- Milić, N.; Milanović, M.; Radonić, J.; Sekulić, M.T.; Mandić, A.; Orčić, D.; Mišan, A.; Milovanović, I.; Letić, N.G.; Miloradov, M.V. The occurrence of selected xenobiotics in the Danube river via LC-MS/MS. Environ. Sci. Pollut. Res. 2018, 25, 11074–11083. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Li, H.; Luo, Z.; Lin, H.; Yang, Z. Occurrence, distribution, and environmental risk of four categories of personal care products in the Xiangjiang River, China. Environ. Sci. Pollut. Res. 2018, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Herrero, P.; Borrull, F.; Marcé, R.M.; Pocurull, E. A pressurised hot water extraction and liquid chromatography–high resolution mass spectrometry method to determine polar benzotriazole, benzothiazole and benzenesulfonamide derivates in sewage sludge. J. Chromatogr. A 2014, 1355, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Lakshminarasimman, N.; Quiñones, O.; Vanderford, B.J.; Campo-Moreno, P.; Dickenson, E.V.; McAvoy, D.C. Biotransformation and sorption of trace organic compounds in biological nutrient removal treatment systems. Sci. Total Environ. 2018, 640–641, 62–72. [Google Scholar] [CrossRef] [PubMed]
Abbreviation | Full Name | logKow | pKa |
---|---|---|---|
BTZ | 1H-benzotriazole | 1.44 | 8.38 |
1MBZ | 1-methyl-1H-benzotriazole | 1.08 | – |
2MBZ | 2-methyl-2H-benzotriazole | 1.59 | – |
4MBZ | 4-methyl-1H-benzotriazole | 1.82 | 8.74 |
5MBZ | 5-methyl-1H-benzotriazole | 1.98 | 8.74 |
DMBZ | 5,6-dimethyl-1H-benzotriazole | 2.28 | 8.92 |
24DMBZ | 2,4-dimethyl-2H-benzotriazole | 1.96 | – |
ClBZ | 5-chloro-1H-benzotriazole | 2.13 | 7.46 |
NBZ | 5-amine-1H-benzotriazole | 0.40 | 9.61 |
1OHBZ | 1-hydroxy-benzotriazole | 0.69 | 7.39 |
4OHBZ | 4-hydroxy-benzotriazole | 0.80 | 7.25 |
Compounds | Sample Matrices | Cartidge Type, mg | Elution Solvent | Recovery | LOQ (ng/L) | Reference |
---|---|---|---|---|---|---|
BTZ, 4MBZ, 5MBZ, DMBZ, 1OHBZ, ClBZ | tap, surface, effluent | Oasis HLB 500 | mL ACN/MeOH (1:1) | 57–125% | 2–11 | [21,37] |
BTZ, 4MBZ, 5MBZ, DMBZ | river, influent, effluent | Strata-X | 5 mL EA | 85–115% | 31–99 | [47] |
BTZ, 4MBZ, 5MBZ | river | Bond Elut PPL 200 | 2 mL ACN/MeOH (1:1) | 49–79% | 6–15 | [5] |
BTZ, 1MBZ | groundwater, river | Oasis HLB 200 | 6 ml MeOH | 47–56% | 1 | [62,63] |
BTZ, 4MBZ, 5MBZ | groundwater | Oasis HLB 200 | 7 mL MeOH/ACO (6:4) | 95–113% | 50 | [2] |
BTZ, 5MBZ | tap, river, influent, effluent | Oasis HLB 500 | 5 mL 3% MeOH in DCM | 101–118% (eff) | 0.2 | [6] |
BTZ, 5MBZ | tap, groundwater, influent, effluent | Oasis HLB 500 | mL DCM/MeOH (1:1) | 79–108% | 9.8–36.7 | [7,46,48] |
BTZ, 5MBZ | river, sea | Oasis HLB 500 | 15 mL MeOH | 69 ± 10% (sea) | 0.4–1.2 | [40] |
BTZ, 5MBZ, DMBZ | river, influent, effluent | Oasis MAX 150 | 5 mL MeOH/ACN (7:3) | 87–99% | 2–5 | [8] |
BTZ, 5MBZ, DMBZ | influent, effluent | Strata-X 100 | 10 mL hexane/EA (1:1) | 78–98% (ww) | 60–810 | [51] |
BTZ, 1MBZ, 4MBZ, 5MBZ | groundwater, river, effluent | Oasis HLB (10) + Strata-X-AW(1.4)/ Strata-X-CW(1.4)/ Isoelute ENV+(2.1) | 0.1% HCOOH in MeOH | 94–124% | 0.2–4.2 | [59] |
BTZ, 5MBZ, DMBZ, 1OHBZ | river, effluent | Strata-X 200 | mL MeOH/ACN (1:1) | 73–104% (ww) | 0.42–10 | [39] |
BTZ, 4MBZ, 5MBZ, DMBZ, ClBZ | river, influent, effluent | Oasis HLB 150 + Florisil 500 | mL MeOH | 85–93% | 2 | [4] |
BTZ, 5MBZ | sea | Oasis HLB 200 | 6 mL MeOH | 67–75% | 0.11–0.17 | [53] |
BTZ, 5MBZ | effluent | Oasis HLB 200 | 6 mL MeOH | 47–56% | 40 (eff) | [64] |
BTZ, 1MBZ, 4MBZ, 5MBZ | tap, effluent | Oasis HLB 200 | 10 mL EA | 80–93% | ND | [44] |
BTZ, 4MBZ, 5MBZ | airport runoff | Strata C-18 E 500 | 40 mL DCM | 68–102% | 0.3–10 | [49] |
BTZ, 1MBZ, 4MBZ, 5MBZ, 1OHBZ, 4OHBZ | recycled water | Oasis HLB 200 + Strata-X-AW(100)/ Strata-X-CW(100)/ Isoelute ENV+(150) | 8 mL EA/MeOH/NH + 4 mL EA/MeOH/ HCOOH | ND | 1-50 | [60] |
BTZ, 4MBZ, 5MBZ, DMBZ, ClBZ | wastewater | Strata-X 200 | 10 mL MeOH/ACN (1:1) | 36–85% | 52–376 | [65,66] |
BTZ, 5MBZ | river, influent, effluent | PLRP-s | ACN/HO/HCOOH (24.9:74.9:0.2) | 85–100% (eff) | 0.8–1.1 | [42,67] |
BTZ | effluent | Bond Elut PPL 200 | ND | ND | 50 | [55] |
BTZ | tap, river, effluent | Oasis MAX (100) + Oasis MCX (100) | separate elution: MAX 6 mL MeOH/EA/HCOOH (69:29:2), MCX 6 mL MeOH/EA/NH (67.5:27.5:5) | 93 ± 4% | 5.7 | [23] |
2MBZ, 24DMBZ | groundwater, river | Merck EN 200 | 10 mL DCM | ND | 3.3–6.7 | [50] |
BTZ, 4MBZ, 5MBZ, DMBZ, ClBZ | river, influent, effluent | Oasis MCX 500, Oasis MAX 500 | MCX: 5 mL 5% NH in MeOH, MAX: 5 mL 5% HCOOH in MeOH | MCX: 87–105%, MAX: 75–92% | MCX: 5–17, MAX: 5–21 | [38] |
BTZ, 5MBZ | groundwater | PLRP-s | ACN/HO/HCOOH (24.9:74.9:0.2) | [68] | ||
BTZ, 4MBZ, 5MBZ, 1OHBZ, ClBZ | tap, lake, effluent | Poly-Sery HLB 60 | 2 mL MeOH | 89–103% | 0.4–4.8 | [10] |
BTZ | tap, recycled water | Oasis HLB 500 | 5 mL MeOH + 5 mL MTBE/MeOH (9:1) | [11] | ||
BTZ, MBZ, DMBZ, ClBZ | influent, effluent | Oasis MCX 60 | 6 mL MeOH + 4 mL ACN | 72–102% | 500–2000 | [58] |
BTZ, MBZ | river | Oasis HLB 200 | 10 mL EA + 10 mL 0.1% NH in MeOH | 31–72% | 0.53–0.66 | [41] |
BTZ, DMBZ, ClBZ, NBZ | tap, swimming pool | Poly-Sery HLB 200 | 6 mL MeOH | 95–105% | 1.5–15 | [69] |
BTZ, MBZ | influent, effluent | Oasis HLB 200 | 5 mL 5% HCOOH in MeOH + 5 mL EA | 108–154% | 10–20 | [70] |
BTZ, 5MBZ | river, influent, effluent, aquaculture ponds | Oasis HLB | 3 mL MeOH + 3 mL diethyl ether/MeOH (1:1) | 91–104% | 10 | [71,72] |
BTZ | river | Supel-Select HLB 200 | 6 mL MeOH/ACO/EA (2:2:1) | 94% | ND | [73] |
BTZ, MBZ | effluent | Oasis HLB 9 + Strata-X-AW(2.6)/ Strata-X-CW(2.6)/ Isoelute ENV+(3.8) | 0.1% HCOOH in MeOH | 97–102% | 2–5 | [61] |
BTZ, 5MBZ, ClBZ, DMBZ | river | Poly-Sery HLB 200 | 6 mL MeOH | 80–110% | 0.4–1.5 | [74] |
BTZ, 4MBZ, 5MBZ, ClBZ, DMBZ | river | Oasis HLB 200 + Strata-X-AW(100)/ Strata-X-CW(100)/ Isoelute ENV+(150) | 5 mL MeOH/ACN (2:8) + 6 mL 0.5% NH in MeOH/ACN (2:8) + 4 mL 1.7% HCOOH in MeOH/ACN (2:8) | 22–112% | 0.1-58 | [54] |
BTZ | wastewater | Oasis HLB 200 + Strata-X-AW(100)/ Strata-X-CW(100)/ Isoelute ENV+(150) + ENVI-Carb (200) | 6 mL EA/ MeOH/NH + 3 mL EA/MeOH/ HCOOH | 4–24% | ND | [56] |
BTZ, 5MBZ, ClBZ, DMBZ | river, groundwater | Oasis HLB 500 | mL MeOH/DCM (1:1) | 71–95% | 0.8–1.3 | [57] |
Compounds | Sample Matrices | Cartidge Type, mg | Elution Solvent | Recovery | LOQ (ng/g) | Reference |
---|---|---|---|---|---|---|
BTZ, 5MBZ | detergent | Oasis HLB 500 | 5 mL 3% MeOH in DCM | ND | ND | [6] |
BTZ, 5MBZ | river sediments, sludge | LSE (MeOH) + Oasis HLB 500 | 6 mL 15% MeOH in EA | 70–226% | 0.22 | [43] |
BTZ, 5MBZ, DMBZ, 1OHBZ | sludge, suspended particles | LSE (MeOH/HO) + Strata-X 200 | mL MeOH/ACN (1:1) | [39] | ||
BTZ, 1MBZ, 4MBZ, 5MBZ | detergent, sludge | Oasis HLB 200 | 10 mL EA | 80–93% | ND | [44] |
BTZ, 4MBZ, 5MBZ, DMBZ, 1OHBZ, ClBZ | house dust | LSE (MeOH/HO) + Oasis MAX 60 | 5 mL MeOH | 71–108% | 0.5 | [15] |
BTZ, 4MBZ, 5MBZ, DMBZ, ClBZ | sludge | PHWE + Oasis HLB 150 + Florisil 500 | mL MeOH | 39–89% | 0.5 | [75] |
BTZ, 5MBZ | detergent | Oasis HLB 500 | mL HO (pH 2.9)/MeOH (95:5) | ND | ND | [22] |
BTZ, 5MBZ | estuary sediments | ASE + Oasis HLB | 6 mL MeOH | ND | 1.5–1.8 | [14] |
BTZ, 4MBZ, 5MBZ, DMBZ, ClBZ | sludge | LSE (MeOH/HO) + Strata-X 200 | 10 mL MeOH/ACN (1:1) | 51–77% | 118–1666 | [65] |
BTZ | plants | LSE (MeOH/HO) + Oasis HLB 500 | 5 mL MeOH + 5 mL MTBE/MeOH (9:1) | 100.5% | ND | [11] |
5MBZ | soil | LSE (ACO/hexane) + Strata-X 100 | 10 mL EA | 92–110% | 0.002–0.019 | [45] |
BTZ, MBZ, DMBZ, ClBZ | sludge | LSE (MeOH/HO) + Oasis MCX 60 | 6 mL MeOH + 4 mL ACN | ND | ND | [58] |
BTZ, MBZ | sludge | LSE (MeOH) + Oasis HLB 200 | 5 mL 5% HCOOH in MeOH + 5 mL EA | 97–9% | 20 | [70] |
BTZ | sludge | MAE + Oasis HLB 250 | 5 mL MeOH + 5 mL MeOH/MTBE (1:9) | ND | ND | [76] |
Compounds | Sample Matrices | Cartidge Type, mg | Elution Solvent | Recovery | LOQ (ng/L) | Reference |
---|---|---|---|---|---|---|
BTZ, 4MBZ, 5MBZ | detergents; anti-icing, de-icing fluid | Bond Elut PPL 200 | 2 mL ACN/MeOH (1:1) | 36–41% (anti-icing) | 6–15 | [52] |
BTZ, 5MBZ, DMBZ, 1OHBZ | human urine | Oasis HLB 200 | 10 mL MeOH/ACN (1:1) | 93–117% | 0.2–5 | [17] |
BTZ | mineral oil | Sep-pak Plus 500 | 5 mL HO/ACN (4:6) | 77% | ND | [36] |
BTZ, MBZ, 1OHBZ, ClBZ | human urine, amniotic fluid | Oasis HLB 200 | 10 mL MeOH/ACN (1:1) | urine: 67–106%, amn.fl. 71–93% | 5–510 | [18] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kraševec, I.; Prosen, H. Solid-Phase Extraction of Polar Benzotriazoles as Environmental Pollutants: A Review. Molecules 2018, 23, 2501. https://doi.org/10.3390/molecules23102501
Kraševec I, Prosen H. Solid-Phase Extraction of Polar Benzotriazoles as Environmental Pollutants: A Review. Molecules. 2018; 23(10):2501. https://doi.org/10.3390/molecules23102501
Chicago/Turabian StyleKraševec, Ida, and Helena Prosen. 2018. "Solid-Phase Extraction of Polar Benzotriazoles as Environmental Pollutants: A Review" Molecules 23, no. 10: 2501. https://doi.org/10.3390/molecules23102501
APA StyleKraševec, I., & Prosen, H. (2018). Solid-Phase Extraction of Polar Benzotriazoles as Environmental Pollutants: A Review. Molecules, 23(10), 2501. https://doi.org/10.3390/molecules23102501