Abnormal Anionic Porphyrin Sensing Effect for HER2 Gene Related DNA Detection via Impedance Difference between MWCNTs and Single-Stranded DNA or Double-Stranded DNA
Abstract
:1. Introduction
2. Experimental Section
2.1. Reagents and Materials
2.2. Apparatus
2.3. Fabrication of DNA Biosensor
2.4. Electrochemical Measurements
3. Results and Discussion
3.1. Construction and Investigation of the Proposed DNA Sensor
3.2. Optimization of Experimental Conditions
3.3. Sensitivity of the Proposed DNA Sensors
3.4. Selectivity and Reproducibility of the Proposed DNA Sensors
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, M.; McGovem, M.E.; Thompson, M. Genosensor technology and the detection of interfacial nucleic acid chemistry. Anal. Chim. Acta 1997, 346, 259–275. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, H.; Chen, Y.; Liu, Y. Inhibition of double-stranded DNA templated copper nanoparticles as label-free fluorescent sensors for L-histidine detection. New J. Chem. 2015, 39, 8896–8900. [Google Scholar] [CrossRef]
- El-Yazbi, A.F.; Wong, A.; Loppnow, G.R. A luminescent probe of mismatched DNA hybridization: Location and number of mismatches. Anal. Chim. Acta 2017, 994, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yang, H.; Zhang, H.; Yang, F.; Zhou, M.; Jia, C.; Lan, Y.; Ma, Y.; Zhou, L.; Tian, S.; et al. A surface plasmon resonance-based system to genotype human papillomavirus. Cancer Genet. Cytogenet. 2010, 200, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhang, Y.; Zhang, X.; He, X.; Zhang, X.; Chen, J. Amplified impedimetric DNA sensor based on graphene oxide–phenylboronic acid for sensitive detection of bleomycins. New J. Chem. 2014, 38, 2284–2291. [Google Scholar] [CrossRef]
- Nie, H.; Yang, Z.; Huang, S.; Wu, Z.; Wang, H.; Yu, R.; Jiang, J. DNA-wrapped carbon nanotubes as sensitive electrochemical labels in controlled-assembly-mediated signal transduction for the detection of sequence-specific DNA. Small 2012, 8, 1407–1414. [Google Scholar] [CrossRef] [PubMed]
- Sukumaran, P.; Vineesh, T.V.; Rajappa, S.; Li, C.Z.; Alwarappan, S. Ionic liquid modified N-doped graphene as a potential platform for the electrochemical discrimination of DNA sequences. Sens. Actuators B 2017, 247, 556–563. [Google Scholar] [CrossRef]
- Gong, Q.; Wang, Y.; Yang, H. A sensitive impedimetric DNA biosensor for the determination of the HIV gene based on graphene-nafion composite film. Biosens. Bioelectron. 2017, 89, 565–569. [Google Scholar] [CrossRef] [PubMed]
- Ling, P.; Lei, J.; Zhang, L.; Ju, H. Porphyrin-encapsulated metal–organic frameworks as mimetic catalysts for electrochemical DNA sensing via allosteric switch of hairpin DNA. Anal. Chem. 2015, 87, 3957–3963. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Peng, Y.; Qi, H.; Gao, Q.; Zhang, C. Label-free electrochemical DNA biosensor array for simultaneous detection of the HIV-1 and HIV-2 oligonucleotides incorporating different hairpin-DNA probes and redox indicator. Biosens. Bioelectron. 2010, 25, 1088–1094. [Google Scholar] [CrossRef] [PubMed]
- Ajayan, P.M. Nanotubes from carbon. Chem. Rev. 1999, 99, 1787–1800. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Carbon-nanotube based electrochemical biosensors: A review. Electroanalysis 2005, 17, 7–14. [Google Scholar] [CrossRef]
- Napier, M.E.; Hull, D.O.; Thorp, H.H. Electrocatalytic oxidation of DNA-wrapped carbon nanotubes. J. Am. Chem. Soc. 2005, 127, 11952–11953. [Google Scholar] [CrossRef] [PubMed]
- Mayuri, P.; Kumar, A.S. In situ derivatization of an intrinsic iron impurity as a surface-confined iron(II)tris(2,2′-bipyridine) complex on MWCNT and its application to selective electrochemical sensing of DNA’s purine bases. Langmuir 2015, 31, 5945–5951. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Zhang, Y.; Bao, G.; Zhang, Y.; Liu, M.; Wang, Z.L. DNA functionalized single-walled carbon nanotubes for electrochemical detection. J. Phys. Chem. B 2005, 109, 20072–20076. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, P.A.; Sandhyarani, N. Carbon nanostructures as immobilization platform for DNA: A review on current progress in electrochemical DNA sensors. Biosens. Bioelectron. 2017, 97, 226–237. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Wang, Y.; He, X.; Wang, K.; Su, J.; Chen, Z.; Qing, Z. A highly sensitive electrochemical assay for silver ion detection based on un-labeled c-rich ssDNA probe and controlled assembly of MWCNTs. Talanta 2012, 94, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Cheraghi, S.; Taher, M.A.; Karimimaleh, H.; Faghihmirzaei, E. A nanostructure label-free DNA biosensor for ciprofloxacin analysis as a chemotherapeutic agent: An experimental and theoretical investigation. New J. Chem. 2017, 41, 4985–4989. [Google Scholar] [CrossRef]
- Fotouhi, L.; Hashkavayi, A.B.; Heravi, M.M. Interaction of sulfadiazine with DNA on a MWCNT modified glassy carbon electrode: Determination of DNA. Int. J. Biol. Macromol. 2013, 53, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Ning, J.; Wang, Y.; Wu, Q.; Zhang, X.; Lin, X.; Zhao, H. Novel supramolecular assemblies of repulsive DNA–anionic porphyrin complexes based on covalently modified multi-walled carbon nanotubes and cyclodextrins. RSC Adv. 2015, 5, 21153–21160. [Google Scholar] [CrossRef]
- Elouarzaki, K.; Goff, A.L.; Holzinger, M.; Thery, J.; Cosnier, S. Electrocatalytic oxidation of glucose by rhodium porphyrin-functionalized MWCNT electrodes: Application to a fully molecular catalyst-based glucose/O2 fuel cell. J. Am. Chem. Soc. 2012, 134, 14078–14085. [Google Scholar] [CrossRef] [PubMed]
- Moghadam, M.; Mohammadpoor-Baltork, I.; Tangestaninejad, S.; Mirkhani, V.; Kargar, H.; Zeini-Isfahani, N. Manganese(III) porphyrin supported on multi-wall carbon nanotubes: A highly efficient and reusable biomimetic catalyst for epoxidation of alkenes with sodium periodate. Polyhedron 2009, 28, 3816–3822. [Google Scholar] [CrossRef]
- Calfumán, K.; Quezada, D.; Isaacs, M.; Bollo, S. Enhanced hydrogen peroxide sensing based on tetraruthenated porphyrins/nafion/glassy carbon-modified electrodes via incorporating of carbon nanotubes. Electroanalysis 2015, 27, 2778–2784. [Google Scholar] [CrossRef]
- Li, J.; Tu, W.; Lei, J.; Tang, S.; Ju, H. Porphyrin-functionalized gold nanoparticles for selective electrochemical detection of peroxyacetic acid. Electrochim. Acta 2011, 56, 3159–3163. [Google Scholar] [CrossRef]
- Wang, Y.; Sauriat-Dorizon, H.; Korri-Youssoufi, H. Direct electrochemical DNA biosensor based on reduced graphene oxide and metalloporphyrin nanocomposite. Sens. Actuators B 2017, 251, 40–48. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Dresselhaus, G.; Jorio, A. Unusual properties and structure of carbon nanotubes. Ann. Rev. Mater. Res. 2004, 34, 247–278. [Google Scholar] [CrossRef]
- Charlier, J.C.; Eklund, P.C.; Zhu, J.; Ferrari, A.C. Electron and phonon properties of graphene: Their relationship with carbon nanotubes. Top. Appl. Phys. 2008, 111, 673–709. [Google Scholar]
- He, Q.; Liu, J.; Liang, J.; Liu, X.; Li, W.; Liu, Z.; Ding, Z.; Tuo, D. Towards Improvements for Penetrating the Blood–Brain Barrier—Recent Progress from a Material and Pharmaceutical Perspective. Cells 2018, 7, 24. [Google Scholar] [CrossRef] [PubMed]
- Ning, J.; He, Q.; Luo, X.; Wang, M.; Liu, D.; Wang, J.; Liu, J.; Li, G. Rapid and sensitive determination of vanillin based on a glassy carbon electrode modified with Cu2O-electrochemically reduced graphene oxide nanocomposite film. Sensors 2018, 18, 2762. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Liu, J.; Liu, X.; Li, G.; Deng, P.; Liang, J. Preparation of Cu2O-reduced graphene nanocomposite modified electrodes towards ultrasensitive dopamine detection. Sensors 2018, 18, 199. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Liu, J.; Liu, X.; Li, G.; Chen, D.; Deng, P.; Liang, J. Fabrication of amine-modified magnetite-electrochemically reduced graphene oxide nanocomposite modified glassy carbon electrode for sensitive dopamine determination. Nanomaterials 2018, 8, 194. [Google Scholar] [CrossRef] [PubMed]
- Hirata, A.; Hosoi, F.; Miyagawa, M.; Ueda, S.; Naito, S.; Fujii, T.; Kuwano, M.; Ono, M. HER2 overexpression increases sensitivity to gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, through inhibition of HER2/HER3 heterodimer formation in lung cancer cells. Cancer Res. 2005, 65, 4253–4260. [Google Scholar] [CrossRef] [PubMed]
- Bookman, M.A.; Darcy, K.M.; Clarke-Pearson, D.; Boothby, R.A.; Horowitz, I.R. Evaluation of monoclonal humanized anti-HER2 antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with overexpression of HER2: A phase II trial of the gynecologic oncology group. J. Clin. Oncol. 2003, 21, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Kawde, A.N.; Musameh, M. Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization. Analyst 2003, 128, 912–916. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Rothberg, L.J. DNA aequence setection using selective fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Anal. Chem. 2004, 76, 5414–5417. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, P.; Wang, Y.; He, X.; Wang, K. Single strand DNA functionalized single wall carbon nanotubes as sensitive electrochemical labels for arsenite detection. Talanta 2015, 141, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Geyer, C.R.; Sen, D. Recognition of anionic porphyrins by DNA aptamers. Biochemistry 1996, 35, 6911–6922. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Z.; Liao, Q.G.; Li, Y.F. Non-covalent anionic porphyrin functionalized multi-walled carbon nanotubes as an optical probe for specific DNA detection. Talanta 2008, 75, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wang, S.; Duan, Y.Y. Towards gel-free electrodes: A systematic study of electrode-skin impedance. Sens. Actuators B 2017, 241, 1244–1255. [Google Scholar] [CrossRef]
- He, Q.; Liu, J.; Liang, J.; Liu, X.; Tuo, D.; Li, W. Chemically Surface Tunable Solubility Parameter for Controllable Drug Delivery—An Example and Perspective from Hollow PAA-Coated Magnetite Nanoparticles with R6G Model Drug. Materials 2018, 11, 247. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Chen, K.; Liu, J.; He, Q.; Li, G.; Li, F. Efficiently enhancing electrocatalytic activity of α-MnO2 nanorods/N-doped ketjenblack carbon for oxygen reduction reaction and oxygen evolution reaction using facile regulated hydrothermal treatment. Catalysts 2018, 8, 138. [Google Scholar] [CrossRef]
- Fujii, Y.; Hasegawa, Y.; Yanagida, S.; Wada, Y. pH-dependent reversible transformation of TPPS4 anchored on mesoporous TiO2 film between monomers and j-aggregates. Chem. Commun. 2005, 24, 3065–3067. [Google Scholar] [CrossRef] [PubMed]
- Dahlhoff, M.; Camera, E.; Ludovici, M.; Picardo, M.; Müller, U.; Leonhardt, H.; Zouboulis, C.C.; Schneider, M.R. EGFR/ERBB receptors differentially modulate sebaceous lipogenesis. FEBS Lett. 2015, 589, 1376–1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, T.; Liu, H.; Li, L.; Yu, J.; Ge, S.; Song, X.; Mei, Y. Paper-based biosensor for noninvasive detection of epidermal growth factor receptor mutations in non-small cell lung cancer patients. Sens. Actuators B 2017, 251, 440–445. [Google Scholar] [CrossRef]
- Chen, X.; Gui, W.; Ma, Q. Ultrasensitive detection of EGFR gene based on surface plasmon resonance enhanced electrochemiluminescence of CuZnInS quantum dots. Anal. Chim. Acta 2018, 1009, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lin, J.; Zhang, X.; Cai, S.; Wu, D.; Li, C.; Yang, S.; Zhang, J. Label-free fluorescent biosensor based on the target recycling and thioflavin T-induced quadruplex formation for short DNA species of c-erbB-2 detection. Anal. Chim. Acta 2014, 817, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Saeed, A.A.; Sánchez, J.L.A.; O’Sullivan, C.K.; Abbas, M.N. DNA biosensors based on gold nanoparticles-modified graphene oxide for the detection of breast cancer biomarkers for early diagnosis. Bioelectrochemistry 2017, 118, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Ning, J.; Wu, Q.; Liu, Z.; Wang, J.; Lin, X. Mapping inhibitor response to the in-frame deletions, insertions and duplications of epidermal growth factor receptor (EGFR) in non-small cell lung cancer. J. Recept. Signal Transduct. Res. 2016, 36, 37–44. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
ssDNA Names | Sequence (5′~3′) |
---|---|
Probe DNA | CCTCACTTGGTTGTGAGCGATGAGCACGT |
Complementary DNA(Target DNA) | ACGTGCTCATCGCTCACAACCAAGTGAGG |
One-base mismatched DNA | ACGGGCTCATCGCTCACAACCAAGTGAGG |
Three-base mismatched DNA | ACGGGCTCATCGCGCAGAACCAAGTGAGG |
Non-complementary DNA | CCATTGTCTAGCACGGCCAGGGCATAGTT |
Samples | RS/Ω | Ret/Ω | C/F | ZW/Ω−1S0.5 |
---|---|---|---|---|
GCE | 43.7 | 60.33 | 4.09 × 10−7 | 0.0007519 |
ssDNA + MWCNTs | 88.93 | 1186 | 7.55 × 10−7 | 0.0008785 |
dsDNA + MWCNTs | 56.96 | 1181 | 7.76 × 10−7 | 0.0009007 |
ssDNA + MWCNTs + TPPS | 63.55 | 1057 | 7.96 × 10−7 | 0.0007424 |
dsDNA + MWCNTs + TPPS | 57.93 | 545.3 | 8.36 ×10−7 | 0.0008394 |
Analyte | Technique | Material | LOD(M) | Reference |
---|---|---|---|---|
DNA specific to EGFR (HER1) mutations | DPV | HRP modified Ab/DP/tDNA/CP/PPy/AuNP-PWE | 1.67 × 10−10 | [44] |
Target DNA of EGFR (HER1) | ECL | AuNPs-probe DNA/target DNA/MPA-CuZnInS QDs-capture DNA PMel/GCE | 4.3 × 10−12 | [45] |
DNA species of c-erbB-2 (HER2) | Fluorescence | G/P/T + ThT + Exo III | 2.0 × 10−11 | [46] |
Target DNA of ERBB2 (HER2) gene | CA | DNA-c/AuNPs-GO/GCE | 1.6 × 10−10 | [47] |
DNA sequences of HER2 gene | EIS | TSPP/DNA/MWCNTs/GCE | 6.34 × 10−11 | This work |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, J.; Liu, L.; Luo, X.; Wang, M.; Liu, D.; Hou, R.; Chen, D.; Wang, J. Abnormal Anionic Porphyrin Sensing Effect for HER2 Gene Related DNA Detection via Impedance Difference between MWCNTs and Single-Stranded DNA or Double-Stranded DNA. Molecules 2018, 23, 2688. https://doi.org/10.3390/molecules23102688
Ning J, Liu L, Luo X, Wang M, Liu D, Hou R, Chen D, Wang J. Abnormal Anionic Porphyrin Sensing Effect for HER2 Gene Related DNA Detection via Impedance Difference between MWCNTs and Single-Stranded DNA or Double-Stranded DNA. Molecules. 2018; 23(10):2688. https://doi.org/10.3390/molecules23102688
Chicago/Turabian StyleNing, Jingheng, Long Liu, Xin Luo, Min Wang, Donglin Liu, Rong Hou, Donger Chen, and Jianhui Wang. 2018. "Abnormal Anionic Porphyrin Sensing Effect for HER2 Gene Related DNA Detection via Impedance Difference between MWCNTs and Single-Stranded DNA or Double-Stranded DNA" Molecules 23, no. 10: 2688. https://doi.org/10.3390/molecules23102688
APA StyleNing, J., Liu, L., Luo, X., Wang, M., Liu, D., Hou, R., Chen, D., & Wang, J. (2018). Abnormal Anionic Porphyrin Sensing Effect for HER2 Gene Related DNA Detection via Impedance Difference between MWCNTs and Single-Stranded DNA or Double-Stranded DNA. Molecules, 23(10), 2688. https://doi.org/10.3390/molecules23102688