Tagetes spp. Essential Oils and Other Extracts: Chemical Characterization and Biological Activity
Abstract
:1. Introduction
2. Tagetes Genus Plant Cultivation
3. Phytochemical Composition of EOs Obtained from Tagetes Genus Plants
3.1. Components of T. patula
3.1.1. EOs from Aerial Parts (Comprising Capitula, Leaves, and Stems)
3.1.2. EOs from Capitula
3.1.3. EOs from Leaves
3.2. Components of T. erecta
3.2.1. EOs from Aerial Parts
3.2.2. EOs from Capitula
3.2.3. EOs from Leaves
3.3. Components of T. minuta
3.3.1. EOs from Aerial Parts
3.3.2. EOs from Capitula
3.3.3. EOs from Leaves
3.3.4. EO from Fruits
3.4. Components of T. lucida
3.4.1. EOs from Aerial Parts
3.4.2. EOs from Leaves
3.4.3. EOs from Flowers
3.4.4. Other Compounds
3.5. Components of T. filifolia
3.6. Components of T. terniflora
3.7. Components of T. tenuifolia
3.8. Components of T. mandonii
3.9. Components of T. multiflora
3.10. Components of T. lemmonii
3.11. Components of T. rupestris
3.12. Components of T. subulata
3.13. Components of T. caracasana
3.14. Components of T. pusilla
3.15. Components of T. mendocina
4. Traditional Medicine Uses of Tagetes Genus: Ethnopharmacological Relevance
5. Food Preservative Applications of Tagetes Genus Plants
6. Tagetes spp. as Potential Plants in Agriculture
7. Tagetes spp. as Antimicrobial Agents
8. Tagetes spp. as Functional Food Additives
9. Antimicrobial Ethnomedicine of the Tagetes Genus
10. Antibacterial Activity of Plants from the Tagetes Genus
11. Antifungal Activity of Plants from the Tagetes Genus
12. Ethnobiology of Tagetes Antimicrobial Activity
13. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Maciel, M.A.M.; Pinto, A.C.; Veiga, V.F., Jr.; Grynberg, N.F.; Echevarria, A. Medicinal plants: The need for multidisciplinary scientific studies. Quím. Nova 2002, 25, 429–438. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Fallah, F.; Setzer, W.; Entezari, R.H.; Sharifi-Rad, M. Tordylium persicum boiss. & hausskn extract: A possible alternative for treatment of pediatric infectious diseases. Cell. Mol. Biol. 2016, 62, 20–26. [Google Scholar] [PubMed]
- Mishra, A.P.; Saklani, S.; Sharifi-Rad, M.; Iriti, M.; Salehi, B.; Maurya, V.K.; Rauf, A.; Milella, L.; Rajabi, S.; Baghalpour, N. Antibacterial potential of Saussurea obvallata petroleum ether extract: A spiritually revered medicinal plant. Cell. Mol. Biol. 2018, 64, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Sharifi-Rad, M.; Salehi, B.; Iriti, M.; Roointan, A.; Mnayer, D.; Soltani-Nejad, A.; Afshari, A. In vitro and in vivo assessment of free radical scavenging and antioxidant activities of Veronica persica poir. Cell. Mol. Biol. 2018, 64, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, M.; Salehi, B.; Sharifi-Rad, J.; Setzer, W.N.; Iriti, M. Pulicaria vulgaris gaertn. Essential oil: An alternative or complementary treatment for leishmaniasis. Cell. Mol. Biol. 2018, 64, 18–21. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Salehi, B.; Stojanović-Radić, Z.; Fokou, P.; Sharifi-Rad, M.; Mahady, G.; Masjedi, M.; Lawal, T.; Ayatollahi, S.; Masjedi, J.; et al. Medicinal plants used in the treatment of tuberculosis—Ethnobotanical and ethnopharmacological approaches. Biotechnol. Adv. 2017. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Ayatollahi, S.A.; Segura-Carretero, A.; Kobarfard, F.; Contreras, M.; Faizi, M.; Sharifi-Rad, M.; Tabatabai, S.A.; Sharifi-Rad, J. Bioactive chemical compounds in Eremurus persicus (joub. & spach) boiss. Essential oil and their health implications. Cell. Mol. Biol. 2017, 63, 1–7. [Google Scholar] [PubMed]
- Mishra, A.; Saklani, S.; Salehi, B.; Parcha, V.; Sharifi-Rad, M.; Milella, L.; Iriti, M.; Sharifi-Rad, J.; Srivastava, M. Satyrium nepalense, a high altitude medicinal orchid of indian himalayan region: Chemical profile and biological activities of tuber extracts. Cell. Mol. Biol. 2018, 64, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Tayeboon, G.S.; Niknam, F.; Sharifi-Rad, M.; Mohajeri, M.; Salehi, B.; Iriti, M.; Sharifi-Rad, M. Veronica persica Poir. Extract–antibacterial, antifungal and scolicidal activities, and inhibitory potential on acetylcholinesterase, tyrosinase, lipoxygenase and xanthine oxidase. Cell. Mol. Biol. 2018, 64, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, M.; Nazaruk, J.; Polito, L.; Morais-Braga, M.F.B.; Rocha, J.E.; Coutinho, H.D.M.; Salehi, B.; Tabanelli, G.; Montanari, C.; del Mar Contreras, M.; et al. Matricaria genus as a source of antimicrobial agents: From farm to pharmacy and food applications. Microbiol. Res. 2018, 215, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, M.; Varoni, E.M.; Salehi, B.; Sharifi-Rad, J.; Matthews, K.R.; Ayatollahi, S.A.; Kobarfard, F.; Ibrahim, S.A.; Mnayer, D.; Zakaria, Z.A. Plants of the genus Zingiber as a source of bioactive phytochemicals: From tradition to pharmacy. Molecules 2017, 22, 2145. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Salehi, B.; Varoni, E.M.; Sharopov, F.; Yousaf, Z.; Ayatollahi, S.A.; Kobarfard, F.; Sharifi-Rad, M.; Afdjei, M.H.; Sharifi-Rad, M.; et al. Plants of the Melaleuca genus as antimicrobial agents: From farm to pharmacy. Phytother. Res. 2017, 31, 1475–1494. [Google Scholar] [CrossRef] [PubMed]
- Boutaoui, N.; Zaiter, L.; Benayache, F.; Benayache, S.; Cacciagrano, F.; Cesa, S.; Secci, D.; Carradori, S.; Giusti, A.M.; Campestre, C.; et al. Atriplex mollis Desf. aerial parts: Extraction procedures, secondary metabolites and color analysis. Molecules 2018, 23, 1962. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, M.; Varoni, E.M.; Iriti, M.; Martorell, M.; Setzer, W.N.; Contreras, M.; Salehi, B.; Soltani-Nejad, A.; Rajabi, S.; Tajbakhsh, M.; et al. Carvacrol and human health: A comprehensive review. Phytother. Res. 2018, 32, 1675–1687. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, G.; Mirzaei, M.; Mehrabi, R.; Sharifi-Rad, J. Cytotoxic and antioxidant activities of Alstonia scholaris, Alstonia venenata and Moringa oleifera plants from India. Jundishapur J. Nat. Pharm. Prod. 2016, 11, e31129. [Google Scholar] [CrossRef]
- Stojanović-Radić, Z.; Pejčić, M.; Stojanović, N.; Sharifi-Rad, J.; Stanković, N. Potential of Ocimum basilicum L. And Salvia officinalis L. Essential oils against biofilms of P. aeruginosa clinical isolates. Cell. Mol. Biol. 2016, 62, 27–32. [Google Scholar] [PubMed]
- Salehi, B.; Sharopov, F.; Martorell, M.; Rajkovic, J.; Ademiluyi, A.; Sharifi-Rad, M.; Fokou, P.; Martins, N.; Iriti, M.; Sharifi-Rad, J. Phytochemicals in Helicobacter pylori infections: What are we doing now? Int. J. Mol. Sci. 2018, 19, 2361. [Google Scholar] [CrossRef] [PubMed]
- Abdolshahi, A.; Naybandi-Atashi, S.; Heydari-Majd, M.; Salehi, B.; Kobarfard, F.; Ayatollahi, S.; Ata, A.; Tabanelli, G.; Sharifi-Rad, M.; Montanari, C. Antibacterial activity of some Lamiaceae species against Staphylococcus aureus in yoghurt-based drink (doogh). Cell. Mol. Biol. 2018, 64, 71. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Iriti, M.; Setzer, W.N.; Sharifi-Rad, M.; Roointan, A.; Salehi, B. Antiviral activity of Veronica persica Poir. on herpes virus infection. Cell. Mol. Biol. 2018, 64, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Devika, R.; Koilpillai, J. Anti-inflammatory effect of bioactive compounds of Tagetes erecta (Linn.) flower extract. J. Pure Appl. Microbiol. 2015, 9, 2547–2551. [Google Scholar]
- Sharifi-Rad, J.; Salehi, B.; Schnitzler, P.; Ayatollahi, S.; Kobarfard, F.; Fathi, M.; Eisazadeh, M.; Sharifi-Rad, M. Susceptibility of herpes simplex virus type 1 to monoterpenes thymol, carvacrol, p-cymene and essential oils of Sinapis arvensis L., Lallemantia royleana Benth. and Pulicaria vulgaris Gaertn. Cell. Mol. Biol. 2017, 63, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Zucca, P.; Sharifi-Rad, M.; Pezzani, R.; Rajabi, S.; Setzer, W.N.; Varoni, E.M.; Iriti, M.; Kobarfard, F.; Sharifi-Rad, J. Phytotherapeutics in cancer invasion and metastasis. Phytother. Res. 2018, 32, 1425–1449. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Mishra, A.P.; Shukla, I.; Sharifi-Rad, M.; del Mar Contreras, M.; Segura-Carretero, A.; Fathi, H.; Nasri Nasrabadi, N.; Kobarfard, F.; Sharifi-Rad, J. Thymol, thyme and other plant sources: Health and potential uses. Phytother. Res. 2018, 32, 1688–1706. [Google Scholar] [CrossRef] [PubMed]
- Snow Setzer, M.; Sharifi-Rad, J.; Setzer, W.N. The search for herbal antibiotics: An in-silico investigation of antibacterial phytochemicals. Antibiotics 2016, 5, 30. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, M.; Mnayer, D.; Flaviana Bezerra Morais-Braga, M.; Nályda Pereira Carneiro, J.; Fonseca Bezerra, C.; Douglas Melo Coutinho, H.; Salehi, B.; Martorell, M.; del Mar Contreras, M.; Soltani-Nejad, A.; et al. Echinacea plants as antioxidant and antibacterial agents: From traditional medicine to biotechnological applications. Phytother. Res. 2018, 32, 1653–1663. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, M.; Fokou, P.; Sharopov, F.; Martorell, M.; Ademiluyi, A.; Rajkovic, J.; Salehi, B.; Martins, N.; Iriti, M.; Sharifi-Rad, J. Antiulcer agents: From plant extracts to phytochemicals in healing promotion. Molecules 2018, 23, 1751. [Google Scholar] [CrossRef] [PubMed]
- Prakash, A.M.; Sharifi-Rad, M.; Shariati, M.; Mabkhot, Y.; Al-Showiman, S.; Rauf, A.; Salehi, B.; Župunski, M.; Gusain, P.; Sharifi-Rad, J. Bioactive compounds and health benefits of edible rumex species—A review. Cell. Mol. Biol. 2018, 64, 27–34. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Roointan, A.; Setzer, W.; Sharifi-Rad, M.; Iriti, M.; Salehi, B. Susceptibility of leishmania major to Veronica persica Poir. extracts-in vitro and in vivo assays. Cell. Mol. Biol. 2018, 64, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, M.; Zengin, G.; Uysal, A.; Carradori, S.; De Luca, E.; Bellagamba, G.; Aktumsek, A.; Lazarova, I. Multicomponent pattern and biological activities of seven Asphodeline taxa: Potential sources of natural-functional ingredients for bioactive formulations. J. Enzyme Inhib. Med. Chem. 2017, 32, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Soule, J. Infrageneric systematics of tagetes. In Proceedings of the International Compositae Conference, Compositae: Systematics, Kew, UK, 24 July–5 August 1994; pp. 435–443. [Google Scholar]
- Babu, K.G.; Kaul, V. Variations in quantitative and qualitative characteristics of wild marigold (Tagetes minuta L.) oils distilled under vacuum and at NPT. Ind. Crops Prod. 2007, 26, 241–251. [Google Scholar] [CrossRef]
- Politi, F.A.S.; Souza, A.A.J.; Fantatto, R.R.; Pietro, R.; Barioni, W.J.; Rabelo, M.D.; Bizzo, H.R.; de Souza Chagas, A.C.; Furlan, M. Chemical composition and in vitro anthelmintic activity of extracts of Tagetes patula against a multidrug-resistant isolate of Haemonchus contortus. Chem. Biodivers. 2017, 15, e1700507. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, B. Essential oils of the tagetes genus. Perfum. Flavor 1985, 10, 73–82. [Google Scholar]
- Kashif, M.; Bano, S.; Naqvi, S.; Faizi, S.; Lubna; Ahmed Mesaik, M.; Azeemi, K.S.; Farooq, A.D. Cytotoxic and antioxidant properties of phenolic compounds from Tagetes patula flower. Pharm. Biol. 2015, 53, 672–681. [Google Scholar] [CrossRef] [PubMed]
- Padalia, H.; Chanda, S. Antimicrobial efficacy of different solvent extracts of Tagetes erecta L. Flower, alone and in combination with antibiotics. Appl. Microbiol. Open Access 2015, 1. [Google Scholar] [CrossRef]
- Politi, F.A.; Nascimento, J.D.; da Silva, A.A.; Moro, I.J.; Garcia, M.L.; Guido, R.V.; Pietro, R.C.; Godinho, A.F.; Furlan, M. Insecticidal activity of an essential oil of Tagetes patula L. (asteraceae) on common bed bug Cimex lectularius L. And molecular docking of major compounds at the catalytic site of clache1. Parasitol. Res. 2017, 116, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Girón, L.M.; Freire, V.; Alonzo, A.; Cáceres, A. Ethnobotanical survey of the medicinal flora used by the caribs of guatemala. J. Ethnopharmacol. 1991, 34, 173–187. [Google Scholar] [CrossRef]
- Laferriere, J.E.; Weber, C.W.; Kohlhepp, E.A. Mineral composition of some traditional mexican teas. Plant. Foods Hum. Nutr. (Former. Qual. Plant.) 1991, 41, 277–282. [Google Scholar] [CrossRef]
- Marotti, M.; Piccaglia, R.; Biavati, B.; Marotti, I. Characterization and yield evaluation of essential oils from different tagetes species. J. Essent. Oil Res. 2004, 16, 440–444. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Politi, F.A.S.; Queiroz-Fernandes, G.M.; Rodrigues, E.R.; Freitas, J.A.; Pietro, R. Antifungal, antiradical and cytotoxic activities of extractives obtained from Tagetes patula L. (asteraceae), a potential acaricide plant species. Microb. Pathog. 2016, 95, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Shirazi, M.T.; Gholami, H.; Kavoosi, G.; Rowshan, V.; Tafsiry, A. Chemical composition, antioxidant, antimicrobial and cytotoxic activities of Tagetes minuta and Ocimum basilicum essential oils. Food Sci. Nutr. 2014, 2, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Yang, S.; Ma, H.; Han, Z.; Zhang, Y. Bioassay-guided separation and identification of anticancer compounds in Tagetes erecta L. Flowers. Anal. Methods 2016, 8, 3255–3262. [Google Scholar] [CrossRef]
- Khalil, M.; Raila, J.; Ali, M.; Islam, K.M.; Schenk, R.; Krause, J.-P.; Schweigert, F.J.; Rawel, H. Stability and bioavailability of lutein ester supplements from tagetes flower prepared under food processing conditions. J. Funct. Foods 2012, 4, 602–610. [Google Scholar] [CrossRef]
- Singh, V.; Singh, B.; Kaul, V.K. Domestication of wild marigold (Tagetes minuta L.) as a potential economic crop in western himalaya and north indian plains. Econ. Bot. 2003, 57, 535–544. [Google Scholar] [CrossRef]
- Priyanka, D.; Shalini, T.; Navneet, V. A brief study of marigold (Tagetes species): A review. Int. Res. J. Pharm. 2013, 4, 43–48. [Google Scholar]
- Thappa, R.; Agarwal, S.; Kalia, N.; Kapoor, R. Changes in chemical composition of Tagetes minuta oil at various stages of flowering and fruiting. J. Essent. Oil Res. 1993, 5, 375–379. [Google Scholar] [CrossRef]
- Kumar, B.; Gupta, A.; Verma, A.; Dubey, A. Comparative seed germination of Tagetes minuta. J. Trop. Med. 2008, 9, 149–151. [Google Scholar]
- Prakasa Rao, E.V.S.; Puttanna, K.; Ramesh, S. Effect of nitrogen and harvest stage on the yield and oil quality of Tagetes minuta L. In tropical india. J. Herbs Spices Med. Plants 2000, 7, 19–24. [Google Scholar]
- Singh, S.; Singh, V.; Babu, G.; VK, K.; Ahuja, P. Techno-economic feasibility of wild marigold (Tagetes minuta) oil production in himachal pradesh. J. Non-Timber For. Prod. 2006, 13, 267–271. [Google Scholar]
- Langenheim, J.H. Plant. Resins—Chemistry, Evolution Ecology and Ethnobotany; Timber Press: Portland, OR, USA, 2003. [Google Scholar]
- The Plant List. A Working List of all Plant Species. Available online: http://www.theplantlist.org/ (accessed on 30 October 2018).
- Tropicos. Missouri Botanical Garden. Available online: http://tropicos.Org/namesearch.Aspx?Name=tagetes&commonname= (accessed on 16 october 2017).
- Tisserand, R.; Young, R. Essential Oil Safety: A Guide for Health Care Professionals, 2nd ed.; Churchill Livingstone Elsevier: London, UK, 2014. [Google Scholar]
- Gupta, P.; Vasudeva, N. Marigold: A potential ornamental plant drug. Hamdard Med. 2012, 55, 45–59. [Google Scholar]
- Singh, P.; Krishna, A.; Kumar, V.; Krishna, S.; Singh, K.; Gupta, M.; Singh, S. Chemistry and biology of industrial crop tagetes species: A review. J. Essent. Oil Res. 2015, 28, 1–14. [Google Scholar] [CrossRef]
- Dharmagadda, V.S.; Naik, S.N.; Mittal, P.K.; Vasudevan, P. Larvicidal activity of Tagetes patula essential oil against three mosquito species. Bioresour. Technol. 2005, 96, 1235–1240. [Google Scholar] [CrossRef] [PubMed]
- Politi, F.A.; de Souza-Moreira, T.M.; Rodrigues, E.R.; de Queiroz, G.M.; Figueira, G.M.; Januario, A.H.; Berenger, J.M.; Socolovschi, C.; Parola, P.; Pietro, R.C. Chemical characterization and acaricide potential of essential oil from aerial parts of Tagetes patula L. (Asteraceae) against engorged adult females of Rhipicephalus sanguineus (latreille, 1806). Parasitol. Res. 2013, 112, 2261–2268. [Google Scholar] [CrossRef] [PubMed]
- Armas, K.; Rojas, J.; Rojas, L.; Morales, A. Comparative study of the chemical composition of essential oils of five tagetes species collected in Venezuela. Nat. Prod. Commun. 2012, 7, 1225–1226. [Google Scholar] [PubMed]
- Prakash, O.; Rout, P.K.; Chanotiya, C.S.; Misra, L.N. Composition of essential oil, concrete, absolute and spme analysis of Tagetes patula capitula. Ind. Crops Prod. 2012, 37, 195–199. [Google Scholar] [CrossRef]
- Li, J.; Song, S.D.; Zhang, R.N.; Liu, N.; Li, C.C. Chemical components and nitrite cleaning activity of essential oil from Tagetes erecta L. Leaf. Adv. Mater. Res. 2011, 183–185, 1168–1172. [Google Scholar] [CrossRef]
- Marques, M.M.; Morais, S.M.; Vieira, I.G.; Vieira, M.G.; Raquel, A.; Silva, A.; De Almeida, R.R.; Guedes, M.I. Larvicidal activity of Tagetes erecta against Aedes aegypti. J. Am. Mosq. Control Assoc. 2011, 27, 156–158. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, B.M. Progress in essential oils: Tagetes oil. Perfum. Flavor. 1992, 17, 131–133. [Google Scholar]
- Lawrence, B.M. Progress in essential oils: Tagetes oil. Perfum. Flavor. 1996, 21, 64–68. [Google Scholar]
- Lawrence, B.M. Progress in essential oils: Tagetes oil. Perfum. Flavor. 2000, 25, 38–46. [Google Scholar]
- Lawrence, B.M. Progress in essential oils: Tagetes oil. Perfum. Flavor. 2006, 31, 58–62. [Google Scholar]
- Lawrence, B.M. Progress in essential oils: Tagetes oil. Perfum. Flavor. 2009, 34, 54–57. [Google Scholar]
- Burfield, T. Natural Aromatic Materials: Odours & Origins, 2nd ed.; The Atlantic Institute of Aromatherapy: Tampa, FL, USA, 2017. [Google Scholar]
- Juliani, H.; Biurrun, F.; Koroch, A.; Oliva, M.; Demo, M.; Trippi, V.; Zygadlo, J. Chemical constituents and antimicrobial activity of the essential oil of Lantana xenica. Planta Med. 2002, 68, 762–764. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.G.; Kirti Dolma, S.; Koundal, R.; Singh, B. Chemical composition and insecticidal activities of essential oils against diamondback moth, Plutella xylostella (L.) (lepidoptera: Yponomeutidae). Nat. Prod. Res. 2016, 30, 1834–1838. [Google Scholar] [CrossRef] [PubMed]
- Ramaroson-Raonizafinimanana, B.; Ramanoelina, P.A.R.; Rasoarahona, J.R.E.; Gaydou, E.M. Chemical compositions of aerial part of Tagetes minuta L. Chemotype essential oils from madagascar. J. Essent. Oil Res. 2009, 21, 390–392. [Google Scholar] [CrossRef]
- Breme, K.; Tournayre, P.; Fernandez, X.; Meierhenrich, U.J.; Brevard, H.; Joulain, D.; Berdague, J.L. Identification of odor impact compounds of Tagetes minuta L. Essential oil: Comparison of two gc-olfactometry methods. J. Agric. Food Chem. 2009, 57, 8572–8580. [Google Scholar] [CrossRef] [PubMed]
- Nchu, F.; Magano, S.R.; Eloff, J.N. In vitro anti-tick properties of the essential oil of Tagetes minuta L. (Asteraceae) on Hyalomma rufipes (acari: Ixodidae). Onderstepoort J. Vet. Res. 2012, 79, E1–E5. [Google Scholar] [CrossRef] [PubMed]
- Gillij, V.G.; Gleiser, R.M.; Zygadlo, J.A. Mesquito repellent activity of essential oils of aromatic plants growing in argentina. Bioresour. Technol. 2008, 99, 2507–2515. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.V.; Matias, J.; Barros, J.C.; de Lima, D.P.; Lopes Rda, S.; Andreotti, R. Chemical identification of Tagetes minuta linnaeus (Asteraceae) essential oil and its acaricidal effect on ticks. Rev. Bras. Parasitol. Vet. 2012, 21, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Macedo, I.T.; de Oliveira, L.M.; Camurca-Vasconcelos, A.L.; Ribeiro, W.L.; dos Santos, J.M.; de Morais, S.M.; de Paula, H.C.; Bevilaqua, C.M. In vitro effects of Coriandrum sativum, Tagetes minuta, Alpinia zerumbet and Lantana camara essential oils on Haemonchus contortus. Rev. Bras. Parasitol. Vet. 2013, 22, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Wanzala, W.; Hassanali, A.; Mukabana, W.R.; Takken, W. Repellent activities of essential oils of some plants used traditionally to control the brown ear tick, Rhipicephalus appendiculatus. J. Parasitol. Res. 2014, 2014, 434506. [Google Scholar] [CrossRef] [PubMed]
- Kimutai, A.; Ngeiywa, M.; Mulaa, M.; Njagi, P.G.; Ingonga, J.; Nyamwamu, L.B.; Ombati, C.; Ngumbi, P. Repellent effects of the essential oils of Cymbopogon citratus and Tagetes minuta on the sandfly, phlebotomus duboscqi. BMC Res. Notes 2017, 10, 98. [Google Scholar] [CrossRef] [PubMed]
- Gakuubi, M.M.; Wagacha, J.M.; Dossaji, S.F.; Wanzala, W. Chemical composition and antibacterial activity of essential oils of Tagetes minuta (Asteraceae) against selected plant pathogenic bacteria. Int. J. Microbiol. 2016, 2016, 7352509. [Google Scholar] [CrossRef] [PubMed]
- Giarratana, F.; Muscolino, D.; Ziino, G.; Giuffrida, A.; Marotta, S.M.; Lo Presti, V.; Chiofalo, V.; Panebianco, A. Activity of Tagetes minuta linnaeus (Asteraceae) essential oil against l3 anisakis larvae type 1. Asian Pac. J. Trop. Med. 2017, 10, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Gila, A.; Ghersa, C.M.; Leicach, S. Essential oil yield and composition of Tagetes minuta accessions from argentina. Biochem. Syst. Ecol. 2000, 28, 261–274. [Google Scholar] [CrossRef]
- Chamorro, E.R.; Ballerini, G.; Sequeira, A.F.; Velasco, G.A.; Zalazar, M.F. Chemical composition of essential oil from Tagetes minuta leaves and flowers. J. Argent. Chem. Soc. 2008, 96, 80–86. [Google Scholar]
- Worku, T.; Bertoldi, M. Essential oils at different development stages of ethiopian Tagetes minuta L. In Essential Oils: Basic and Applied Research; Franz, C., Mathe, A., Buchbauer, G., Eds.; Allured Publishing: Carol Stream, IL, USA, 1996; pp. 339–341. [Google Scholar]
- Chalchat, J.; Gary, J.C.; Muhayimana, R.P. Essential oil of Tagetes minuta from rwanda and france: Chemical composition according to harvesting, location, growing stage and plant part. J. Essent. Oil Res. 1995, 7, 375–386. [Google Scholar] [CrossRef]
- Lawrence, B.M. Progress in essential oils. Perfum. Flavor. 1992, 39–44. [Google Scholar]
- Moghaddam, M.; Omidbiagi, R.; Sefidkon, F. Changes in content and chemical composition of Tagetes minuta oil at various harvest times. J. Essent. Oil Res. 2007, 19, 18–20. [Google Scholar] [CrossRef]
- Kumar, R.; Ramesh, K.; Pathania, M.V.; Singh, B. Effect of transplanting date on growth, yield and oil quality of Tagetes minuta L. In mid hill of north-western Himalaya. J. Essent. Oil Bear. Plants 2012, 15, 405–414. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, S.; Ramesh, K.; Pathasia, V.; Prasad, R. Irradiance stress and plant spacing effect on growth, biomass and quality of wild Marigold oil (Tagetes minuta L.)—An industrial crop in western Himalaya. J. Essent. Oil Res. 2014, 26, 348–358. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Harris, P.J.; Henderson, J.; Senatore, F. Effect of drought stress on the yield and composition of volatile oils of drought-tolerant and non-drought-tolerant clones of Tagetes minuta. Planta Med. 2002, 68, 472–474. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.A.; Sharopov, F.S.; Al-Kaf, A.G.; Hill, G.M.; Arnold, N.; Al-Sokari, S.S.; Setzer, W.N.; Wessjohann, L. Composition of essential oil from Tagetes minuta and its cytotoxic, antioxidant and antimicrobial activities. Nat. Prod. Commun. 2014, 9, 265–268. [Google Scholar] [PubMed]
- Karimian, P.; Kavoosi, G.; Amirghofran, Z. Anti-oxidative and anti-inflammatory effects of Tagetes minuta essential oil in activated macrophages. Asian Pac. J. Trop. Biomed. 2014, 4, 219–227. [Google Scholar] [CrossRef]
- Ciccio, J.F. A source of almost pure methyl chavicol: Volatile oil from the aerial parts of Tagetes lucida (Asteraceae) cultivated in costa rica. Rev. Biol. Trop. 2004, 52, 853–857. [Google Scholar] [PubMed]
- Bicchi, C.; Fresia, M.; Rubiolo, P.; Monti, D.; Franz, C.; Goehler, I. Constituents of Tagetes lucida cav. Ssp. Lucida essential oil. Flavour Fragr. J. 1997, 12, 47–52. [Google Scholar] [CrossRef]
- Goehler, I. Domestikation von Medizinalp Anzen und Untersuchungen Zur Inkulturnahme von Tagetes lucida cav; Universitaät fuür Bodenkultur Wien: Wien, Austria, 2006. [Google Scholar]
- Caballero-Gallardo, K.; Olivero-Verbel, J.; Stashenko, E.E. Repellent activity of essential oils and some of their individual constituents against Tribolium castaneum herbst. J. Agric. Food Chem. 2011, 59, 1690–1696. [Google Scholar] [CrossRef] [PubMed]
- Vera, S.S.; Zambrano, D.F.; Mendez-Sanchez, S.C.; Rodriguez-Sanabria, F.; Stashenko, E.E.; Duque Luna, J.E. Essential oils with insecticidal activity against larvae of Aedes aegypti (Diptera: Culicidae). Parasitol. Res. 2014, 113, 2647–2654. [Google Scholar] [CrossRef] [PubMed]
- Omer, E.A.; Hendawy, S.F.; Ismail, R.F.; Petretto, G.L.; Rourke, J.P.; Pintore, G. Acclimatization study of Tagetes lucida L. in Egypt and the chemical characterization of its essential oils. Nat. Prod. Res. 2017, 31, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
- Gleiser, R.M.; Bonino, M.A.; Zygadlo, J.A. Repellence of essential oils of aromatic plants growing in Argentina against Aedes aegypti (Diptera: Culicidae). Parasitol. Res. 2011, 108, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Stefanazzi, N.; Stadler, T.; Ferrero, A. Composition and toxic, repellent and feeding deterrent activity of essential oils against the stored-grain pests Tribolium castaneum (Coleoptera: Tenebrionidae) and Sitophilus oryzae (Coleoptera: Curculionidae). Pest. Manag. Sci. 2011, 67, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Chopa, C.S.; Descamps, L.R. Composition and biological activity of essential oils against Metopolophium dirhodum (Hemiptera: Aphididae) cereal crop pest. Pest. Manag. Sci. 2012, 68, 1492–1500. [Google Scholar] [CrossRef] [PubMed]
- Hethelyi, E.; Tetenyi, P.; Dabi, E.; Danos, B. The role of mass spectrometry in medicinal plant research. Biomed. Environ. Mass Spectrom. 1987, 14, 627–632. [Google Scholar] [CrossRef] [PubMed]
- Pichette, A.; Garneau, F.-X.; Collin, G.; Jean, F.-I.; Gagnon, H.; Lopez Arze, J.B. Essential oils from Bolivia. Iv. Compositae: Tagetes aff. Maxima kuntze and Tagetes multiflora h.B.K. J. Essent. Oil Res. 2005, 17, 27–28. [Google Scholar] [CrossRef]
- Tucker, A.; Maciarello, M.J. Volatile leaf oil of tagetes lemmonii gray. J. Essent. Oil Res. 1996, 8, 417–418. [Google Scholar] [CrossRef]
- Lopez, S.B.; Lopez, M.L.; Aragon, L.M.; Tereschuk, M.L.; Slanis, A.C.; Feresin, G.E.; Zygadlo, J.A.; Tapia, A.A. Composition and anti-insect activity of essential oils from tagetes L. Species (Asteraceae, Helenieae) on ceratitis capitata wiedemann and triatoma infestans klug. J. Agric. Food Chem. 2011, 59, 5286–5292. [Google Scholar] [CrossRef] [PubMed]
- Buitrago, D.; Rojas, L.B.; Rojas, J.; Morales, A. Volatile compounds from Tagetes pusilla (Asteraceae) collected from the Venezuela andes. Nat. Prod. Commun. 2010, 5, 1283–1284. [Google Scholar] [PubMed]
- Lima, B.; Agüero, M.B.; Zygadlo, J.A.; Tapia, A.; Solis, C.; Rojas de Arias, A.; Yaluff, G.; Zacchino, S.; Feresin, G.E.; Schmeda-Hirschmann, G. Antimicrobial activity of extracts, essential oil and metabolites obtained from Tagetes mendocina. J. Chil. Chem. Soc. 2009, 54, 68–72. [Google Scholar] [CrossRef]
- Rahman, A. An ethnobotanical investigation on asteraceae family at Rajshahi, Bangladesh. J. Bus. Admin. Manag. Sci. Res. 2013, 2, 133–141. [Google Scholar]
- Parvaiz, M. Ethnobotanical studies on plant resources of mangowal, district Gujrat, Punjab, Pakistan. Avicenna J. Phytomed. 2014, 4, 364–370. [Google Scholar] [PubMed]
- Moreno-Salazar, S.F.; Robles-Zepeda, R.E.; Johnson, D.E. Plant folk medicines for gastrointestinal disorders among the main tribes of Sonora, Mexico. Fitoterapia 2008, 79, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Svetaz, L.; Zuljan, F.; Derita, M.; Petenatti, E.; Tamayo, G.; Caceres, A.; Cechinel, V.; Gimenez, A.; Pinzon, R.; Zacchino, S.A.; et al. Value of the ethnomedical information for the discovery of plants with antifungal properties. A survey among seven latin american countries. J. Ethnopharmacol. 2010, 127, 137–158. [Google Scholar] [CrossRef] [PubMed]
- Alonso, J.; Desmarchelier, C. Plantas Medicinales Autóctonas de la Argentina. Bases Científicas Para su Aplicación En Atención Primaria de Salud; Universitat de Barcelona: Barcelona, Spain, 2005. [Google Scholar]
- Njoroge, G.N.; Bussmann, R.W. Ethnotherapeautic management of skin diseases among the kikuyus of central Kenya. J. Ethnopharmacol. 2007, 111, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Rahman, I.U.; Ijaz, F.; Iqbal, Z.; Afzal, A.; Ali, N.; Afzal, M.; Khan, M.A.; Muhammad, S.; Qadir, G.; Asif, M. A novel survey of the ethno medicinal knowledge of dental problems in Manoor valley (northern Himalaya), Pakistan. J. Ethnopharmacol. 2016, 194, 877–894. [Google Scholar] [CrossRef] [PubMed]
- Ata, S.; Farooq, F.; Javed, S. Elemental profile of 24 common medicinal plants of pakistan and its direct link with traditional uses. J. Med. Plants Res. 2011, 5, 6164–6168. [Google Scholar]
- Kujawska, M.; Hilgert, N.I. Phytotherapy of polish migrants in misiones, argentina: Legacy and acquired plant species. J. Ethnopharmacol. 2014, 153, 810–830. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, F.; Iqbal, Z.; Rahman, I.U.; Alam, J.; Khan, S.M.; Shah, G.M.; Khan, K.; Afzal, A. Investigation of traditional medicinal floral knowledge of Sarban hills, Abbottabad, kp, Pakistan. J. Ethnopharmacol. 2016, 179, 208–233. [Google Scholar] [CrossRef] [PubMed]
- Hamill, F.A.; Apio, S.; Mubiru, N.K.; Bukenya-Ziraba, R.; Mosango, M.; Maganyi, O.W.; Soejarto, D.D. Traditional herbal drugs of southern Uganda, ii: Literature analysis and antimicrobial assays. J. Ethnopharmacol. 2003, 84, 57–78. [Google Scholar] [CrossRef]
- Bourdy, G.; Chāvez de Michel, L.R.; Roca-Coulthard, A. Pharmacopoeia in a shamanistic society: The izoceño-guaraní (Bolivian chaco). J. Ethnopharmacol. 2004, 91, 189–208. [Google Scholar] [CrossRef] [PubMed]
- Gunes, S.; Savran, A.; Paksoy, M.Y.; Kosar, M.; Cakilcioglu, U. Ethnopharmacological survey of medicinal plants in karaisali and its surrounding (adana-Turkey). J. Herb. Med. 2017, 8, 68–75. [Google Scholar] [CrossRef]
- Teixidor-Toneu, I.; Martin, G.J.; Ouhammou, A.; Puri, R.K.; Hawkins, J.A. An ethnomedicinal survey of a tashelhit-speaking community in the high atlas, Morocco. J. Ethnopharmacol. 2016, 188, 96–110. [Google Scholar] [CrossRef] [PubMed]
- Agra, M.F.; Baracho, G.S.; Nurit, K.; Basílio, I.J.; Coelho, V.P. Medicinal and poisonous diversity of the flora of “cariri paraibano”, Brazil. J. Ethnopharmacol. 2007, 111, 383–395. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.; Gmünder, F.; Hamburger, M. Plants traditionally used in age related brain disorders—A survey of ethnobotanical literature. J. Ethnopharmacol. 2007, 113, 363–381. [Google Scholar] [CrossRef] [PubMed]
- Guadarrama-Cruz, G.; Alarcon-Aguilar, F.J.; Lezama-Velasco, R.; Vazquez-Palacios, G.; Bonilla-Jaime, H. Antidepressant-like effects of Tagetes lucida cav. In the forced swimming test. J. Ethnopharmacol. 2008, 120, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ortega, G.; González-Trujano, M.E.; Ángeles-López, G.E.; Brindis, F.; Vibrans, H.; Reyes-Chilpa, R. Tagetes lucida cav.: Ethnobotany, phytochemistry and pharmacology of its tranquilizing properties. J. Ethnopharmacol. 2016, 181, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, S.L.G.; Chilpa, R.R.; Jaime, H.B. Medicinal plants for the treatment of “nervios”, anxiety, and depression in Mexican traditional medicine. Rev. Bras. Farmacogn.-Braz. J. Pharmacogn. 2014, 24, 591–608. [Google Scholar] [CrossRef]
- Leonti, M.; Vibrans, H.; Sticher, O.; Heinrich, M. Ethnopharmacology of the popoluca, Mexico: An evaluation. J. Pharm. Pharmacol. 2001, 53, 1653–1669. [Google Scholar] [CrossRef] [PubMed]
- García-Hernández, K.Y.; Vibrans, H.; Rivas-Guevara, M.; Aguilar-Contreras, A. This plant treats that illness? The hot-cold system and therapeutic procedures mediate medicinal plant use in san miguel tulancingo, Oaxaca, Mexico. J. Ethnopharmacol. 2015, 163, 12–30. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ortega, G.; Angeles-López, G.E.; Argueta-Villamar, A.; González-Trujano, M.E. Preclinical evidence of the anxiolytic and sedative-like activities of Tagetes erecta L. Reinforces its ethnobotanical approach. Biomed. Pharmacother. 2017, 93, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Hitziger, M.; Heinrich, M.; Edwards, P.; Pöll, E.; Lopez, M.; Krütli, P. Maya phytomedicine in guatemala—Can cooperative research change ethnopharmacological paradigms? J. Ethnopharmacol. 2016, 186, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Castro, J.; Maldonado-Miranda, J.; Zarate-Martinez, A.; Jacobo-Salcedo, M.; Fernández-Galicia, C.; Alejandro Figueroa-Zuñiga, L.; Abel Rios-Reyes, N.; Angel de León-Rubio, M.; Andrés Medellín-Castillo, N.; Reyes-Munguia, A.; et al. Medicinal plants used in the huasteca potosina, México. J. Ethnopharmacol. 2012, 143, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Maity, N.; Nema, N.K.; Abedy, M.K.; Sarkar, B.K.; Mukherjee, P.K. Exploring Tagetes erecta Linn flower for the elastase, hyaluronidase and mmp-1 inhibitory activity. J. Ethnopharmacol. 2011, 137, 1300–1305. [Google Scholar] [CrossRef] [PubMed]
- Ballabh, B.; Chaurasia, O.P.; Ahmed, Z.; Singh, S.B. Traditional medicinal plants of cold desert ladakh-used against kidney and urinary disorders. J. Ethnopharmacol. 2008, 118, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Shinde, N.V.; Kanase, K.G.; Shilimkar, V.C.; Undale, V.R.; Bhosale, A.V. Antinociceptive and anti-inflammatory effects of solvent extracts of Tagetes erectus Linn (Asteraceae). Trop. J. Pharm. Res. 2009, 8, 325–329. [Google Scholar] [CrossRef]
- Gras, A.; Garnatje, T.; Ibanez, N.; Lopez-Pujol, J.; Nualart, N.; Valles, J. Medicinal plant uses and names from the herbarium of Francesc Bolos (1773–1844). J. Ethnopharmacol. 2017, 204, 142–168. [Google Scholar] [CrossRef] [PubMed]
- Rasoanaivo, P.; Petitjean, A.; Ratsimamanga-Urverg, S.; Rakoto-Ratsimamanga, A. Medicinal plants used to treat malaria in Madagascar. J. Ethnopharmacol. 1992, 37, 117–127. [Google Scholar] [CrossRef]
- Mahomoodally, M.F. A quantitative ethnobotanical study of common herbal remedies used against 13 human ailments categories in mauritius. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 1–32. [Google Scholar]
- Samoisy, A.K.; Mahomoodally, F. Ethnopharmacological appraisal of culturally important medicinal plants and polyherbal formulas used against communicable diseases in Rodrigues Island. J. Ethnopharmacol. 2016, 194, 803–818. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Bharati, K.A. New claims in folk veterinary medicines from uttar pradesh, India. J. Ethnopharmacol. 2013, 146, 581–593. [Google Scholar] [CrossRef] [PubMed]
- Pande, P.C.; Tiwari, L.; Pande, H.C. Ethnoveterinary plants of uttaranchal—A review. Indian J. Tradit. Knowl. 2007, 6, 444–458. [Google Scholar]
- Kidane, B.; van der Maesen, L.J.; van Andel, T.; Asfaw, Z. Ethnoveterinary medicinal plants used by the maale and ari ethnic communities in southern ethiopia. J. Ethnopharmacol. 2014, 153, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.C.D.; Schneider, L.R.; da Silva Barboza, A.; Diniz Campos, Â.; Lund, R.G. Systematic review and technological overview of the antimicrobial activity of Tagetes minuta and future perspectives. J. Ethnopharmacol. 2017, 208, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Wanzala, W.; Ogoma, S.B. Chemical composition and mosquito repellency of essential oil of Tagetes minuta from the southern slopes of mount elgon in western Kenya. J. Essent. Oil Bear. Plants 2013, 16, 216–232. [Google Scholar] [CrossRef]
- Uhlenbroeck, J.; Bijloo, J. Investigation on nematicides. Isolation and structure of a nematicidal principle occurring in tagetes roots. Recuid des Travaux Chimiques des Pays 1958, 77, 1104–1109. [Google Scholar]
- Swarup, G.; Sharma, A. Effect of root extracted of Asparagus racemosus and Tagetes erecta on hatching of eggs of Meloidogyne javanica and M. arenaria. Indian J. Exp. Biol. 1967, 5, 59. [Google Scholar]
- Munoz, L.; Roger, O.; Lopez, C.; Arias, R.; Francisco, P.; Calzad, J. Potential natural nematicides from plant of the genus tagetes (compositae). El Ingeniero en Nanotecnología y Ciencias Químicas 1982, 6, 156–158. [Google Scholar]
- Fujimoto, T.; Kyo, M.; Miyauchi, Y.; Mayama, S. Nematocidal activity and α-terthiophene content in marigold callus. Plant Tissue Cult. Lett. 1990, 7, 177–180. [Google Scholar] [CrossRef]
- Marotti, I.; Marotti, M.; Piccaglia, R.; Nastri, A.; Grandi, S.; Dinelli, G. Thiophene occurrence in different tagetes species: Agricultural biomasses as sources of biocidal substances. J. Sci. Food Agric. 2010, 90, 1210–1217. [Google Scholar] [CrossRef] [PubMed]
- Sarin, R. Insecticidal activity of callus culture of Tagetes erecta. Fitoterapia 2004, 75, 62–64. [Google Scholar] [CrossRef] [PubMed]
- Nikkon, F.; Habib, M.; Karim, M.; Ferdousi, Z.; Rahman, M.; Haque, M. Insecticidal activity of flower of Tagetes erecta L. against Tribolium castaneum (Herbst). Res. J. Agric. Biol. Sci. 2009, 5, 748–753. [Google Scholar]
- Ravikumar, P. Chemical examination and insecticidal properties of Tagetes erecta and Tagetes patula. Asian J. Biol. Sci. 2010, 5, 29–31. [Google Scholar]
- Salinas-Sanchez, D.O.; Aldana-Llanos, L.; Valdes-Estrada, M.E.; Gutierrez-Ochoa, M.; Valladares-Cisneros, G.; Rodriguez-Flores, E. Insecticidal activity of Tagetes erecta extracts on Spodoptera frugiperda (Lepidoptera: Noctuidae). Fla. Entomol. 2012, 95, 428–432. [Google Scholar] [CrossRef]
- Santos, P.; Santos, V.; Mecina, G.; Andrade, A.; Fegueiredo, P.; Moraes, V.; Silva, L.; Silva, R. Insecticidal activity of tagetes sp. On Sitophilus zeamais mots. Int. J. Environ. Agric. Res. 2016, 2, 31–38. [Google Scholar]
- Santos, P.; Santos, V.; Mecina, G.; Andrade, A.; Fegueiredo, P.; Moraes, V.; Silva, L.; Silva, R. Phytotoxicity of Tagetes erecta L. and Tagetes patula L. On plant germination and growth. S. Afr. J. Bot. 2015, 100, 114–121. [Google Scholar] [CrossRef]
- Zoubiri, S.; Baaliouamer, A. Potentiality of plants as source of insecticide principles. J. Saudi Chem. Soc. 2014, 18, 925–938. [Google Scholar] [CrossRef]
- Arora, K.; Batish, D.; Kohli, R.; Singh, H. Allelopathic impact of essential oil of Tagetes minuta on common agricultural and wasteland weeds. Innov. J. Agric. Sci. 2017, 5, 1–4. [Google Scholar]
- Coelho, L.C.; Bastos, A.R.R.; Pinho, P.J.; Souza, G.A.; Carvalho, J.G.; Coelho, V.A.T.; Oliveira, L.C.A.; Domingues, R.R.; Faquin, V. Marigold (Tagetes erecta): The potential value in the phytoremediation of chromium. Pedosphere 2017, 27, 559–568. [Google Scholar] [CrossRef]
- Tereschuk, M.L.; Riera, M.V.Q.; Castro, G.R.; Abdala, L.R. Antimicrobial activity of flavonoids from leaves of Tagetes minuta. J. Ethnopharmacol. 1997, 56, 227–232. [Google Scholar] [CrossRef]
- Tereschuk, M.L.; Baigori, M.D.; Abdala, L.R. Antibacterial activity of Tagetes terniflora. Fitoterapia 2003, 74, 404–406. [Google Scholar] [CrossRef]
- Hernandez, T.; Canales, M.; Flores, C.; Garcia, A.M.; Duran, A.; Avila, J.G. Antimicrobial activity of Tagetes lucida. Pharm. Biol. 2008, 44, 19–22. [Google Scholar] [CrossRef]
- Cespedes, C.L.; Avila, J.G.; Martinez, A.; Serrato, B.; Calderon-Mugica, J.C.; Salgado-Garciglia, R. Antifungal and antibacterial activities of mexican tarragon (Tagetes lucida). J. Agric. Food Chem. 2006, 54, 3521–3527. [Google Scholar] [CrossRef] [PubMed]
- Dunkel, F.V.; Jaronski, S.T.; Sedlak, C.W.; Meiler, S.U.; Veo, K.D. Effects of steam-distilled shoot extract of Tagetes minuta (Asterales: Asteraceae) and entomopathogenic fungi on larval Tetanops myopaeformis. Environ. Entomol. 2010, 39, 979–988. [Google Scholar] [CrossRef] [PubMed]
- Thembo, K.M.; Vismer, H.F.; Nyazema, N.Z.; Gelderblom, W.C.; Katerere, D.R. Antifungal activity of four weedy plant extracts against selected mycotoxigenic fungi. J. Appl. Microbiol. 2010, 109, 1479–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behidj-Benyounes, N.; Bennaamane, S.; Bissaad, F.; Chebouti, N.; Mohandkaci, H.; Abdalaziz, N.; Iddou, S. Antimicrobial potentials of flavonoids isolated from Tagetes erecta. Int. J. Bioeng. Life Sci. 2014, 8, 1265–1268. [Google Scholar]
- Rhama, S.; Madhavan, S. Antibacterial activity of the flavonoid, patulitrin isolated from the flowers of Tagetes erecta L. Int. J. PharmTech Res. 2011, 3, 1407–1409. [Google Scholar]
- Das, B.; Mishra, P. Antibacterial analysis of crude extracts from the leaves of Cannabis sativa. Int. J. Environ. Sci. 2011, 2, 1605–1609. [Google Scholar]
- Chakraborthy, G.S. Antibacterial and antifungal studies of Tagetes erectus leaf extracts. J. Pure Appl. Microbiol. 2009, 3, 227–230. [Google Scholar]
- Jain, R.; Katare, N.; Kumar, V.; Samanta, A.; Goswami, S.; Shrotri, C. In vitro antibacterial potential of different extracts of Tagetes erecta and Tagetes patula. J. Nat. Sci. Res. 2012, 2, 84–91. [Google Scholar]
- Kuddus, M.; Alam, M.; Chowdhury, S.; Rumi, F.; Sikder, A.; Rashid, M. Evaluation of membrane stabilizing activity, total phenolic content, brine shrimp lethality bioassay, thrombolytic and antimicrobial activities of Tagetes patula L. J. Pharmacogn. Phytochem. 2012, 1, 57–62. [Google Scholar]
- Faizi, S.; Siddiqi, H.; Bano, S.; Naz, A.; Lubna; Mazhar, K.; Nasim, S.; Riaz, T.; Kamal, S.; Ahmad, A.; et al. Antibacterial and antifungal activities of different parts of Tagetes patula: Preparation of patuletin derivatives. Pharm. Biol. 2008, 46, 309–320. [Google Scholar] [CrossRef]
- Capunzo, M.; Brunetti, L.; Cavallo, P.; Boccia, G.; De Caro, F.; Ieluzzi, M. Antimicrobial activity of dry extracts of Tagetes lucida from Guatemala. J. Prev. Med. Hyg. 2003, 44, 85–87. [Google Scholar]
- Senatore, F.; Napolitano, F.; Mohamed, M.A.H.; Harris, P.J.C.; Minkeni, P.N.S.; Henderson, J. Antibacterial activity of Tagetes minuta L. (Asteraceae) essential oil with different chemical composition. Flavour Fragr. J. 2004, 19, 574–578. [Google Scholar] [CrossRef]
- Wanjala, W.; Wanzala, W. Chapter 90-Tagetes (Tagetes minuta) oils. Essent. Oils Food Preserv. Flavor Saf. 2016, 791–802. [Google Scholar] [CrossRef]
- Salehi, B.; Valussi, M.; Jugran, A.K.; Martorell, M.; Ramírez-Alarcón, K.; Stojanović-Radić, Z.Z.; Antolak, H.; Kręgiel, D.; Mileski, K.S.; Sharifi-Rad, M.; et al. Nepeta species: From farm to food applications and phytotherapy. Trends Food Sci. Technol. 2018, 80, 104–122. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Roberts, T.H.; Matthews, K.R.; Bezerra, C.F.; Morais-Braga, M.F.B.; Coutinho, H.D.M.; Sharopov, F.; Salehi, B.; Yousaf, Z.; Sharifi-Rad, M.; et al. Ethnobotany of the genus Taraxacum—Phytochemicals and antimicrobial activity. Phytother. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Marvdashti, L.M.; Abdolshahi, A.; Hedayati, S.; Sharifi-Rad, M.; Iriti, M.; Salehi, B.; Sharifi-Rad, J. Pullulan gum production from low-quality fig syrup using Aureobasidium pullulans. Cell. Mol. Biol. 2018, 64, 22–26. [Google Scholar] [CrossRef]
- Tereschuk, M.L.; Baigorí, M.D.; De Figueroa, L.I.; Abdala, L.R. Flavonoids from Argentine Tagetes (Asteraceae) with antimicrobial activity. Methods Mol. Biol. 2004, 268, 317–330. [Google Scholar] [PubMed]
- Romero, C.M.; Vivacqua, C.G.; Abdulhamid, M.B.; Baigori, M.D.; Slanis, A.C.; de Allori, M.C.G.; Tereschuk, M.L. Biofilm inhibition activity of traditional medicinal plants from northwestern Argentina against native pathogen and environmental microorganisms. Rev. Soc. Bras. Med. Trop. 2016, 49, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Verghese, J. Focus on xanthophylls from Tagetes erecta L. the giant natural color complex-ii. Indian Spices 1998, 34, 13–16. [Google Scholar]
- Verghese, J. Focus on xanthophylls from Tagetes erecta L. the giant natural complex-i. Indian Spices 1998, 33, 8–13. [Google Scholar]
- Sivel, M.; Kracmar, S.; Fisera, M.; Klejdus, B.; Kuban, V. Lutein content in marigold flower (Tagetes erecta L.) concentrates used for production of food supplements. Czech J. Food Sci. 2014, 32, 521–525. [Google Scholar] [CrossRef]
- EFSA. Scientific opinion on the safety, bioavailability and suitability of lutein for the particular nutritional use by infants and young children. EFSA J. 2008, 6, 823. [Google Scholar] [CrossRef]
- EFSA. Scientific opinion on the substantiation of health claims related to lutein and maintenance of normal vision (id 1603, 1604, further assessment) pursuant to article 13(1) of regulation (ec) no 1924/2006. EFSA J. 2012, 10, 2716. [Google Scholar]
- FAO. Lutein esters from Tagetes erecta. In Chemical and Technical Assessment (CTA); FAO: Rome, Italy, 2016. [Google Scholar]
- Wang, W.; Xu, H.; Chen, H.; Tai, K.; Liu, F.; Gao, Y. In vitro antioxidant, anti-diabetic and antilipemic potentials of quercetagetin extracted from marigold (Tagetes erecta L.) inflorescence residues. J. Food Sci. Technol. 2016, 53, 2614–2624. [Google Scholar] [CrossRef] [PubMed]
- Chkhikvishvili, I.; Sanikidze, T.; Gogia, N.; Enukidze, M.; Machavariani, M.; Kipiani, N.; Vinokur, Y.; Rodov, V. Constituents of French Marigold (Tagetes patula L.) flowers protect jurkat t-cells against oxidative stress. Oxid. Med. Cell. Longev. 2016, 2016, 4216285. [Google Scholar] [CrossRef] [PubMed]
- WHO. International Statistical Classification of Diseases and Related Health Problems 10th Revision (icd-10); WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Juarez-Vazquez, M.D.; Carranza-Alvarez, C.; Alonso-Castro, A.J.; Gonzalez-Alcaraz, V.F.; Bravo-Acevedo, E.; Chamarro-Tinajero, F.J.; Solano, E. Ethnobotany of medicinal plants used in xalpatlahuac, guerrero, mexico. J. Ethnopharmacol. 2013, 148, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Sahu, P.; Masih, V.; Gupta, S.; Sen, D.; Tiwari, A. Ethnomedicinal plants used in the healthcare systems of tribes of dantewada, chhattisgarh India. Am. J. Plant Sci. 2014, 5, 1632. [Google Scholar] [CrossRef]
- Sen, S.; Chakraborty, R.; Devanna, N. An ethnobotanical survey of medicinal plants used by ethnic people in west and south district of tripura, India. J. For. Res. 2011, 22, 417–426. [Google Scholar] [CrossRef]
- Singh, P.; Attri, B. Survey on traditional uses of medicinal plants of bageshwar valley (Kumaun Himalaya) of uttarakhand, India. Int. J. Conserv. Sci. 2014, 5, 223–234. [Google Scholar]
- Blanco, L.; Thiagarajan, T. Ethno-botanical study of medicinal plants used by the yucatec maya in the northern district of belize. Int. J. Herb. Med. 2017, 5, 33–42. [Google Scholar]
- Mollik, M.; Hossan, M.; Paul, A.; Taufiq-Ur-Rahman, M.; Jahan, R.; Rahmatullah, M. A comparative analysis of medicinal plants used by folk medicinal healers in three districts of Bangladesh and inquiry as to mode of selection of medicinal plants. Ethnobot. Res. Appl. 2010, 8, 195–218. [Google Scholar] [CrossRef]
- Bussmann, R.; Glenn, A. Plants used for the treatment of gastro-intestinal ailments in northern Peruvian ethnomedicine. Arnaldoa 2010, 17, 255–270. [Google Scholar]
- Gheno-Heredia, Y.; Nava-Bernal, G.; Martínez-Campos, Á.; Sánchez-Vera, E. Las plantas medicinales de la organización de parteras y médicos indígenas tradicionales de ixhuatlancillo, veracruz, México y su significancia cultural. Polibotánica 2011, 31, 199–251. [Google Scholar]
- Rosas-Pinon, Y.; Mejia, A.; Diaz-Ruiz, G.; Aguilar, M.I.; Sanchez-Nieto, S.; Rivero-Cruz, J.F. Ethnobotanical survey and antibacterial activity of plants used in the altiplane region of Mexico for the treatment of oral cavity infections. J. Ethnopharmacol. 2012, 141, 860–865. [Google Scholar] [CrossRef] [PubMed]
- Trillo, C.; Toledo, B.; Galetto, L.; Colantonio, S. Persistence of the use of medicinal plants in rural communities of the western arid Chaco [Córdoba, Argentina]. Open Complement. Med. J. 2010, 2, 80–89. [Google Scholar] [CrossRef]
- Igwaran, A.; Iweriebor, B.C.; Ofuzim Okoh, S.; Nwodo, U.U.; Obi, L.C.; Okoh, A.I. Chemical constituents, antibacterial and antioxidant properties of the essential oil flower of Tagetes minuta grown in cala community eastern cape, South Africa. BMC Complement. Altern. Med. 2017, 17, 351. [Google Scholar] [CrossRef] [PubMed]
- Lambrecht, C.; Almeida, D.; Voigt, F.; Faccin, A.; Noremberg, R.; Schiedeck, G.; Damé, L. Actividad antibacteriana de los extractos de Cymbopogon citratus, Elionurus sp. y Tagetes minuta contra bacterias que causan mastitis. Rev. Cubana de Plantas Med. 2013, 18, 487–494. [Google Scholar]
- Ayub, M.A.; Hussain, A.I.; Hanif, M.A.; Chatha, S.A.S.; Kamal, G.M.; Shahid, M.; Janneh, O. Variation in phenolic profile, β-carotene and flavonoid contents, biological activities of two Tagetes species from pakistani flora. Chem. Biodivers. 2017, 14, e1600463. [Google Scholar] [CrossRef] [PubMed]
- Shahzadi, I.; Shah, M.M. Acylated flavonol glycosides from Tagetes minuta with antibacterial activity. Front. Pharmacol. 2015, 6, 195. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, E.; Castillo, D.; Del Solar, Q.; Maurtua, D.; Villegas, L.; Díaz, C. Efecto antibacteriano de extractos etanólicos de plantas utilizadas en la tradiciones culinarias andinas sobre microorganismos de la cavidad bucal. Rev. Estomatol. Hered. 2015, 25, 268–277. [Google Scholar] [CrossRef]
- Kazibwe, Z.; Kim, D.H.; Chun, S.; Gopal, J. Ultrasonication assisted ultrafast extraction of Tagetes erecta in water: Cannonading antimicrobial, antioxidant components. J. Mol. Liq. 2017, 229, 453–458. [Google Scholar] [CrossRef]
- Romagnoli, C.; Bruni, R.; Andreotti, E.; Rai, M.K.; Vicentini, C.B.; Mares, D. Chemical characterization and antifungal activity of essential oil of capitula from wild indian Tagetes patula L. Protoplasma 2005, 225, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Sesan, T.; Enache, E.; Iacomi, B.; Oprea, M.; Oancea, F.; Iacomi, C. Biological action of plant extracts on a fungal plant biostimulant strain of Trichoderma viride. Acta Horti Bot. Bucur. 2015, 42, 63–66. [Google Scholar] [CrossRef]
- Alzamora, L.; Morales, L.; Armas, L.; Fernández, G. Medicina tradicional en el perú: Actividad antimicrobiana in vitro de los aceites esenciales extraídos de algunas plantas aromáticas. Anal. Fac. Med. 2001, 62, 156–161. [Google Scholar] [CrossRef]
- Dutta, B.K.; Karmakar, S.; Naglot, A.; Aich, J.C.; Begam, M. Anticandidial activity of some essential oils of a mega biodiversity hotspot in india. Mycoses 2007, 50, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Mares, D.; Tosi, B.; Poli, F.; Andreotti, E.; Romagnoli, C. Antifungal activity of Tagetes patula extracts on some phytopathogenic fungi: Ultrastructural evidence on Pythium ultimum. Microbiol. Res. 2004, 159, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Negro, V.; Mancini, G.; Ruggeri, B.; Fino, D. Citrus waste as feedstock for bio-based products recovery: Review on limonene case study and energy valorization. Bioresour. Technol. 2016, 214, 806–815. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.J.; Beserra, F.P.; Souza, M.C.; Totti, B.M.; Rozza, A.L. Limonene: Aroma of innovation in health and disease. Chem. Biol. Interact. 2018, 283, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, A.C.; Lopes, P.M.; de Azevedo, M.M.; Costa, D.C.; Alviano, C.S.; Alviano, D.S. Biological activities of alpha-pinene and beta-pinene enantiomers. Molecules 2012, 17, 6305–6316. [Google Scholar] [CrossRef] [PubMed]
- Marchese, A.; Barbieri, R.; Coppo, E.; Orhan, I.E.; Daglia, M.; Nabavi, S.F.; Izadi, M.; Abdollahi, M.; Nabavi, S.M.; Ajami, M. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit. Rev. Microbiol. 2017, 43, 668–689. [Google Scholar] [CrossRef] [PubMed]
Molecules | India | Egypt | South Africa |
---|---|---|---|
(E)-β-ocimene (5) | 16.6–35.3 | 31.0–43.3 | 40.4–69.8 |
dihydrotagetone (6) | 11.9–48.1 | 3.0–22.0 | 5.3–17.7 |
(Z)-tagetone (7) | 18.6–27.2 | 4.8–10.7 | 1.3–12.4 |
(Z)-tagetenone (8) | 8.1–32.5 | 4.8–10.3 | 6.9–21.6 |
(E)-tagetenone (8) | 4.2–7.8 | 0.4–9.0 | |
(E)-tagetone (7) | 2.5–6.1 | 0.6–2.0 | 0.4–2.4 |
limonene (1) | - | 2.9–6.8 | tr–9.5 |
β-myrcene | - | - | tr–1.4 |
germacrene B | - | 1.0–1.3 | - |
β-caryophyllene (9) | - | 0.6–1.1 | - |
Molecules | India | Venezuela |
---|---|---|
β-caryophyllene (9) | 19 | 23.7 |
terpinolene (4) | 7 | 15.6 |
(E)-β-ocimene (5) | 12 | 15.5 |
δ-elemene | 17 * | - |
(Z)-tagetenone (8) | 6 | - |
1,8-cineole | 4 * | - |
piperitenone | 3 | - |
(E)-tagetenone (8) | 3 | - |
(E)-β-ionone | 3 | - |
alloocimene | 2 | - |
(Z)-sabinol | 2 | - |
(E)-β–ocimene (5) | 1.8 | - |
bicyclogermacrene | 1.3 | - |
Molecules | Aerial Parts | Capitula | Leaves |
---|---|---|---|
limonene (1) | X | X | X |
(E)-β-farnesene | X | ||
(E)-β-ocimene (5) | X | X | |
(Z)-myroxide | X | ||
(Z)-β-ocimene | X | X | X |
1,8-cineole | X | ||
2-hexen-1-al | X | ||
aromadendrene | X | ||
camphene | X | ||
carvacrol | X | X | |
cyperene | X | ||
d-carvone | X | ||
dihydrotagetone (6) | X | ||
dipentene | X | X | |
eudesmol | X | ||
eugenol (10) | X | ||
geraniol | X | X | |
geranyl acetate | X | ||
indole | X | X | |
linalol | X | X | X |
linalyl acetate | X | X | X |
menthol | X | X | |
myrcene | X | X | |
n-nonyl aldehyde | X | X | X |
nerolidol | X | X | |
p-cymen-9-ol | X | ||
p-cymene | X | ||
p-mentha-1,3,8-triene | X | ||
phenylacetaldehyde | X | ||
phenylethyl alcohol | X | ||
piperitenone | X | X | X |
piperitenone oxide | X | ||
piperitone | X | X | X |
sabinene | X | ||
salicylaldehyde | X | ||
tagetenones | X | ||
tagetones | X | X | X |
terpinen-4-ol | X | ||
terpinolene (4) | X | X | X |
thymol | X | X | |
α-pinene (2) | X | X | |
β-caryophyllene (9) | X | X | X |
β-elemene | X | ||
β-phellandrene | X | X | |
β-pinene (3) | X | X | |
γ-elemene | X | ||
γ-muurolene | X | ||
γ-terpinene | X |
Molecules | India | South Africa | Egypt |
---|---|---|---|
(E)-β-ocimene (5) | 16.6–35.3 | 40.4–69.8 | 31.0–43.3 |
dihydrotagetone (6) | 11.9–48.1 | 5.3–17.7 | 3.0–22.0 |
(Z)-tagetone (7) | 18.6–27.2 | 1.3–12.4 | 4.8–10.7 |
(Z)-tagetenone (8) | 8.1–32.5 | 6.9–21.6 | 4.8–10.3 |
(E)-tagetenone (8) | 0.4–9.0 | 4.2–7.8 | |
(E)-tagetone (7) | 2.5–6.1 | 0.4–2.4 | 0.6–2.0 |
limonene (1) | - | tr–9.5 | 2.9–6.8 |
β-myrcene | - | tr–1.4 | - |
germacrene B | - | - | 1–1.3 |
β-caryophyllene (9) | - | - | 0.6–1.1 |
Origin | Chemical Features |
---|---|
EOs from Brazil, France, and Hungary | (Z)-β-ocimene > (Z)- and (E)-tagetenone > (Z)- and (E)-tagetone and dihydrotagetone |
EOs from North America | (Z)-β-ocimene > (Z)- and (E)-tagetenone > dihydrotagetone > (Z)- and (E)-tagetone |
EOs from Rwanda | (Z)-β-ocimene > (Z)- and (E)-tagetone > (Z)- and (E)-tagetenones > dihydrotagetone |
EOs from Kashmir and Himachal Pradesh (India) | (Z)- β-ocimene > (Z)- and (E)-tagetenone > dihydrotagetone > (Z)- and (E)-tagetone |
EOs from Bhutan | (Z)-β-ocimene > dihydrotagetone > (Z)- and (E)-tagetone and tagetenone |
EOs from Zambia and Andhra Pradesh (India) | dihydrotagetone > (Z)-β-ocimene > (Z)- and (E)-tagetone > (Z)- and (E)-tagetenone |
EOs from Turkey | dihydrotagetone > (Z)-β-ocimene > (Z)- and (E)-tagetenone > (Z)- and (E)-tagetone |
EOs from Lucknow (India) | dihydrotagetone > (Z)- and (E)- tagetone > (Z)- and (E)-tagetenone and (Z)-β-ocimene |
Molecules | Babu and Kaul 2007 * | Reddy et al. 2016 |
---|---|---|
limonene (1) | 6.0 | 1.9 |
(E)-β-ocimene (5) | 49.3 | 37.9 |
dihydrotagetone (6) | 12.1 | 12.7 |
(E)-tagetone (7) | 0.4 | 1.4 |
(Z)-tagetone (7) | 3.7 | 11.8 |
(E)-tagetenone (8) | 3.0 | 11.4 |
(Z)-tagetenone (8) | 3.7 | 5.4 |
bicyclogermacrene | - | 0.9 |
Molecules | Vegetative Stage | Budding Stage | Full Flower Stage | Seed Stage |
---|---|---|---|---|
(E)-β-ocimene (5) | 3.2 | 16.6 | 14.4 | 23.5 |
dihydrotagetone (6) | 54.3 | 21.9 | 30.3 | 29.0 |
(E)-tagetone (7) | 0.8 | 3.8 | 3.4 | 2.4 |
(Z)-tagetone (7) | 1.9 | 23.9 | 13.7 | 13.5 |
(Z)-tagetenone (8) | 0.9 | 9.9 | 7.0 | 5.3 |
(E)-tagetenone (8) | 0.5 | 4.2 | 2.0 | 6.8 |
Molecules | Wanzala et al. 2014 [77] | Kimutai et al. 2017 [78] |
---|---|---|
(Z)-β-ocimene (5) | 43.8 | 9.8 |
dihydrotagetone (6) | 16.7 | 21.2 |
piperitenone | 10.2 | |
(E)-tagetone (7) | 8.7 | 16.2 |
3,9-epoxy-p-mentha-1,8(10)diene | 6.5 | - |
(E)-β-ocimene (5) | 3.3 | - |
(Z)-tagetone (7) | 1.9 | 14.9 |
limonene (1) | - | 7.4 |
alloocimene | - | 6.7 |
(Z)-tagetenone (b) | - | 4.1 |
δ-cadinene | acetaldehyde | methyleugenol | (Z,Z)-alloocimene |
(E)-tagetenone (1.8–30.6%) | acetone | nerolidol | α-cadinol |
(E)-tagetone (0.5–3.4%) | aromadendrene | octanal | α-humulene |
(E)-α-bergamotene | camphene | octanol | α-p-dimethylstyrene |
(E)-β-ocimene | carvacrol | p-menth-4-en-3-one | α-phellandrene |
(Z)-tagetenone (tr–32%) | decenal | phenylethylalcohol | α-terpinene |
(Z)-tagetone (1.8–46%) | dihydrotagetone (0.8–15.4%) | piperitenone | α-thujene |
(Z)-β-ocimene (25–47%) | (E)-β-farnesene | piperitone | α-thujone |
(Z)-β-ocimene epoxide | eugenol | propyl butyrate | β-caryophyllene |
2-isobutyl-norbornane | geraniol | sabinene (0.1–0.6%) | β-myrcene |
2-methylbutyl acetate | isobornyl acetate | salicylaldehyde | β-phellandrene |
2-methylethyl butyrate | isopiperitenone | terpinen-4-olo | β-pinene |
2-methylethyl propionate | l-carvone | terpinolene | β-thujone |
2,3,5-trimethyl furan | limonene (1.3–3.6%) | thymol | β-elemene |
3-methylbutyl acetate | menthol | thymolhydroquinone dimethyl-ether | |
4-methyl-2-pentanone | methyl carvacrol | toluene | |
5-isobutyl-3-methyl-2-furancarbaldehyde | methyl chavicol | (Z)- and (E)-alloocimene |
Molecules | Gila et al. 2000 [81] | Chamorro et al. 2008 [82] |
---|---|---|
(E)-β-ocimene (5) | 63.0 | 28.4–55.3 |
(Z)-β-ocimene (5) | 13.0–38.0 | |
(E)-tagetenone (8) | 6.0–16.0 | 19.0–47.5 |
(Z)-tagetenone (8) | 0.9–10.18 | |
α-phellandrene | 3.9 | - |
dihydrotagetone (6) | 2.0–2.7 | 3.9–14.3 |
o-cymene | 1.74 | - |
tagetones | - | 3.1–14.4 |
limonene (1) | 2.1–12.7 | 4.6–11.1 |
β-phellandrene | - | 0.5–2.5 |
Molecules | Kumar et al. 2012 [87] | Kumar et al. 2014 [88] |
---|---|---|
(Z)-β-ocimene (5) | 21.1–36.5 | 24.3–25.2 |
dihydrotagetone (6) | 1.9–3.9 | 9.5–9.6 |
(Z)-tagetone (7) | 0.6–1.9 | 1.0–1.1 |
(E)-tagetone (7) | 6.4–14.9 | 15.0–15.9 |
(Z)-tagetenone (8) | 4.2–7.8 | 5.0–5.4 |
(E)-tagetenone (8) | 28.5–37.1 | 28.7–30.5 |
limonene (1) | - | 4.9 |
Origin | Chemical Features |
---|---|
EOs from Rwanda | dihydrotagetone > (Z)-tagetone > (Z)-tagetenone > (E)-tagetone > (Z)-β-ocimene > (E)-tagetenone |
EOs from Mukoni (Rwanda) | (E)-tagetenone > (Z)-tagetone > dihydrotagetone, (E)-tagetone and (Z)-β-ocimene |
EOs from Uttar Pradesh (India) | (Z)-tagetone > (Z)-tagetenone > dihydrotagetone, (E)-tagetone and (Z)-β-ocimene > (E)-tagetone |
EOs from France | (Z)-tagetenone > (Z)-β-ocimene > (Z)-tagetone > dihydrotagetone |
Molecules | Kumar et al. 2012 [87] | Kumar et al. 2014 [88] |
---|---|---|
(Z)-β-ocimene (5) | 5.7–11.5 | 10.5–10.7 |
dihydrotagetone (6) | 24.6–39.1 | 43.7–45.8 |
(Z)-tagetone (7) | 1.7–2.8 | 1.1–1.4 |
(E)-tagetone (7) | 28.1–34.5 | 19.7–21.5 |
(Z)-tagetenone (8) | 1.4–3.1 | 1.2 |
(E)-tagetenone (8) | 9.6–18.1 | 6.8–7.2 |
limonene (1) | - | 6.9–7.1 |
Plant Species | Microbial Strain | References |
---|---|---|
T. erecta | Escherichia coli, Bacillus subtilis, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, C. albicans, and S. cerevisiae | [163] |
Alcaligenes faecalis, Bacillus cereus, Campylobacter coli, E. coli, K. pneumoniae, P. aeruginosa, Proteus vulgaris, Streptococcus mutans, and Streptococcus pyogenes | [164] | |
B. cereus, B. subtilis, S. aureus, Staphylococcus albus, Bacillus megaterium, Listeria monocytogenes, Corynebacterium rubrum, E. coli, Pseudomonas pseudoalcaligenes, Pseudomonas testosterone, Proteus morganii, P. aeruginosa, Enterobacter aerogenes, K. pneumoniae, Proteus mirabilis, C. albicans, Cryptococcus neoformans, Candida glabrata, and Candida apicola | [35] | |
E. coli | [165] | |
C. albicans | [166] | |
T. erecta and T. patula | E. coli, P. vulgaris, P. mirabilis, Aeromonas sobria, Aeromonas hydrophila, Plesiomonas shigelloides, Salmonella enterica ser. Typhi, Salmonella enterica ser. Typhimurium, Salmonella enterica ser. Aboni, Salmonella enterica ser. Enteritidis, B. subtilis, B. cereus, Bacillus circulans, and S. aureus | [167] |
T. patula | Sarcina lutea, B. megaterium, E. coli, and Vibrio parahaemolyticus | [168] |
Corynebacterium spp., Staphylococcus spp., Streptococcus spp., and Micrococcus luteus | [169] | |
T. lucida | E. coli, Aeromonas hominis, P. aeruginosa, Enterobacter alcalifaciens, and E. coli | [170] |
E. coli, P. mirabilis, K. pneumoniae, and Salmonella spp. | [160] | |
Shigella boydii, S. aureus, Staphylococcus epidermidis, P. aeruginosa, B. subtilis, S. lutea, and Vibrio cholerae | [159] | |
T. minuta | Salmonella typhi, E. coli, S. aureus, B. subtilis, A. niger, and C. albicans | [42] |
B. cereus, B. subtilis, S. aureus, Streptococcus faecalis, E. coli, P. mirabilis, P. aeruginosa, and S. typhi | [171] | |
T. terniflora | E. coli, S. aureus, S. epidermidis, P. aeruginosa, M. luteus, Z. mobilis, L. plantarum, and S. cerevisiae | [158] |
Specie | Use | Used Part | Preparations | Utilization Method | References | Country |
---|---|---|---|---|---|---|
T. erecta | Gastrointestinal disorders, diarrhea, stomachache, dysentery, ulcer, dental problems, skin diseases, rash, cut, wounds, boils, sore throat, cough | Flowers, leaves | Infusion, crushed leaves, juice from the leaves, paste of leaves, decoction | Oral/local application for wounds and dental problems; oral as leaf juice; local application: paste of leaves used in the treatment of ulcers and wounds; topical: leaves boiled in water to wash affected area and to relieve itchiness and rash | [130,187,188,189,190,191,192] | Mexico, India, Belize, Bangladesh |
T. filifolia | Severe colic, diarrhea, stomachache | Whole plant, fresh or dried | Not informed | Oral: 10 g per L mixed with Poleo, Manzanilla, Muña, or Chancas de comida and Hinojo; 3 cups daily for 1 week to 1 month | [193,194] | Peru, Mexico |
T. lucida | Digestive problems, gum diseases, caries, toothache, rheumatism, ulcers in mucus membranes and vaginal fluids, antiseptic, bronchitis | Aerial parts | Infusion, decoction | Topical, mouthwash, local application | [124,195] | Mexico |
T. minuta | diarrhea, digestive for children, wounds in the mouth | Leaves, seeds | Not informed | Topical | [113,140,196] | Ethiopia, Pakistan, Argentina |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salehi, B.; Valussi, M.; Morais-Braga, M.F.B.; Carneiro, J.N.P.; Leal, A.L.A.B.; Coutinho, H.D.M.; Vitalini, S.; Kręgiel, D.; Antolak, H.; Sharifi-Rad, M.; et al. Tagetes spp. Essential Oils and Other Extracts: Chemical Characterization and Biological Activity. Molecules 2018, 23, 2847. https://doi.org/10.3390/molecules23112847
Salehi B, Valussi M, Morais-Braga MFB, Carneiro JNP, Leal ALAB, Coutinho HDM, Vitalini S, Kręgiel D, Antolak H, Sharifi-Rad M, et al. Tagetes spp. Essential Oils and Other Extracts: Chemical Characterization and Biological Activity. Molecules. 2018; 23(11):2847. https://doi.org/10.3390/molecules23112847
Chicago/Turabian StyleSalehi, Bahare, Marco Valussi, Maria Flaviana Bezerra Morais-Braga, Joara Nalyda Pereira Carneiro, Antonio Linkoln Alves Borges Leal, Henrique Douglas Melo Coutinho, Sara Vitalini, Dorota Kręgiel, Hubert Antolak, Mehdi Sharifi-Rad, and et al. 2018. "Tagetes spp. Essential Oils and Other Extracts: Chemical Characterization and Biological Activity" Molecules 23, no. 11: 2847. https://doi.org/10.3390/molecules23112847
APA StyleSalehi, B., Valussi, M., Morais-Braga, M. F. B., Carneiro, J. N. P., Leal, A. L. A. B., Coutinho, H. D. M., Vitalini, S., Kręgiel, D., Antolak, H., Sharifi-Rad, M., Silva, N. C. C., Yousaf, Z., Martorell, M., Iriti, M., Carradori, S., & Sharifi-Rad, J. (2018). Tagetes spp. Essential Oils and Other Extracts: Chemical Characterization and Biological Activity. Molecules, 23(11), 2847. https://doi.org/10.3390/molecules23112847